
GPU ACCELERATION FOR SUPPORT VECTOR MACHINES

Andreas Athanasopoulos, Anastasios Dimou, Vasileios Mezaris, Ioannis Kompatsiaris

Informatics and Telematics Institute / Centre for Research and Technology Hellas
6th Km Charilaou-Thermi Road, Thermi 57001, Greece

{athanaso, dimou, bmezaris, ikom}@iti.gr

ABSTRACT

This paper presents a GPU-assisted version of the LIB-
SVM library for Support Vector Machines. SVMs are par-
ticularly popular for classification procedures among the re-
search community, but for large training data the processing
time becomes unrealistic. The modification that is proposed
is porting the computation of the kernel matrix elements to the
GPU, to significantly decrease the processing time for SVM
training without altering the classification results compared
to the original LIBSVM. The experimental evaluation of the
proposed approach highlights how the GPU-accelerated ver-
sion of LIBSVM enables the more efficient handling of large
problems, such as large-scale concept detection in video.

1. INTRODUCTION

Nowadays, the Support Vector Machine (SVM) methodology
is widely used among the research community for training
classifiers. Its popularity can be attributed to the good re-
sults it produces on a variety of classification problems; in
the field of image/video processing and analysis, for exam-
ple, SVMs are used for video segmentation to shots [1], con-
cept detection in images and videos [2],[3] and other tasks.
The standard SVM is a non-probabilistic, binary, linear clas-
sifier. To add non-linear classification capabilities, the kernel
trick was introduced that transforms the problem to a higher
dimensional feature space, in order to make classes linearly
separable [4]. Current SVM implementations (eg. LIBSVM
[5]) offer a variety of features such as different kernels, multi-
class classification and cross-validation for model selection.
Classification problems are becoming more and more de-

manding and challenging for the classifier in the quest for
higher accuracy. The size of the problem increases with the
training data available and the size of the input vectors. More-
over, techniques such as SVM parameter tuning and cross val-
idation, which improve classification, also increase computa-
tional costs. In some case, the processing time for training a
SVM model can be in the order of days. Thus, it is crucial to

This work was supported by the European Commission under contract
FP7-248984 GLOCAL.

speed-up the process of model training without sacrificing the
accuracy of the results.
The computational cost can be reduced either by using

multiple PCs to parallelize the work, as in [6], or by using
the processor in the graphics cards as a co-processor. The lat-
ter option is particularly appealing because modern Graphics
Processing Units (GPUs) have become faster and more effi-
cient than traditional CPUs in certain types of computations.
They are optimized for rendering real-time graphics, a highly
computational and memory intensive problem with enormous
inherent parallelism; thus, relative to a CPU, a much larger
portion of a GPU’s resources is devoted to data processing
than to caching or control flow. In order, though, to realize
large performance gains compared to a CPU, parallelism has
to be uncovered in the desired application. NVIDIA has in-
troduced a programming framework for their GPUs, Compute
Unified Device Architecture (CUDA) [7], that can be used to
exploit the advantages of their architecture.
In this paper we try to give an insight on past work on

the GPU-accelerated SVMs and suggest a new solution for
which we make source code publicly available1. The remain-
der of the paper is organized as follows: in section 2, previ-
ous work on SVMs and using GPUs is discussed. In section 3
the methodology of model training and the algorithm imple-
mentation are presented. Experimental results are reported in
section 4 and finally conclusions are drawn in section 5.

2. RELATEDWORK

A number of CPU-based implementations of the SVMmethod-
ology are publicly available today. LIBSVM [5], SVM light
[8], mySVM [9] and TinySVM [10] are only some examples.
LIBSVM is one of the most complete implementations, pro-
viding many options and state-of-the-art performance. There-
fore, it has become the SVM implementation of choice for a
large part of the research community. Thus, it was chosen as
the basis of our work on GPU-accelerated SVMs.
Several approaches to exploiting the GPU power have been

proposed. Catanzaro et al [11] presented a SVM solver that
works on GPUs. The implementation used the Sequential

1http://mklab.iti.gr/project/GPU-LIBSVM

Proc. 12th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2011), Delft, The Netherlands, April 2011.

Minimal Optimization (SMO) [12] algorithm also used by
LIBSVM, but their GPU implementation used solely single
precision floating point arithmetics, rather than double pre-
cision that is used by LIBSVM. Consequently, the results
showed a performance deterioration compared to LIBSVM
(e.g 23,18% difference in accuracy for the “FOREST” dataset
as shown in [13]). Carpenter [13] presented another SVM im-
plementation that uses the same SMO solver but uses a mix-
ture of double and single precision arithmetics to enhance the
accuracy of the results. The performance was boosted, espe-
cially for dense datasets, but still could not duplicate the LIB-
SVM results. Both solutions presented above also lack a num-
ber of features that LIBSVM offers, e.g. cross-validation, that
are valuable for achieving state-of-the-art results. In [14], rel-
evant work has been done for the x2 kernel. In our work, LIB-
SVM is used as the basis and it is modified to use the GPU to
accelerate parts of the procedure, most notably the computa-
tion of the RBF kernel. The functionality of LIBSVM is fully
preserved, all original features are available (such as cross-
validation, probability estimation, weighting etc.) and results
identical to those of the original LIBSVM are produced.

3. ACCELERATING SVM COMPUTATIONS

3.1. Methodology

The SVM classification problem can be separated in two dif-
ferent tasks; the calculation of the kernel matrix (KM) and
the core SVM task of decomposing and solving a series of
quadratic problems (SMO solver) to extract a classification
model. The increasing size of the input data leads to a huge
KM that cannot be calculated and stored in memory. There-
fore, the solver needs to calculate on-the-fly portions of the
KM, a processing and memory-bandwidth intensive proce-
dure. Calculating the KM values has to be repeated multiple
times when cross validation is adopted to enhance the clas-
sification process. Moreover, using the SVM parameter op-
timization requires a huge number of recalculations (e.g. for
5-fold cross validation and 110 different parameter sets tested,
which are the default parameters for the “easy.py” script in-
cluded in LIBSVM, that would lead to 550 repetitions). For
large datasets this procedure can account for up to 90% of
the total processing time required [14]. Acceleration can be
achieved in two ways: i) the KM is pre-calculated and it is
passed to the SVM to avoid recalculation during the cross-
validation loops, and ii) the parallelism and the memory band-
width of a GPU are exploited to speed up the process. The
solution of the quadratic problems can also benefit from par-
allelism, but accuracy matters are raised. LIBSVM is using
double precision for calculations but only the latest GPUs do
support double precision, leading to accuracy inconsistencies.
Therefore, we chose to deal with the matrix calculations only.
The methodology that was followed combines an archi-

tectural change and the GPU-acceleration. The differences

are visualized in Fig. 1. In the original LIBSVM the KM
is recalculated in every iteration of the cross-validation func-
tion, exploiting only previously cached results in the system
memory. On the other hand, in the modified version that
we propose the KM is calculated only once for every set of
parameters tested. This architectural change accelerates the
procedure by a factor of n, where n is the number of cross-
validations employed. Furthermore, the combination of CPU
and GPU is used to speed-up the calculation of the KM ele-
ments, as discussed in the sequel. In contrast to other similar
methods (e.g. [11], [13]), the core SVM computations are
kept intact, to preserve the accuracy of the results.

3.2. Calculation of the Kernel Matrix on the GPU

The pre-calculation is performed combining CPU and GPU
to achieve maximum performance as suggested in [13]. LIB-
SVM offers a variety of classification modes and kernels. We
chose to work with C-SVC mode and the RBF kernel.
The RBF kernel function Φ(x, y) is calculated as

Φ(x, y) = exp−γ||x−y||2 , (1)

where x = xi, y = yi are two training vectors. We can ex-
pand

||x − y||2 =
∑

(xi)2 +
∑

(yi)2 − 2 ∗
∑

(xi ∗ yi). (2)

Algorithm 1 shows in detail how the KM is computed,
using this kernel.

Algorithm 1 Kernel Matrix Computation
1: Pre-calculate on the CPU the sum of squares of the ele-
ments for each training vector.

2: Convert the training vectors array into column wise for-
mat, i.e. create the translated matrix of the array, a step
required for the work on the GPU.

3: Allocate memory on the GPU for the training vectors ar-
ray.

4: Load the training vectors array, in the translated format,
to the GPU memory.

5: FOR (each training vector) DO

• Load the training vector to the GPU (because the
version on the GPU is in a translated format).

• Perform the matrix-vector multiplication, i.e. cal-
culate the dot products, using CUBLAS.

• Retrieve the dot products vector from the GPU.
• Calculate the line of the KM by adding the training
vector squares, then calculating Φ(x, y) according
to Equation 1.

END DO
6: De-allocate memory from GPU.

Proc. 12th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2011), Delft, The Netherlands, April 2011.

SVM Model
CreationCross ValidationKernel Matrix

Calculation

SVM Parameter
Selection

N-fold Validation/KM elements computation

Different Sets of Parameters

Training
Data

SVM
Model

(a)

SVM Model
CreationCross ValidationKernel Matrix

Calculation (GPU)

SVM Parameter
Selection

N-fold Validation

Different Sets of Parameters

Training
Data

SVM
Model

(b)

Fig. 1. SVM training procedure for (a) Original, (b) GPU-Accelerated LIBSVM.

As can be seen, the proposed algorithm is based on pre-
calculating on the CPU for each training vector x the sum∑

(xi)2, while calculating the dot-products
∑

(xiyi) using
the CUBLAS [15] library provided from NVIDIA.

4. EXPERIMENTAL RESULTS

The experiments were run on two PCs. The first was equipped
with a quad core Intel Q6600 processor with 3GB of DDR2
RAM,Windows-XP 32-bit OS and a NVIDIA 8800GTS graph-
ics card with 512MB of onboard RAM. The second PC was
equipped with a quad core Intel Core-i7 950 processor with
12GB of DDR3 RAM, Windows-7 64-bit OS and a NVDIA
GTS-250 graphics card with 512MB onboard RAM.
SVMs were trained and used for the detection of high

level features in video shots, on the training portion of the
TRECVID 2007 dataset which comprises 110 videos of 50
hours duration in total. Two separate low-level visual de-
scriptors were used as input to the SVMs for the experiments;
the first is created by extracting SIFT [16] descriptors from
a keyframe of every shot of the videos and using the Bag-of-
Words (BoW) methodology, resulting to a descriptor vector of
dimension 500; the second is created by combining the SIFT-
based BoW descriptors of the first set with the Feature Track
descriptors of [2] and pyramidal decomposition schemes, re-
sulting to a descriptor vector of dimension 6000. For the ex-
periment, 20 high-level features (e.g. “bus”, “nighttime” etc.)
were considered, i.e. 20 SVMs were separately trained. A
variable number of input training vectors, ranging from 36
up to 3772, was available for each of them according to the
ground truth annotations and was used. The script included in
the LIBSVM package for parameter tuning, which involves
5-fold cross validation, was used in all experiments. LIB-
SVM ran in the multi-threaded mode, setting “local workers”
number to 4 in both modes, CPU and CPU+GPU.

The resulting processing times for the various high-level
features (and, thus, for a variable number of input vectors to
the SVM) can be seen in Figs. 2 and 3. These show that
GPU acceleration speeds-up the training process, while in all
experiments the results of SVM training were shown to be
identical. The amount of the acceleration is highly dependent
on both the number of input vectors and the size of the vec-
tors. For small input data the whole process is very fast and
the GPU-induced acceleration is hardly noticeable. As the
input data increases, the processing time with the traditional
LIBSVM is increasing at an almost exponential rate (Fig. 2).
On the contrary, using the GPU the processing time increases
at a much lower rate. Similarly in Fig. 3 (where the time axis
is in logarithmic scale), the processing time when exploiting
the GPU is up to one order of magnitude lower in compar-
ison to using the CPU alone. These results were expected,
since the number of the KM elements is equal to the square
of the number of training vectors. Thus, the amount of calcu-
lations required to produce the KM increases with the square
of the number of training vectors. For large input data, the
time spent on calculating the matrix elements becomes dom-
inant, compared to the other processes of LIBSVM, and thus
the GPU acceleration becomes more pronounced. It should
be stressed that visual concept detection is just one example
of LIBSVM usage. Any other application that uses LIBSVM
can also benefit, depending on the size of the input data.
Since the GPU-accelerated LIBSVM loads the input data

to the graphics card memory and current graphics cards have
a limited amount of memory on board, it is necessary to give
some hints on the memory requirements. GPU-accelerated
LIBSVM stores the input elements with single precision, i.e.
4 bytes per element. For example, an input dataset of 20000
vectors of dimension 500 needs 20000 x 500 x 4 = approx-
imately 40MB of video memory. For multiple threads, the
memory requirements have to be multiplied by the number of

Proc. 12th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2011), Delft, The Netherlands, April 2011.

36 96 180 264 318 336 432 444 492 516 522 522 546 912 1032 1800 1830 3000 3102 3732
0

10

20

30

40

50

60

70

80

90

Number of input vectors

Ti
m

e
(in

 m
in

ut
es

)

i7 950
i7 950 + GTS250
Q6600
Q6600 + 8800GTS

Fig. 2. Processing times for input vectors of size 500.

36 96 180 264 318 336 432 444 492 516 522 522 546 912 1032 1800 1830 3000 3102 3732
10−1

100

101

102

103

104

Number of input vectors

Ti
m

e
(in

 m
in

ut
es

 −
 in

 lo
ga

rit
hm

ic
 s

ca
le

)

i7 950
i7 950 + GTS250
Q6600
Q6600 + 8800GTS

Fig. 3. Processing times for input vectors of size 6000.

threads (“local workers”) used.

5. CONCLUSIONS

Amodification of the LIBSVM library that takes advantage of
the processing power of the GPU was presented in this paper.
The modification pre-calculates the KM elements, combining
the CPU and the GPU to accelerate the procedure. The mod-
ified version of LIBSVM produces identical results with the
original LIBSVM. Our experimental setup showed that the
GPU-accelerated LIBSVM gives a speed improvement that
steeply increases with the size of the input data, enabling the
efficient handling of large problems. The experimental eval-
uation also showed that the GPU speed has a significantly
higher impact than the CPU speed in the total processing time,
especially for large input data. Using a fast graphics card,
even an older PC seems to provide similar performance with
a fast PC using the same graphics card.
The GPU-accelerated LIBSVM is available at http://

mklab.iti.gr/project/GPU-LIBSVM

6. REFERENCES

[1] E. Tsamoura, V. Mezaris, and I. Kompatsiaris, “Grad-
ual transition detection using color coherence and other
criteria in a video shot meta-segmentation framework,”
in Proc. ICIP-MIR, San Diego, CA, USA, Oct. 2008.

[2] V. Mezaris, A. Dimou, and I. Kompatsiaris, “On the
use of feature tracks for dynamic concept detection in
video,” in Proc. ICIP, Hong Kong, China, Sept. 2010.

[3] K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek,
“Evaluation of color descriptors for object and scene
recognition,” in Proc. CVPR, Anchorage, Alaska, USA,
June 2008.

[4] C. Cortes and V. Vapnik, “Support-vector networks,”
Machine Learning, vol. 20, pp. 273–297, 1995.

[5] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for
support vector machines,” 2001, Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[6] E.Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and
H. Cui, “PSVM: Parallelizing Support Vector Machines
on Distributed Computers,” in Proc. NIPS, Vancouver,
B.C., Canada, Dec. 2007.

[7] NVIDIA, CUDA Programming Guide 2.0, 2008.

[8] T. Joachims, “SVM light, http://svmlight.joachims.org,”
2002.

[9] S. Rueping, “mySVM-Manual, http://www-ai.cs.uni-
dortmund.de/SOFTWARE/MYSVM/,” 2000.

[10] T. Kudo, “Tinysvm : Support vector machines,”
http://www.chasen.org/ taku/software/TinySVM/.

[11] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast sup-
port vector machine training and classification on graph-
ics processors,” in Proc. ICML, Helsinki, Finland, 2008.

[12] J. Platt, “Sequential minimal optimization: A fast algo-
rithm for training support vector machines,” Technical
Report MSR-TR-98-14, Microsoft Research, 1998.

[13] A. Carpenter, “cuSVM: a CUDA implemen-
tation of support vector classification and regres-
sion,” 2009, Software available at http://patterns-
onascreen.net/cuSVM.html.

[14] K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek,
“Empowering visual categorization with the gpu,” IEEE
Trans. on Multimedia, vol. 13, no. 1, pp. 60–70, 2011.

[15] NVIDIA, CUBLAS Library 2.0, 2008.

[16] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” Int. J. of Computer Vision, vol. 60,
pp. 91–110, 2004.

Proc. 12th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2011), Delft, The Netherlands, April 2011.

