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ABSTRACT

This paper builds upon previous work on local interest point detec-
tion and description to propose the extraction and representation of
novel Local Invariant Feature Tracks (LIFT). These features com-
pactly capture not only the spatial attributes of 2D local regions, as in
SIFT and related techniques, but also their long-term trajectories in
time. This and other desirable properties of LIFT allow the genera-
tion of Bags-of-Spatiotemporal-Words models that facilitate captur-
ing the dynamics of video content, which is necessary for detecting
high-level video features that by definition have a strong temporal
dimension. Preliminary experimental evaluation and comparison of
the proposed approach reveals promising results.

1. INTRODUCTION

The development of algorithms for the automatic understanding of
the semantics of multimedia and in particular of video content, and
the semantic indexing by means of high-level features correspond-
ing to semantic classes (objects, events) is currently one of the major
challenges in multimedia research. This is motivated by the ever-
increasing pace at which video content is generated, rendering any
annotation scheme that requires human labor unrealistically expen-
sive and unpractical for use on anything but a very restricted subset
of the generated content that may be of unusually high value or im-
portance (e.g. cinema productions, medical content).

Research efforts towards the goal of high-level video feature ex-
traction have followed in the last decade or so several different direc-
tions that have the potential to contribute to this goal, ranging from
segmentation and key-frame extraction to video content representa-
tion using global shot or image features, local interest point detection
and description [1], creation of visual lexicons for video representa-
tion (Bag-of-Words [2]), machine learning for associating low-level
and high-level features, etc. Typically, techniques belonging to sev-
eral of the aforementioned categories need to be carefully combined
for extracting high-level video features.

This work focuses on video content representation, and in par-
ticular builds upon previous work on local interest point detection
and description to propose the extraction and representation of Lo-
cal Invariant Feature Tracks (LIFT). These features compactly de-
scribe the appearance and the long-term motion of local regions and
are invariant, among others, to camera motion, in contrast to both
2D interest point descriptors and their known extensions to spatio-
temporal interest points. The proposed feature tracks are shown to be
suitable for the generation of a Bag-of-Spatiotemporal-Words model
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that facilitates capturing the dynamics of video content, allowing the
more reliable detection of high-level features that have a strong tem-
poral dimension (e.g. “people-dancing”).

The rest of the paper is organized as follows: in section 2, pre-
vious work on local interest point detection and description is dis-
cussed; in section 3, the proposed LIFT representation is presented;
preliminary experimental results are reported in section 4 and finally
conclusions are drawn in section 5.

2. RELATED WORK

Several approaches to scale-invariant interest point detection and de-
scription in still images have been proposed and are widely used in
still image understanding tasks (image classification, object detec-
tion, etc.) as well as other applications. SIFT [1] is probably the
most widely adopted method; SIFT-based descriptors are shown in
[3] to outperform several previously proposed techniques for local
region description. More recent work on this topic includes SURF
[4], which focuses mostly on speeding-up the interest point detection
and description process, and [5], which examines the introduction of
color information to the original grey-value SIFT. For the applica-
tion of high-level feature extraction in generic image collections,
the above descriptors are typically used to build a Bag-of-Words
(BoW) model, which involves the definition of a “vocabulary” of
visual words (typically by clustering the interest point descriptors
coming from a large number of images and selecting the resulting
centroids as words) and the subsequent representation of each im-
age as the histogram of the visual words (i.e. corresponding interest
points) found in it.

Large scale video analysis for the purpose of high-level feature
extraction, using local invariant features, is in most cases performed
at the key-frame level [6]. Thus, the video analysis task reduces to
still image analysis. This has obvious advantages in terms of com-
putational complexity, but on the other hand completely disregards
the temporal dimension of video and the wealth of information that
is embodied in the evolution of the video frames along time. The
temporal evolution of the video signal, i.e. motion, is generally
considered to convey very important information in video, being a
key element of several video understanding and manipulation tasks.
Long-term region trajectories in particular, rather than the motion
at the frame level, was shown in many works to be very useful in
video segmentation, indexing and retrieval (e.g. [7]). Similarly to
other analysis tasks, the use of video data in excess of one single
key-frame (e.g. using multiple key-frames per shot [8], or treating
all frames as key-frames and also considering their temporal succes-
sion [9]) for high-level feature extraction has been shown to lead to
improved results.
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In order to introduce temporal information in the interest-point-
based representation of video shots, the use of spatio-temporal (as
opposed to spatial-only) interest point detectors has been proposed
[10]. Spatio-temporal interest points are defined as locations in the
video where intensity values present significant variations both in
space and in time. In [11] and other works, such points are used for
human action categorization, since the abrupt changes in motion that
trigger the detection of spatio-temporal interest points can be useful
in discriminating between different classes of human activity (walk-
ing, jumping, etc.). However, spatio-temporal interest points define
3D volumes in the video data that typically neither account for pos-
sible camera motion nor capture long-term local region trajectories.
To alleviate these drawbacks, the tracking of spatial interest points
across successive frames has been proposed for applications such as
object tracking [12]. For retrieving similar shots or objects within a
video, the tracking of SIFT features and the clustering of the result-
ing tracks of a shot into clusters corresponding to objects is proposed
in [13]. In [14], interest points are tracked and the motion informa-
tion alone (i.e. the trajectories) are used for describing the motion
patterns that are present in a sequence of frames, for the purpose of
human action recognition and event-based video retrieval.

3. LOCAL INVARIANT FEATURE TRACKS

3.1. Feature Track extraction

Let S be a shot comprising T frames, S = {I;}/_, coming from

the temporal sub-sampling of the original video shot S° = {I, }Zig !

by a factor of a; T = [T°/al].

Application of any of the available combinations of interest point
detectors and descriptors (e.g. [1, 4, 5]) on a frame I; of S results in
the extraction of a set of interest point descriptions ®; = {gzﬁm}%tzl
for every frame, where M is the total number of interest points
detected in the frame, and interest point ¢,, is defined as ¢, =
[6%,, ¢, ¢L]. @2, ¢Y, denote its coordinates (i.e. those of the cor-
responding local region’s centroid) on the image grid and ¢2, is the
local descriptor vector, e.g. an 128-element SIFT vector.

Temporal correspondence between an interest point ¢, € Dy
and one interest point of the previous frame can be established by
local search in a square spatial window of dimension 2 - ¢ + 1 of
frame I;_1, i.e. by examining if one or more ¢, € ®,_; exist that
satisfy the following conditions:

|pm — dnl <o 1)
¢ — dnl <o @

where o is a constant whose value is chosen such that a reasonably-
sized square spatial window is considered during local search, and
d(.,.) is the Euclidean distance (which was also used in [1] for key-
point matching across different images). If multiple interest points
satisfying Eqs. (1)-(3) exist, the one for which quantity d(¢%,, %)
is minimized is retained. When such an interest point ¢, exists, the
interest point ¢,, € ®; is appended to the feature track where the
former belongs, while otherwise (as well as when processing the first
frame of the shot) the interest point ¢, is considered to be the first
clement of a new feature track.

Repeating the temporal correspondence evaluation for all pairs
of consecutive frames in S (and all interest points of the second
frame of each such pair) results in the extraction of a set ¥ of feature
tracks, ¥ = {4 }i—,, where ¢, = [¢F,¥¥, ). ¥f is the aver-
age descriptor vector of a feature track, estimated by element-wise
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Fig. 1. Filter bank used for capturing motion at different time-scales.

averaging of all interest point descriptor vectors ¢2, of the feature
track as in [13], while v}, is the corresponding time series of camera-
motion-compensated interest point displacement in the x-axis be-
tween successive frames of S where the feature track is present,
and similarly v} for the y-axis. Thus, & = [¢f,¢}] is the long-
term trajectory of the interest point that generates the feature track:
YE = [, Pttt L¢P "] where t2 > t; (and similarly for
¥?). The values 1" are estimated for any given ¢ by initially using
the differences ¢y, — ¢, &Y, — ¢¥ for all identified valid pairs of
interest points between frames I;, I;—1 to form a sparse, non-regular
motion field for the corresponding pair of frames; subsequently, the
8 parameters of the bilinear motion model, representing the camera
motion, are estimated from this field using least-squares estimation
and an iterative rejection scheme, as in [7]. Then L/)z’t and ¢Z’t are
eventually calculated as the differences between the initial displace-
ment of the corresponding interest point’s centroid between times
t — 1 and ¢, and the estimated camera motion at the location of the
centroid.

The simple interest point matching between successive frames
of S that is used as part of the proposed feature track extraction pro-
cess was chosen primarily for its simplicity; more elaborate tech-
niques for tracking across frames can be used instead, if the added
computational complexity is not a limiting factor.

3.2. LIFT representation

The extracted feature tracks are variable-length feature vectors, since
the number of elements comprising ¢y and v} is proportional to the
number of frames that the feature was successfully tracked in. This
fact, together with other possible track artefacts (e.g. the extraction
of partial tracks, due to failure in interest point matching between
consecutive frames, occlusions etc.) make the matching of feature
tracks non-trivial and render their current representation unsuitable
for direct use in a Bag-of-Words approach. To this end, each mo-
tion trajectory is transformed to a fixed-length descriptor vector that
attempts to capture the most important characteristics of the motion.

To capture motion at different time-scales, ¢} and ¢} are ini-
tially subject to low-pass filtering using a filter bank shown in Fig.
1, based on the lowpass Haar filter H(z) = (14 z~"). This re-
sults in the generation of a family of trajectories, £x.,q = [¢f 4, wz’ q},
q=0,...,Q — 1, as shown in Fig. 1, which due to the simplicity of
the Haar filter are conveniently calculated as follows:

T x,t1+29—1 x,t1+29 x,t
Vg = [V g A “)
1 291
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The y-axis elements of the trajectory are calculated similarly.

For any trajectory £ 4, the histogram of motion directions at
granularity level 6 is defined as a histogram of 2~ bins: [0, §), [0, 2-
0),..., [2-m—0,2-m). The value of each bin is defined as the number

of elementary motions [¢)%"" Q/J,z’;] of the trajectory that fall into it,

k,q’
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normalized by division with the overall number of such elementary
motions that belong to the examined trajectory. A(Ex,q, @) is defined
as the vector of all bin values for a given & 4 and a constant 6.

Then, the initial trajectory &x can be represented across different
time-scales as a fixed length vector py,
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where J is the number of granularity levels. The corresponding Lo-
cal Invariant Feature Track (LIFT) is defined as

LIFT(x) = [0, ] (7

The LIFTs of a video shot can be used for generating a Bag-
of-Words model that will essentially describe the shot in terms of
classes of “similarly-moving, visually-similar local regions”, rather
that simply “visually-similar local regions” (detected by either spa-
tial or spatio-temporal interest point detectors), as in the current
state-of-the-art, e.g. [8, 11].

3.3. Invariance concerns

The definition of the LIFT representation was guided by the need to
introduce to the extent possible some invariance with respect to the
scale and direction of the extracted tracks. Starting with the interest
point detection and description in the 2D, the SIFT method was used,
due to its well-documented [1, 3] desirable invariance properties;
other similar methods [4, 5] could also be used instead. Concern-
ing the feature track extraction, camera-motion-compensated trajec-
tories were estimated and employed to ensure that the final LIFT
representation will not be affected by camera motion.

In the subsequent representation of the tracks by histograms,
only the direction of each elementary motion of the track was em-
ployed, rather than the direction and magnitude of it. This was done
for introducing some degree of invariance to image scale, since the
same motion (e.g. a person picking up the phone) will result in dif-
ferent motion vector magnitudes depending on the focal length of
the camera and its distance from the plane of the motion; on the
contrary, the direction of motion is not affected by these parameters.

Histograms at various time-scales were selected for represent-
ing the tracks, instead of e.g. comparing the overall displacement of
the interest point along the track, to allow for partial matches when
considering partial tracks (i.e. when the beginning and end of the
different extracted tracks that correspond to the same class of ac-
tions do not coincide with each other and with the actual beginning
and end of the depicted action). Although the adopted solution may
be non-optimal, the reliable matching of partial tracks would other-
wise require the use of a computationally expensive optimization-
based technique for evaluating the similarity of them, in place of
the Euclidean distance typically used in K-means when creating the
“words” used in the Bag-of-Words approach.

The use of motion direction histograms at different granularity
levels 0 (instead of using a single histogram with a high number of
bins) aims at allowing again for partial matches between tracks us-
ing a simple metric (i.e. L1/L2 rather than e.g. the Earth Mover’s
Distance), in the case of small variations in the direction of motion.
When considering only a very fine granularity level 6, significant
such variations between similar shots could be caused by even small

differences in camera angle/viewpoint. The combined use of multi-
ple (from coarse to fine) granularity levels can alleviate this effect to
some degree. Alternatively, the weighted assignment of every ele-
mentary motion to more than one neighboring bins, when construct-
ing each motion direction histogram, could be employed.

4. EXPERIMENTAL RESULTS

In the experimental evaluation of the proposed LIFT features, the
fully annotated TRECVID 2007 training and test datasets were em-
ployed, comprising 50 and 50 hours of video, and 18120 and 18142
shots, respectively. The 20 high-level features that were defined on
this dataset for the TRECVID 2009 contest were used for the pre-
liminary evaluation of the proposed approach.

In extracting the proposed LIFT representation of the video shots,
the temporal sub-sampling parameter a was set equal to 3. This rep-
resents a good compromise between the need for accurately estab-
lishing the SIFT point correspondences from frame to frame (which
calls for a low value of a, ideally 1) and the need for speeding up
the feature extraction process. For each frame of the temporally sub-
sampled sequence, the method of [1] was used for interest point de-
tection and the description, resulting in 128-element vectors for the
local region of each interest point. Parameter o defining the local
window where correspondences between SIFT descriptors are eval-
uated was set to 20, and parameter d;,, used for evaluating the sim-
ilarity of SIFT descriptors in different frames was set to 40000. Four
different timescales ((Q = 4) and three granularity levels (i.e. J =3
in Eq. (6)) were used for representing the trajectory information of
the extracted feature tracks. As a result, a 240-element vector was
used for representing each LIFT feature.

For comparing LIFT with key-frame based SIFT, the median
frame of each shot was selected as a key-frame and SIFT descrip-
tors were extracted, as above, for each key-frame. For both SIFT
and LIFT, the popular Bag-of-Words (BoW) model was used for es-
timating a single descriptor vector for each shot; in our experiments,
the number of visual words was set to 500. Support Vector Machine
(SVM) classifiers producing a fuzzy class membership degree in the
range [0,1] were then used for evaluating the relevance of each shot
of the TRECVID 2007 test dataset with every one of the considered
high-level features, exploiting two different combinations of BoW
models: 1) SIFT-based BoW, and ii) concatenation of the aforemen-
tioned SIFT-based BoW with a LIFT-based BoW, the latter being
constructed using the LIFT descriptors of section 3.2. In any case,
the corresponding SVM classifiers were previously trained using the
TRECVID 2007 training dataset and the common annotation; for
each combination of BoW models and each high-level feature, a sin-
gle SVM was trained independently of all others.

High-level feature extraction results (average precision@2000
[6]) for both SIFT-based BoW features and features resulting from
the concatenation of SIFT- and LIFT-based BoW are shown in Fig. 2.
It can be seen that introducing the proposed LIFT representation
results in significantly higher precision than using solely the SIFT
one, particularly when considering high-level features that have a
strong temporal dimension (e.g. “people-dancing”, “person-playing-
soccer”, etc.). Overall, the SIFT-based BoW resulted in a mean av-
erage precision (MAP) of 0.0538, whereas the combination of SIFT-
and LIFT-based BoW in a MAP of 0.0712, representing an increase
of the former by approximately 32%. Considering only the 6 high-
level features of Fig. 2 that have a strong temporal dimension (i.e.
features 5, 6, 7, 9, 11, 13), the use of the proposed combination of
SIFT- and LIFT-based BoW leads to an increase of MAP by 63.8%
over using the SIFT-based BoW alone.
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Fig. 2. High-level feature extraction results on the TRECVID 2007 dataset.

5. CONCLUSIONS

In this work the extraction and representation of Local Invariant Fea-
ture Tracks was proposed for jointly capturing the spatial attributes
and the long-term motion of local regions in video. In combination
with the BoW technique, the proposed LIFT representation can be
used for generating Bags-of-Spatiotemporal-Words models, thus in-
troducing information about the temporal evolution of each video
shot in BoW. Preliminary experimental evaluation of the proposed
approach on the corpus of TRECVID 2007 revealed its potential for
high-level feature extraction from video.
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