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Image analysis techniques for automated IVUS
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Abstract—Intravascular ultrasound (IVUS) constitutes a valu-
able technique for the diagnosis of coronary atherosclerosis. The
detection of lumen and media-adventitia borders in IVUS images
represents a necessary step towards the reliable quantitative
assessment of atherosclerosis. In this work a fully automated tech-
nique for the detection of lumen and media-adventitia borders
in IVUS images is presented. This comprises two different steps
for contour initialization, one for each corresponding contour
of interest, and a procedure for the refinement of the detected
contours. Intensity information, as well as the result of texture
analysis, generated by means of a multilevel Discrete Wavelet
Frames decomposition, are used in two different techniques
for contour initialization. For subsequently producing smooth {,
contours, three techniques based on low-pass filtering and Radial IVUS
Basis Functions are introduced. The different combinations of the catheter
proposed methods are experimentally evaluated in large datasets
of IVUS images derived from human coronary arteries. It is
demonstrated that our proposed segmentation approaches can

quickly and reliably perform automated segmentation of IVUS  rjg 1. A typical IVUS image with the lumen and media-adventitia borders

images. demarcated (LCSA, lumen cross-sectional area, VCSA, vessel cross-sectional

. area, WCSA, wall cross-sectional area). (Reprinted from Giannoglou et al.
Index Terms—Intravascular ultrasound, Contour detection, (2007)) )- (Rep 9
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I. INTRODUCTION AND LITERATURE which corresponds to the lumen-wall interface, and the media-
i\gventitia border, which represents the boundary between the
%adia and adventitia (Mintz et al., 2001). The reliable and
ick detection of these two borders is the goal of IVUS image
mentation and also the basic step towards the geometrically
rrect 3D reconstruction of the arteries (Giannoglou et al.,
)06a), (Slager et al., 2000), (Coskun et al., 2003).
Traditionally, the segmentation of IVUS images has been
erformed manually, which is a time-consuming procedure

the coronary lumen. In the last two decades, intravascu ected by high inter- and intra-user variability. To overcome

ultrasound (IVUS) has been introduced as a complementé S€ Iimitations, several approaches for §emi-automated S€g-
to angiography diagnostic technique aiming to provide mofgentation ha_ve_bet_an proposed. In (Herrl_ngton et al., 1992)
accurate imaging of coronary atherosclerosis (Mintz et aia_fter manual indication of the general location of the boundary
2001) of interest by the user, an edge detection filter is applied to

IVUS is a catheter-based technique that renders th'r_1d potential edge points within the pointed neighborhood.
e extracted image data are used for the estimation of the

dimensional cross-sectional images of the coronary arterieg, ,
and provides information concerning the lumen and wall. In; psed smogth final contour. Sonka et al. (Sonka et al., 1995)

typical IVUS image three arterial regions can be distinguishe'&'?pleme_nted a k_no_wledge-based graph searching method in-
rporating a priori knowledge on coronary artery anatomy

the lumen, the vessel wall, consisting of the intima and % . ; .
media layers, and the adventitia plus surroundings (Fig. 1). d a selected region of interest prior to the automated border
' gltection.

above regions are separated by two borders: the lumen bor : L )
Quite a few variations of active contour model have been

M. Papadogiorgaki, Vasileios Mezaris and |. Kompatsiaris are with tH:QveSti_gated (Kompatsiaris et E.l|., _2000)’ (ChatZiZiSiSv 2004)
Informatics and Telematics Institute (ITI) / Centre for Research and Techicluding the approach of (Parissi et al., 2006). There, user

nology Hellas (CERTH), Thessaloniki 57001, Greece. Y.S. Chatzizisis af\teraction is required for the drawing of an initial contour
G.D. Giannoglou are with the Cardiovascular Engineering and Atherosclerosis | ible to its final ition: . this initial
Laboratory, AHEPA University Hospital, Aristotle University Medical School,@> ClOS€ aS pOossible 1o Its Tinal posiuon; using this iniia

GR-54636, Thessaloniki, Greece. contour, the active contour approximates the final desired

Medical images derived from several technologies (e.g.,
ray, ultrasound, computed tomography, magnetic resonan
nuclear imaging) are extensively used to improve the existi
diagnostic systems and facilitate medical research. Coron3
angiography is acknowledged as the gold standard for t
diagnosis of coronary artery disease. However, coronary
giography is restricted by its inherent inability to depict
the arterial wall, since it illustrates only the silhouette
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border. The active contour or deformable model principlesvo evaluated in images originating from human coronary
have also been used for the extraction of the lumen amderies. The initialization of the contours in each IVUS frame
medial-adventitia borders in three dimensions after setting was automatically performed using an algorithm based on
initial contour (Kovalski et al., 2000), (Klingensmith et al.the intensity features of the image. The initially extracted
2000). However, in this approach the contour detection fait®undaries constituted the input to the active contour model,
for low contrast interface regions such as the lumen borderhich then deformed the contours appropriately, identifying
which in most images corresponds to weak pixel intensitieir correct location on the IVUS frame; however, contour
variation. In order to improve the active surface segmentatimnitialization based on intensity information alone is not most
algorithm for plaque characterization, Klingensmith et aéfficient, as discussed in the Results section below.
(Klingensmith et al., 2004) used the frequency information Other approaches reported in the literature for the computer-
after acquiring the radio-frequency (RF) IVUS data. RF datsssisted interpretation of IVUS images were based on the
were also used in (Perrey et al., 2004) after in vivo acquisitiaralculation of the image energy for contour detection, or on the
for the segmentation of the lumen boundary in IVUS imagedetection of calcification regions, which could in turn be used
According to this approach, tissue describing parameters wéwse contour detection. A technique for the automated detection
directly estimated from RF data and a neuro-fuzzy inferencé calcification regions based on fuzzy clustering was proposed
system was used to distinguish blood from tissue regionn. (dos S. Filho et al., 2004); however, it remains unclear
Cardinal et al. (Cardinal et al., 2006) presented a 3D IVUSw this should be used for assisting the automated detection
segmentation applying Rayleigh probability density functionsf the lumen and media-adventitia boundaries. In (Luo et al.,
(PDFs) for modelling the pixel grey value distribution 0f2003) the lumen area only of the coronary artery was estimated
the vessel wall structures, requiring, however, some manuaing an internal energy, which describes the smoothness of
tracing of contours for initialization. the arterial wall, and an external energy, which represents the
Despite facilitating the analysis of IVUS data as comparagtayscale variation of the images that constitute the IVUS
to their completely manual processing, the aforementionedquence; the minimal energy that defines the contour was
methods pose the restriction of needing substantial humalstained using circular dynamic programming. As opposed to
intervention during the analysis process. This has provéuo et al.,, 2003), the media-adventitial boundary only was
quite restrictive for clinical practice, where fully automatedonsidered in (Gil et al., 2006), where statistical classification
approaches would be most attractive. A limited number of afechniques were used for modelling the adventitia region.
proaches focusing on the minimization of human intervention This paper presents a novel method for the fully automated
has been developed so far, such as the segmentation basedetection of lumen and media-adventitia boundaries in IVUS
edge contrast (Zhu et al., 2002); the latter was shown to imeages. Intensity information, as in (Giannoglou et al., 2007),
an efficient feature for IVUS image analysis, in combinatioas well as the result of texture analysis, generated by means of
with the grey level distribution. Specific automated approachasmultilevel Discrete Wavelet Frames decomposition, is used
which utilize the deformable model principles in combinatioin two different techniques for the initialization of the lumen
with other various techniques and features reported in thad media-adventitia contours. For the subsequent smoothing
related literature have also been investigated. Brusseau etoélthese initial contours, three techniques based on low-pass
(Brusseau et al., 2004) exploited an automated method filtering and Radial Basis Functions (RBFs) are introduced.
detecting the endoluminal border based on an active contoline different combinations of the proposed methods are
This evolves until it optimally separates regions with differerdéxperimentally evaluated. Evaluation results show that the
statistical properties without using a pre-selected region odmbination of texture-based initialization and RBF-based
interest or initialization of the contour close to its final posmoothing outperforms the other combinations and succeeds
sition. However, in (Brusseau et al., 2004) the detection of tire automatically generating results that are in good agreement
media-adventitia boundary was not examined. Similarly, (degth those of manual segmentation.
S. Filho et al., 2005) employed a fuzzy clustering technique for
the detection of the lumen boundary alone. Another approach II. MATERIALS AND METHODS
based on deformable models was reported by Plissiti et al. ) )
(Plissiti et al., 2004), who employed a Hopfield neural network- Preprocessing and Feature Extraction
for the modification and minimization of an energy function, 1) PreprocessingAs outlined above, the proposed method
as well as a priori vessel geometry knowledge. Despite beinges intensity and texture features for contour initialization.
to a significant extent automated, this method still requirégeprocessing of the image data for the purpose of contour
manual estimation of the boundaries in the first frame of thietection and in particular for the application of a texture
sequence of IVUS images. Unal et al. proposed in (Undescription method to the data consists of two steps: (a)
et al.,, 2006) a shape-driven approach to the segmentatiepresentation of the images in polar coordinates, and (b)
of IVUS images, based on building a shape space usirgmoval of catheter-induced artifacts.
training data and consequently constraining the lumen andRepresentation of the images in polar coordinates is im-
media-adventitia contours to a smooth, closed geometry portant for facilitating the description of local image regions
this space. An automated approach for segmentation of IVlitSterms of their radial and tangential characteristics. It also
images based on a variation of an active contour model wasilitates a number of other detection steps, such as contour
presented in (Giannoglou et al., 2007). The technique wasiititialization and the smoothing of the obtained contour. For



the localization of the contours, as discussed in the Contour
Initialization section below.

B. Contour Initialization

The objective of the contour initialization procedure is the
detection of pixels that are likely to belong to the lumen
and media-adventitia boundaries, taking into consideration
the previously extracted texture features. Two approaches for
the initialization of the lumen contour are considered in this

: . _ _ ~work; they mainly differ in the features that they rely on
Fig. 2. Original IVUS image (left) and corresponding polar coordinate |mag§sr the initialization: intensity features and texture features
before (right top) and after (right bottom) the removal of catheter-inducé® ) : y '
artifacts. respectively.

1) Lumen contour initialization using intensity information:
The use of intensity information readily available from the

this purpose, each of the original IVUS images is transform&4US image I(r, ) after the preprocessing stage is a com-
t0 a polar coordinate image where columns and rows corf@0n approach to contour initialization, since intensity is the
spond to angle and distance from the center of the cathe?éﬁ‘pleSt form of information that can be used for detecting the

respectively, and this image alone, denotd, ), is used lumen boundary. The lumen boundary, when travelling from
throughout the analysis process. the center of the catheter towards the image borders on a radius

The IVUS images include not only tissue and blood region&, (-6- for & = const) is typically denoted by an increase
tmtensny fromI(r,0) < ¢, ¢ being a small constant, to

but also the outer boundary of the catheter itself. The latt® f \ , i
defines a dead zone of radius equal to that of the cathelgf,ze) >_> ¢ (e.g. Fig. 2); as§um|ng 'the presenlce of no artifacts
where no useful information is contained. Knowing the di noise) in the Iumen_ area, inequalifyr, §) < ¢’ should hold
ameterD of the catheter, these catheter-induced artifacts 4f§ @l Pixels belonging to the lumen area.
easily removed by settinfr,8) = 0 for r < D/2+-e, e being Cons_equently, the lumen contour can be initialized as the
a small constant. This preprocessing is illustrated in Fig. 258t Of Pixels (Giannoglou et al., 2007):
_ 2) Texture analysis:Texture_ has been_ shown to be an Cint;i = {Pint.i = [P, 0]} 2)
important cue for the analysis of generic images (Mezaris _
et al., 2004). In this work, the Discrete Wavelet Framd§r which
(DWF) decomppsition (Unser, 1995)_is used _for detecting I(p,0) >T and I(r,0) <T Vr < p ©)
and characterizing texture properties in the neighborhood of
each pixel. This is a method similar to the Discrete Wavelgthere subscripint in Eqg. 2 denotes the Lumen (i.e. “inter-
Transform (DWT) that uses a filter bank to decompose ti@l”) contour, subscript denotes intensity-based initialization
grayscale image to a set of subbands. The main differerad T is a threshold. This initialization defines a lumen
between DWT and DWF is that in the latter the output afontour functionC;,.; () = p (Fig. 4(a)).
the filter bank is not subsampled. The DWF approach has2) Lumen contour initialization using texture information:
been shown to decrease the variability of the estimated textlméensity information can be used, as described above, for
features, thus improving pixel classification for the purpose tfe initialization of the lumen boundary. However, it can be
image segmentation. The employed filter bank is based on #irgued that there is more information in an IVUS image than
lowpass Haar filter just an intensity increase on the lumen-wall boundary that
1 can be used for differentiating between the lumen and wall
H(z) = 5(1 +271) (1) areas (Papadogiorgaki et al., 2006). More specifically, these
two areas demonstrate different texture characteristics: the
Using this along with the complementary highpass fii€r), lumen area tends to be a low-intensity non-textured region,
defined asG(z) = zH(—z"!), the fast iterative schemewith noise being responsible for any high-intensity artifacts
proposed in (Unser, 1995) for applying the DWF analysis im it, whereas the wall area is typically characterized by the
the two-dimensional space is realized. Then, according to theesence of both low-intensity and high-intensity parts, with
DWEF theory, the texture of pixel can be characterized by thechanges between the two that are of relatively low-frequency
standard deviations of all detail components, calculated inirathe tangential direction and of somewhat higher frequency
neighborhoodF’ of pixel p. The calculation of these standardn the radial direction. Consequently, the local energy of the
deviations is denoted by the blocks in Fig. 3. The images signal in appropriate frequency sub-bands can be used as a
resulting from treating each calculated standard deviation eiterion for differentiating between the lumen and wall areas;
intensity value of pixep are denoted a&,, £k =1,..., K. In to this end, the results of texture analysis previously discussed
the proposed approach, a DWF decomposition of four levelsagee employed.
employed, resulting i = 12 such images, in addition to an More specifically, let/;,,; ; denote the “image” that is used
approximation component, which is a low-pass filtered imagder the detection of the lumen boundary in the case of texture-
denotedi; ;. However, not all of these images are used fdyased initialization. This is defined using the results of texture
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Fig. 3. Fast iterative 2D DWF decomposition of four levels. Subscript€' denote filters applied row-wise and column-wise, respectively.

analysis as the characteristics of the filter bank used for the generation of
955 images/y .
Iini(r,0) = 7 7 I,.(r0) 4 Using the above image data, the lumen contour is initialized
max(r,0) {Lins (1 6) } as the set of pixels
Iim‘/(ra 9) = Z Ik(’r, 6) (5) Cint,t = {pint,t = [p79]} (6)
k={7,8,10,11}

. ) for which
An example image generated using Eq. 4 can be seen in
Fig. 4(b). The choice of the imagek, (Fig. 3) that are Lintt(p,0) > T and L. (r,0) < T Vr <p 7
employed in this initialization process was done based on
visual evaluation of allK generated images and is in linethus defining a lumen contour functiof,;(#) = p

with the aforementioned observations regarding the textufieig. 4(b)). T is the threshold already defined for intensity-
properties of the lumen and wall areas, in combination wittased initialization.



()

Fig. 4. Results of contour initialization for (a) the lumen, using intensity information, (b) the lumen, using texture information, (c) the media-adventitia

boundary, and (d), (e), (f) the corresponding contours after contour refinement using LPF-based approximation.

3) Media-adventitia contour initializationThe motivation initial
behind the choice of image data to be used for the initialization contour
of the media-adventitia boundary lies under the proposed
approach |n the observat|0n that |n many cases the advenﬂm 5. lllustration of the |0W-paSS fllterlng—based contour smoothing
is represented in IVUS images by a thick bright ring (a thickocedure:
bright zone in polar coordinates) that is dominant in the image,
as opposed to the media region or any other region of an IVUS
image. Consequently, for the localization of the adventitia
region, low-pass filtering could be used to suppress undes'raRIﬁctions C

details of the i il : I the f int(0), Cest(0) is required. In this work, two
ctalls ot the image while preserving wetl the Tormer. different approaches are used: one based on low-pass filtering
Based on the above observation, the detail compon

EIDF of the non-smooth, non-continuous contour functions
Ir;, of the DWF decomposition discussed in the Textuiz ) '

Analysis section is used in this work for detecting the medi fenerated by the initialization process, and one based on
ySIS . ; . 9 adial Basis Function (RBF) approximation.
adventitia boundary. Using this, the media-adventitia contour

is initialized as the set of pixels

Hz » H) F- »HE) |y final

contour

1) LPF-based contour smoothinglPF-based contour
Cewt = {DPext = [, 0]} (8) smoothing is a common approach, realized in this work
by applying a simple filtering solution that takes advantage
of the filtering functionalities developed for the purpose of
Inn(p,0) = TE},({ILL(T’ o)}, ©)  texture analysis. More specifically, the low-pass filtBr&:"),

where[p, 8] are the points of the lumen contour, as obtaineflﬂ = 0,..., M =1 that are based on the low pass Haar

by the initialization process. This defines a contour funCtiqP]ti’([ei;l (Egﬁt()lar?L?\c?ilé%(;eiézvelé) agﬂ:g?net?@f ac%r;n?ofls:[htﬁetwo
C..+(8) = p for the media-adventitia contour (Fig. 4(c)). 9. ).

Selecting, according to the above equations, the pixels %rgoothness of the resulting contour and was st for the

which the intensity of the low-pass filtered image is maximizedr Po>C of this application, based on experimentation. Results

. o . of this process are illustrated in Fig. 4(d), (e) and (f). This
serves the purpose of identifying the most dominant low- : . .

. . . o simple procedure is shown to perform acceptably in smoothing
frequency detail in the image, in case low-pass filtering h3s

; : . : e contours; however, better results can be obtained using a
failed to suppress all other higher-frequency information. The L .
: more elaborate approximation technique such as one based on
selected pixels correspond to those on the boundary between. . . . . . :
" . . radial basis functions, as discussed in the following section
the adventitia and the media regions.

and also shown in the Results section.

for which

C. Contour Refinement 2) RBF-based contour approximatiorPolyharmonic Ra-

In contrast to the initial contours generated as describdil Basis Functions (Carr et al., 2001) have been proposed
in the previous section, which are not smooth and are chéor reconstructing smooth surfaces from point-cloud data and
acterized by discontinuities (Fig. 4(a), (b) and (c)), the truer repairing incomplete meshes through interpolation meth-
lumen and media-adventitia boundaries are smooth, contirgls and approximation techniques. Under this approach, the
ous functions off. Consequently, in order to obtain smoottdesired smooth surface is defined as the zero set of ansRBF
contours that are consistent with the true ones, the applicatfited to the given initial surface data, i.e. as the set of points
of a filtering or approximation procedure to the initial contous for which s(xz) = 0. An RBF s is defined as a function of
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the following form minimum distance from other input points) are removed; the
N remaining points serve as the centers of the RBF,that
s(z) = p(z) + Z Nz — z4]), (10) Wwere defined in the previous section. Subsequently, the fitting

of an RBF to this data is performed using the spline smoothing
wherez is a point in the 2-dimensional (2D) or 3—dimensionaﬁeChmque’ chosen for not requiring the prior estimation of the

(3D) space, depending on whether the curve to be appﬂ)gmse measure related to each input data point, as opposed to

mated is a 2D curve or a 3D surface, where the RBE olher_ fitting optlor_15 such error bar flttl_ng. Fln_ally the fitted
. o : RBF is evaluated in order to find the points which correspond
evaluatedp(z) is a low degree polynomiad; is a real function

called basic functiong, are the centers of the RBR, are to zero value; the latter define the contour approximation

the RBF coefficients, anfl| denotes here Euclidean distancéAn. lustrative examp!e. 9f _the. final smooth curve genera}ted
sing the results of initialization and the off-surface points

measured in the polar coordinate image. Fitting an RBF to tsglected according to the above procedure is shown in Fig. 6
given initial data refers to calculating the RBF coefficiehts 9 P g- o

and the weights of(x). 4) RBF-based contour approximation in the 3D spath-

Various functions have been proposed for serving as a b chr the approach described in the previous section, the RBF-

. : . ."based approximation was applied to each frame independently.
fun_ct|on ¢ (Carr .et al., 2001). In this work, the blharmomcHowever, a similar process can be applied to all frames, so
spline was used:

as to directly generate a smooth surface in the 3D space for
o)z — z|) = |z — xi|21n(‘gj —zi]) (11) each of the two boundaries of interest (i.e. lumen and media-
o adventitia). In the absence of any information regarding the
The centersz; appearing in Eqs. 10 and 11 above are gyrect spatial localization of each 2D plane (represented by
subset of the points in the 2D or 3D space at which a functignframe of the IVUS image sequence) in the 3D space, each
f has been defined. The Iqtter represents the initial input d%@nt [C4(6), 6] belonging to the examined boundary at frame
that the RBF is to approximate and |s.def|ned as dlscu§steglt € [0,L — 1]) according to the initialization procedure
separatt_aly for the 2D and 3D cases in the two f°”°W'”Q/vhichever is employed) is represented in the 3D space as
subsections. R [C:(0),0,1] (the indext is introduced toC(#) here simply
3) RBF-based contour approximation in the 2D space:ty differentiate between initial contour functions at different
The use of an RBF for the approximation of one of the initigl3mes of the image sequence).
contours in a frame, i.e. the generation of a contduhatis a  gimjjarly to the 2D case, functioff is defined as follows:
smooth, reasonable approximationgfequires the definition
for each such contour of a functiofy as follows: f(0,C(0),t) =0 (17)

f(0,C(0)) =0 (12) and

whereC'(6) here denotes eithér;,,.(6) or C...(0), depending
on the contour being examined. Functigh is used for for the points[d,r,t] that satisfy the following equations:
formulating the approximation problem as one of finding an

i=1

fO,r # Ci(0),t) = r — Ci(0) (18)

RBF s for which s(.) ~ f(.). To avoid the trivial solution of "= n;ix{ct(e)} 1 (19)
being zero at every poinf, must also be defined for a set of .
points not belonging to the initial contour (off-surface points), "= r%}tn{ct(a)} -1 (20)

so that Similarly with the 2D case, the FastRBF library was then

F(0,r#C(0) #0 (3) used, to generate in this case the smooth 3D contour approx-
In order to avoid identifying as off-surface points at this staggation over the whole sequence of IVUS frames.
points which potentially belong to the true contour under
examination, the former points are defined in this work g3, In-vivo validation of segmentation techniques

those which satisfy the following equations: 1) IVUS image datasetsTo validate in-vivo the proposed

r=max{C(0)} +1 (14) segmentation techniques, we investigated with IVUS 18 ar-
0 terial segments (right coronary artery, RCA, = 7; left
r= rnein{C’(G)} -1 (15) anterior descending, LADy = 5; left circumflex artery, LCx

o N _ n = 6) from 10 patients randomly selected during routine
For the above points in the 2D space, functjors defined as djagnostic and therapeutic interventional procedures. From this
the signed Euclidean distance from the initialized contour fjoo| of IVUS images we selected a dataset of (a) 270 IVUS
0 = const, i.e. images (i.e. 30 consecutive gated images per artery from 8
0, CO) =1 — C(8 16 artene;, and 30_randomly selected images frqm th_e remaining
fOr#CO)=r () (16) 9 arteries) acquired with a mechanical IVUS imaging system

Following the definition off, the FastRBF library (FarField, (ClearView, Boston Scientific, Natick, MA, USA) using a 2.6F,

2001) is used to generate the smooth contour approximatidd MHz IVUS catheter (Atlantis SR Pro, Boston Scientific,

¢, as follows: First, duplicate points whefehas been defined Natick, MA, USA), and (b) 50 IVUS images, all from the
(i.e. points in the 2D space which are located within a specifiame arterial segment, acquired with a solid-state electronic
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Fig. 6. Example of 2D RBF-based contour smoothing in polar representation: (a) contour initialization results (in blue) and selected off-surface points (in
black), (b) final smooth contour generated by 2D RBF-based contour smoothing.

IVUS imaging system (Molcano Therapeutics Inc. Rancho 1. RESULTS
Cordova, CA, USA) using a 2.9F, 20 MHz IVUS catheter. In

the mechanical imaging system a motorized pullback devife Results of automated versus manual segmentation
was used to withdraw the IVUS catheters at a constant speecrhe differences between automated and manual tracings,
of 0.5 mm/sec. The ultrasound data was recorded in a 0.5-ifef the images acquired with the mechanical IVUS system
S-VHS videotape. The S-VHS data was digitized B x 512 “Boston Scientific”, are presented in Figs. 7 to 9 (Bland-
pixels with 8-bit grey scale in a rate of 7.5 images/sec anfltman and linear regression plots) and Table | V8D, i.e.
the end-diastolic images were selected (peak of R-wave ggan and standard deviation of the differences between auto-
ECG) (Giannoglou et al., 2006a). In the solid-state imagingated and manual tracings). These results reveal the improved
system the ultrasound data were digitally recorded in DICOMerall performance of the approach that uses texture features
along with the ECG, which was used for the selection of engbr Jumen boundary initialization and 2D RBFs for contour
diastolic images (peak of R-wave on ECG). The Institutionalpproximation, as compared to the other combinations of ini-
Medical Ethics Committee approved the study, and all patienfslization and contour smoothing techniques considered in this
gave written informed consent. work. Also, in this approach, as depicted in the corresponding
2) Method comparison studyEach of these images wasplots, the vast majority of differences were distributed within
segmented manually by an experienced expert, and automhag limits of agreement (i.e. Me2SD), suggesting a high level
ically with each of the six possible combinations of the twoef agreement between manual and automated segmentation. In
lumen contour initialization approaches (intensity-based aaddition, linear regression analysis revealed that the results of
texture-based) and the three contour refinement approactesure 2D RBF-based automated segmentation were strongly
(LPF, 2D RBF and 3D RBF-based) presented in the Materialerrelated with the reference manual segmentation, yielding
and Methods section. The inter-observer and intra-obsergisipes close to 1 and intercepts close to O for all the examined
agreement of manual segmentation was previously tested amsrphometric parameters (Figs. 7 to 9).
found to be extremely high (Giannoglou et al., 2007). Indicative results of the different combinations of the pro-
For this comparison three morphometric parameters wgsesed methods for one image are shown in Fig. 10, where
calculated in each IVUS image: these were the Lumen crosise superiority of texture-based contour initialization versus
sectional area-LCSA, Vessel cross-sectional area-VCSA, ahé intensity-based one is demonstrated (for example, see the
Wall area-cross-sectional WCSA, (Fig. 1). The values of thekfmen contours in Fig. 10(c) and (d), and compare them with
parameters in the manually segmented images were usedhase in (f) and (g), respectively), as well as the superiority
reference. of RBF-based contour smoothing versus the LPF-based one
For the temporal evaluation of the automated segmentatifor example, compare the lumen contours in Fig. 10(c)
versus the manual reference, the mean duration per frameanél (d)). In Fig. 11, additional indicative results are shown
manual and automated segmentation were also calculated fordthe combination of texture-based initialization and RBF-
compared. based approximation, that is shown to outperform the other
3) Statistical analysisThe statistical analysis of the resultsapproaches considered in this work. These results demon-
expressed by the parameters was performed with the statistifshte the suitability of the proposed approach for segmenting
package SPSS 12.0 (SPSS Inc, Chicago, IL, USA). For theterogeneous IVUS images including images which contain
method comparison study, Bland-Altman analysis, and linearanches, calcified areas and guidewire artifacts.
regression analysis were applidd.< 0.05 was considered as  With respect to the 3D RBF-based contour refinement
the level of significance. approach, it is seen from the comparative evaluation results
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Fig. 7. Bland-Altman and linear regression plots of the differences between automated and manual segmentation, when (a) intensity-based, (b) texture-basec
lumen contour initialization, and LPF-based contour refinement are used for the automated contour detection; LCSA: lumen cross-sectional area, VSCA:

vessel cross-sectional area, WCSA: wall cross-sectional area.

reported in Table | that this, regardless of the employdmbundaries in the 2D plane, as compared to the true ones
initialization procedure, generally results in a higher error thafig. 12). Cardiac motion is another factor contributing to the
the corresponding 2D approach. This outcome was actuadlifficulty in exploiting information available from previous
expected and is caused by the fact that, in the absence of ang next frames for the accurate contour refinement in any
information regarding the correct localization of each IVU§given frame. The above results justify the choice of performing
frame in the 3D space, all vessel frames are placed sequeontour initialization in every IVUS image independently,
tially in a straight line, assuming that this does not deviatéespite the fact that the proposed initialization processes could
significantly from the real three dimensional vessel geometsasily be modified to take into account the result in the
This however results in the construction of a straight artery previous frame as well.

the 3D space, whose morphology is likely to be quite different its of statistical Ivsis of the diff betw
than the real one. Under the above restrictive assumption, thé?esu s of statistical analysis of the diflerences between au-

information from previous and next frames that is exploite@rpjtidtanﬂlggnualttrac'“r:/g? for Ehe Images a(;q(l:]JIrEdTWll)tlh tne
during contour refinement is likely to be incorrect and th old-state system “volcano’, are presentedin 'avle

effect of this is often seen as a displacement of the detec +SD, i.e. mean and standard dewfamon of the d.n‘ferences
etween automated and manual tracings). Indicative results
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Fig. 8. Bland-Altman and linear regression plots of the differences between automated and manual tracings, when (a) intensity-based, (b) texture-based
lumen contour initialization, and 2D RBF-based contour refinement are used for the automated contour detection; LCSA: lumen cross-sectional area, VSCA:
vessel cross-sectional area, WCSA: wall cross-sectional area.

of the different combinations of the proposed methods f@s followed. As can be seen from Table Ill, the proposed
one image of this set are shown in Fig. 13. These resuétpproaches require relatively limited processing time and
support the conclusions drawn from the results presenteghsequently their time efficiency is not prohibitive for their
above for the images acquired with the mechanical IVUSse in a clinical environment, after appropriate optimization
system “Boston Scientific’, and highlight the possibility obf the code with respect to computational efficiency.
applying the techniques discussed in this work in combination

with different image acquisition systems. IV. DISCUSSION

Finally, in Table lll, the average execution time per frame In this paper an automated approach for the detection
for the contour initialization and approximation approaches lumen and media-adventitia boundaries in IVUS images
proposed in this work are reported; these were recorded isnpresented, based on the results of texture analysis and
a 3Ghz PC with 1GB RAM. For initialization, since texturehe use of RBFs. The proposed approach does not require
analysis is in any case required for the initialization of theanual initialization of the contours, which is a common
media-adventitia contour, the execution time varies very littlequirement of several other prior approaches to IVUS image
with respect to the lumen contour initialization approach thaegmentation. The experiments conducted with the various
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Fig. 9. Bland-Altman and linear regression plots of the differences between automated and manual tracings, when (a) intensity-based, (b) texture-based
lumen contour initialization, and 3D RBF-based contour refinement are used for the automated contour detection; LCSA: lumen cross-sectional area, VSCA:

vessel cross-sectional area, WCSA: wall cross-sectional area.

combinations of contour initialization and contour refinememiaque progression or regression in serial studies investigating
methods proposed in this work demonstrated the usefulnesshef effect of drugs in atherosclerosis. We and others developed
the employed texture features for IVUS image analysis as waltd validated an in-vivo IVUS and biplane angiography fusion
as the contribution of the approximation technique based tthnique for the geometrically correct 3D reconstruction of
Radial Basis Functions to the overall analysis outcome. Thaman coronary arteries (Giannoglou et al., 2006a), (Slager
comparative evaluation of the different examined approachesal., 2000), (Chatzizisis et al., 2006), (Giannoglou et al.,
revealed that use of the texture based initialization and tB806b), (Coskun et al., 2003). This technique is coupled with
2D RBF-based approximation results in a reliable and quidomputational fluid dynamics permitting the investigation of
IVUS segmentation, comparable to the manual segmentatitine role of local hemodynamic factors (e.g. endothelial shear
. . .. stress, tensile stress) (Stone et al., 2003), (Chatzizisis et al.,
Our automated segmentation algorithm has several clinicgyy, - (chatzizisis et al., 2007b), (Chatzizisis et al., 2008)
_appllcatlpns. !t could faC|I_|tate plaque m_orphometnc anglysgnd local geometric parameters (e.g. vessel curvature) (Krams
ie. p_Ianl_metrlc, V(_)Iumetnc and_ wall th|<_:kness_c_alculatlo_nset al., 1997) at certain points along the coronary lumen,
ccl)nt.rlbutmg to rapid, and potentlal!y on-site, deC|S|on—m_ak|n%.n atherosclerosis development and on arterial remodeling.
Similarly, our method could be utilized for the evaluation o
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Fig. 10. Experimental results from a representative image acquired with the mechanical IVUS imaging system (a) Original image, (b) Manually segmented
image, (c) texture-based initialization, LPF smoothing, (d) texture-based initialization, 2D RBF smoothing, (e) texture-based initialization, 3D RBF smoothing,
(f) intensity-based initialization, LPF smoothing, (g) intensity-based initialization, 2D RBF smoothing, (h) intensity-based initialization, 3D RBF smoothing.

TABLE |
MEAN DIFFERENCE BETWEEN AUTOMATIC AND MANUALLY-GENERATED RESULTS AND CORRESPONDING STANDARD DEVIATION FOR THRE&WUS
EVALUATION PARAMETERS, FOR THE IMAGES ACQUIRED WITH THE MECHANICALIVUS IMAGING SYSTEM.

Parameter/ Lumen area Vessel area Wall area
Method (LCSA) (mm?) (VCSA) (mm?) (WCSA) (mm?)
Intensity, LPF 0.298 + 1.685 0.094+2.01 —0.203 £ 1.75
Texture, LPF 0.169 + 1.337 0.196 £+ 1.679 0.027+1.528
Intensity, 2D RBF 0.362 + 1.505 —0.063+1.704 —0.425 £+ 1.586
Texture, 2D RBF 0.127+1.209 0.059+1.589 —0.067 £ 1.363
Intensity, 3D RBF 0.273 +1.619 —0.935 £ 2.112 —1.181 £ 1.681
Texture, 3D RBF —0.115+1.735 —0.726 £ 2.046 —0.61141.798
TABLE Il

MEAN DIFFERENCE BETWEEN AUTOMATIC AND MANUALLY-GENERATED RESULTS AND CORRESPONDING STANDARD DEVIATION FOR THRE&WUS
EVALUATION PARAMETERS, FOR THE IMAGES ACQUIRED WITH THE SOLIBSTATE IVUS IMAGING SYSTEM.

Parameter/ Lumen area Vessel area Wall area
Method (LCSA) (mm?) (VCSA) (mm?) (WCSA) (mm?)
Intensity, LPF 0.312 4+ 0.552 0.053£0.596 —0.258 £ 0.784
Texture, LPF 0.101 + 0.381 —0.098 £ 0.577 —0.208+0.695
Intensity, 2D RBF 0.115 4+ 0.410 —0.088+0.415 —0.183 £ 0.525
Texture, 2D RBF 0.092+0.345 —0.047+0.338 —0.140+0.408
Intensity, 3D RBF —0.285 £+ 0.551 —0.749 £ 1.190 —0.463 £ 0.895
Texture, 3D RBF —0.27640.468 —0.571 £ 1.081 —0.2954+0.970

The reliable and quick IVUS segmentation constitutes thegrors; in several images, however, this was corrected by
foundation for the implementation of the above mentioned rthe subsequent contour approximation process. Regarding the
construction technique, and the proposed IVUS segmentatepplicability of the proposed approach to images acquired with
method provides this potential. the use of different catheters and image acquisition systems,
our experiments revealed that this is high. However, it may
W|th reSpeCt to the algorithms |imitati0ns, |t Should be not%quire the experimenta' re-adjustment Of thresm":hat is
that the algorithm was not tested W|th either stents or thrombﬂ#&roduced in the |umen contour initia"zation process_ Th|s
in the images. When considering relatively small calcificationgeuld possibly be alleviated by further preprocessing of the
there were no noticeable differences in the algorithm’s perfqrnagesy aiming to suppress differences (eg in luminance
mance on calcified segments compared to non-calcified s@gtribution) that may be introduced by the different catheters,

ments. When considering larger calcifications, the initializaticfe to inter-catheter variability, or the different acquisition
process for the media-adventitia contour was susceptible to
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TABLE Ill
AVERAGE EXECUTION TIMES FOR CONTOUR INITIALIZATION AND APPROXIMATION PROCESSES FOR THE DATASET dWUS MAGES ACQUIRED WITH
THE MECHANICAL SYSTEM.

Process Average execution time (per frame)
Contour initialization for both Lumen and Media-Adventitia, 1.81 sec (using C code)

using intensity approach for the former
Contour initialization for both Lumen and Media-Adventitia, 1.82 sec (using C code)
using texture approach for the former
LPF-based approximation for both Lumen and Media-Adventitial.24 sec (using C code)
2D RBF-based approximation for both Lumen and Med|a-14.09 sec (using Matlab)

Adventitia
3D RBF-based approximation for both Lumen and Med|a-14.86 sec (using Matlab)
Adventitia
Manual segmentation 85.8 sec
systems. G., Louridas, G. In-vivo accuracy of geometrically correct

Future work includes the combination of IVUS image data three-dimensional reconstruction of human coronary arter-
with a coronary angiography, which will allow the exploitation ies: is it influenced by certain parameters? Coronary Artery
of information regarding the correct 3D morphology of the Dis 2006;17:545-551.
vessel, both for the initialization procedure and for the RBFzhatzizisis, Y.S., Jonas, M., Coskun, A.U., Beigel, R., Stone,
based contour refinement; the former could also benefit fromB.V., Maynard, C., Gerrity, R.G., Daley, W., Rogers, C.,
such an approach, providing that it is extended accordingly.Edelman, E.R., Feldman, C.L., Stone, P.H. Prediction of the
The combined use of texture, intensity and possibly additionallocalization of high-risk coronary atherosclerotic plaques
information for the initialization step, and the integration of based on low endothelial shear stress: An intravascular ultra-
the developed automated analysis methodology to a computesound and histopathology natural history study Circulation
aided diagnosis tool that will also support manual intervention 2008, In press.

of the medical expert also belong to future work. Chatzizisis, Y.S., Coskun, A.U., Jonas, M., Edelman, E.R.,
Stone, P.H., Feldman, C.L. Risk stratification of individual
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Fig. 11. Experimental results for different images of the proposed approach using texture-based contour initialization and RBF-based approximation, shown on
the second and fourth column, and comparison with corresponding contours manually generated by medical experts on the first and third column accordingly.
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Fig. 12. (a) Original IVUS image manually segmented, (b) segmentation by texture-based contour initialization and 2D RBF-based refinement, (c) segmentation
by texture-based contour initialization and 3D RBF-based refinement. The displacement of the contours, due to failure of the simple assumptions made for
the 3D geometry of the vessel, is evident in (c).
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Fig. 13. Experimental results acquired with the solid-state IVUS imaging system. (a) Original image, (b) Manually segmented image, (c) texture-based
initialization, LPF smoothing, (d) texture-based initialization, 2D RBF smoothing, (e) texture-based initialization, 3D RBF smoothing, (f) intensity-based
initialization, LPF smoothing, (g) intensity-based initialization, 2D RBF smoothing, (h) intensity-based initialization, 3D RBF smoothing.



