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Image analysis techniques for automated IVUS
contour detection
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Abstract—Intravascular ultrasound (IVUS) constitutes a valu-
able technique for the diagnosis of coronary atherosclerosis. The
detection of lumen and media-adventitia borders in IVUS images
represents a necessary step towards the reliable quantitative
assessment of atherosclerosis. In this work a fully automated tech-
nique for the detection of lumen and media-adventitia borders
in IVUS images is presented. This comprises two different steps
for contour initialization, one for each corresponding contour
of interest, and a procedure for the refinement of the detected
contours. Intensity information, as well as the result of texture
analysis, generated by means of a multilevel Discrete Wavelet
Frames decomposition, are used in two different techniques
for contour initialization. For subsequently producing smooth
contours, three techniques based on low-pass filtering and Radial
Basis Functions are introduced. The different combinations of the
proposed methods are experimentally evaluated in large datasets
of IVUS images derived from human coronary arteries. It is
demonstrated that our proposed segmentation approaches can
quickly and reliably perform automated segmentation of IVUS
images.

Index Terms—Intravascular ultrasound, Contour detection,
Segmentation, Radial Basis Functions

I. INTRODUCTION AND LITERATURE

Medical images derived from several technologies (e.g., X-
ray, ultrasound, computed tomography, magnetic resonance,
nuclear imaging) are extensively used to improve the existing
diagnostic systems and facilitate medical research. Coronary
angiography is acknowledged as the gold standard for the
diagnosis of coronary artery disease. However, coronary an-
giography is restricted by its inherent inability to depict
the arterial wall, since it illustrates only the silhouette of
the coronary lumen. In the last two decades, intravascular
ultrasound (IVUS) has been introduced as a complementary
to angiography diagnostic technique aiming to provide more
accurate imaging of coronary atherosclerosis (Mintz et al.,
2001).

IVUS is a catheter-based technique that renders two-
dimensional cross-sectional images of the coronary arteries,
and provides information concerning the lumen and wall. In a
typical IVUS image three arterial regions can be distinguished:
the lumen, the vessel wall, consisting of the intima and the
media layers, and the adventitia plus surroundings (Fig. 1). The
above regions are separated by two borders: the lumen border,
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Fig. 1. A typical IVUS image with the lumen and media-adventitia borders
demarcated (LCSA, lumen cross-sectional area, VCSA, vessel cross-sectional
area, WCSA, wall cross-sectional area). (Reprinted from Giannoglou et al.
(2007))

which corresponds to the lumen-wall interface, and the media-
adventitia border, which represents the boundary between the
media and adventitia (Mintz et al., 2001). The reliable and
quick detection of these two borders is the goal of IVUS image
segmentation and also the basic step towards the geometrically
correct 3D reconstruction of the arteries (Giannoglou et al.,
2006a), (Slager et al., 2000), (Coskun et al., 2003).

Traditionally, the segmentation of IVUS images has been
performed manually, which is a time-consuming procedure
affected by high inter- and intra-user variability. To overcome
these limitations, several approaches for semi-automated seg-
mentation have been proposed. In (Herrington et al., 1992)
after manual indication of the general location of the boundary
of interest by the user, an edge detection filter is applied to
find potential edge points within the pointed neighborhood.
The extracted image data are used for the estimation of the
closed smooth final contour. Sonka et al. (Sonka et al., 1995)
implemented a knowledge-based graph searching method in-
corporating a priori knowledge on coronary artery anatomy
and a selected region of interest prior to the automated border
detection.

Quite a few variations of active contour model have been
investigated (Kompatsiaris et al., 2000), (Chatzizisis, 2004)
including the approach of (Parissi et al., 2006). There, user
interaction is required for the drawing of an initial contour
as close as possible to its final position; using this initial
contour, the active contour approximates the final desired
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border. The active contour or deformable model principles
have also been used for the extraction of the lumen and
medial-adventitia borders in three dimensions after setting an
initial contour (Kovalski et al., 2000), (Klingensmith et al.,
2000). However, in this approach the contour detection fails
for low contrast interface regions such as the lumen border,
which in most images corresponds to weak pixel intensity
variation. In order to improve the active surface segmentation
algorithm for plaque characterization, Klingensmith et al.
(Klingensmith et al., 2004) used the frequency information
after acquiring the radio-frequency (RF) IVUS data. RF data
were also used in (Perrey et al., 2004) after in vivo acquisition
for the segmentation of the lumen boundary in IVUS images.
According to this approach, tissue describing parameters were
directly estimated from RF data and a neuro-fuzzy inference
system was used to distinguish blood from tissue regions.
Cardinal et al. (Cardinal et al., 2006) presented a 3D IVUS
segmentation applying Rayleigh probability density functions
(PDFs) for modelling the pixel grey value distribution of
the vessel wall structures, requiring, however, some manual
tracing of contours for initialization.

Despite facilitating the analysis of IVUS data as compared
to their completely manual processing, the aforementioned
methods pose the restriction of needing substantial human
intervention during the analysis process. This has proven
quite restrictive for clinical practice, where fully automated
approaches would be most attractive. A limited number of ap-
proaches focusing on the minimization of human intervention
has been developed so far, such as the segmentation based on
edge contrast (Zhu et al., 2002); the latter was shown to be
an efficient feature for IVUS image analysis, in combination
with the grey level distribution. Specific automated approaches
which utilize the deformable model principles in combination
with other various techniques and features reported in the
related literature have also been investigated. Brusseau et al.
(Brusseau et al., 2004) exploited an automated method for
detecting the endoluminal border based on an active contour.
This evolves until it optimally separates regions with different
statistical properties without using a pre-selected region of
interest or initialization of the contour close to its final po-
sition. However, in (Brusseau et al., 2004) the detection of the
media-adventitia boundary was not examined. Similarly, (dos
S. Filho et al., 2005) employed a fuzzy clustering technique for
the detection of the lumen boundary alone. Another approach
based on deformable models was reported by Plissiti et al.
(Plissiti et al., 2004), who employed a Hopfield neural network
for the modification and minimization of an energy function,
as well as a priori vessel geometry knowledge. Despite being
to a significant extent automated, this method still requires
manual estimation of the boundaries in the first frame of the
sequence of IVUS images. Unal et al. proposed in (Unal
et al., 2006) a shape-driven approach to the segmentation
of IVUS images, based on building a shape space using
training data and consequently constraining the lumen and
media-adventitia contours to a smooth, closed geometry in
this space. An automated approach for segmentation of IVUS
images based on a variation of an active contour model was
presented in (Giannoglou et al., 2007). The technique was in

vivo evaluated in images originating from human coronary
arteries. The initialization of the contours in each IVUS frame
was automatically performed using an algorithm based on
the intensity features of the image. The initially extracted
boundaries constituted the input to the active contour model,
which then deformed the contours appropriately, identifying
their correct location on the IVUS frame; however, contour
initialization based on intensity information alone is not most
efficient, as discussed in the Results section below.

Other approaches reported in the literature for the computer-
assisted interpretation of IVUS images were based on the
calculation of the image energy for contour detection, or on the
detection of calcification regions, which could in turn be used
for contour detection. A technique for the automated detection
of calcification regions based on fuzzy clustering was proposed
in (dos S. Filho et al., 2004); however, it remains unclear
how this should be used for assisting the automated detection
of the lumen and media-adventitia boundaries. In (Luo et al.,
2003) the lumen area only of the coronary artery was estimated
using an internal energy, which describes the smoothness of
the arterial wall, and an external energy, which represents the
grayscale variation of the images that constitute the IVUS
sequence; the minimal energy that defines the contour was
obtained using circular dynamic programming. As opposed to
(Luo et al., 2003), the media-adventitial boundary only was
considered in (Gil et al., 2006), where statistical classification
techniques were used for modelling the adventitia region.

This paper presents a novel method for the fully automated
detection of lumen and media-adventitia boundaries in IVUS
images. Intensity information, as in (Giannoglou et al., 2007),
as well as the result of texture analysis, generated by means of
a multilevel Discrete Wavelet Frames decomposition, is used
in two different techniques for the initialization of the lumen
and media-adventitia contours. For the subsequent smoothing
of these initial contours, three techniques based on low-pass
filtering and Radial Basis Functions (RBFs) are introduced.
The different combinations of the proposed methods are
experimentally evaluated. Evaluation results show that the
combination of texture-based initialization and RBF-based
smoothing outperforms the other combinations and succeeds
in automatically generating results that are in good agreement
with those of manual segmentation.

II. MATERIALS AND METHODS

A. Preprocessing and Feature Extraction

1) Preprocessing:As outlined above, the proposed method
uses intensity and texture features for contour initialization.
Preprocessing of the image data for the purpose of contour
detection and in particular for the application of a texture
description method to the data consists of two steps: (a)
representation of the images in polar coordinates, and (b)
removal of catheter-induced artifacts.

Representation of the images in polar coordinates is im-
portant for facilitating the description of local image regions
in terms of their radial and tangential characteristics. It also
facilitates a number of other detection steps, such as contour
initialization and the smoothing of the obtained contour. For
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Fig. 2. Original IVUS image (left) and corresponding polar coordinate images
before (right top) and after (right bottom) the removal of catheter-induced
artifacts.

this purpose, each of the original IVUS images is transformed
to a polar coordinate image where columns and rows corre-
spond to angle and distance from the center of the catheter,
respectively, and this image alone, denotedI(r, θ), is used
throughout the analysis process.

The IVUS images include not only tissue and blood regions,
but also the outer boundary of the catheter itself. The latter
defines a dead zone of radius equal to that of the catheter,
where no useful information is contained. Knowing the di-
ameterD of the catheter, these catheter-induced artifacts are
easily removed by settingI(r, θ) = 0 for r < D/2+e, e being
a small constant. This preprocessing is illustrated in Fig. 2.

2) Texture analysis:Texture has been shown to be an
important cue for the analysis of generic images (Mezaris
et al., 2004). In this work, the Discrete Wavelet Frames
(DWF) decomposition (Unser, 1995) is used for detecting
and characterizing texture properties in the neighborhood of
each pixel. This is a method similar to the Discrete Wavelet
Transform (DWT) that uses a filter bank to decompose the
grayscale image to a set of subbands. The main difference
between DWT and DWF is that in the latter the output of
the filter bank is not subsampled. The DWF approach has
been shown to decrease the variability of the estimated texture
features, thus improving pixel classification for the purpose of
image segmentation. The employed filter bank is based on the
lowpass Haar filter

H(z) =
1
2
(1 + z−1) (1)

Using this along with the complementary highpass filterG(z),
defined asG(z) = zH(−z−1), the fast iterative scheme
proposed in (Unser, 1995) for applying the DWF analysis in
the two-dimensional space is realized. Then, according to the
DWF theory, the texture of pixelp can be characterized by the
standard deviations of all detail components, calculated in a
neighborhoodF of pixel p. The calculation of these standard
deviations is denoted by theσ blocks in Fig. 3. The images
resulting from treating each calculated standard deviation as
intensity value of pixelp are denoted asIk, k = 1, . . . , K. In
the proposed approach, a DWF decomposition of four levels is
employed, resulting inK = 12 such images, in addition to an
approximation component, which is a low-pass filtered image
denotedILL. However, not all of these images are used for

the localization of the contours, as discussed in the Contour
Initialization section below.

B. Contour Initialization

The objective of the contour initialization procedure is the
detection of pixels that are likely to belong to the lumen
and media-adventitia boundaries, taking into consideration
the previously extracted texture features. Two approaches for
the initialization of the lumen contour are considered in this
work; they mainly differ in the features that they rely on
for the initialization: intensity features and texture features,
respectively.

1) Lumen contour initialization using intensity information:
The use of intensity information readily available from the
IVUS image I(r, θ) after the preprocessing stage is a com-
mon approach to contour initialization, since intensity is the
simplest form of information that can be used for detecting the
lumen boundary. The lumen boundary, when travelling from
the center of the catheter towards the image borders on a radius
R (i.e. for θ = const) is typically denoted by an increase
of intensity from I(r, θ) < e′, e′ being a small constant, to
I(r, θ) À e′ (e.g. Fig. 2); assuming the presence of no artifacts
(noise) in the lumen area, inequalityI(r, θ) < e′ should hold
for all pixels belonging to the lumen area.

Consequently, the lumen contour can be initialized as the
set of pixels (Giannoglou et al., 2007):

cint,i = {pint,i = [ρ, θ]} (2)

for which

I(ρ, θ) > T and I(r, θ) < T ∀r < ρ (3)

where subscriptint in Eq. 2 denotes the Lumen (i.e. “inter-
nal”) contour, subscripti denotes intensity-based initialization
and T is a threshold. This initialization defines a lumen
contour functionCint,i(θ) = ρ (Fig. 4(a)).

2) Lumen contour initialization using texture information:
Intensity information can be used, as described above, for
the initialization of the lumen boundary. However, it can be
argued that there is more information in an IVUS image than
just an intensity increase on the lumen-wall boundary that
can be used for differentiating between the lumen and wall
areas (Papadogiorgaki et al., 2006). More specifically, these
two areas demonstrate different texture characteristics: the
lumen area tends to be a low-intensity non-textured region,
with noise being responsible for any high-intensity artifacts
in it, whereas the wall area is typically characterized by the
presence of both low-intensity and high-intensity parts, with
changes between the two that are of relatively low-frequency
in the tangential direction and of somewhat higher frequency
in the radial direction. Consequently, the local energy of the
signal in appropriate frequency sub-bands can be used as a
criterion for differentiating between the lumen and wall areas;
to this end, the results of texture analysis previously discussed
are employed.

More specifically, letIint,t denote the “image” that is used
for the detection of the lumen boundary in the case of texture-
based initialization. This is defined using the results of texture
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Fig. 3. Fast iterative 2D DWF decomposition of four levels. SubscriptsR, C denote filters applied row-wise and column-wise, respectively.

analysis as

Iint(r, θ) =
255

max(r,θ){I ′int(r, θ)}
I
′
int(r, θ) (4)

I
′
int(r, θ) =

∑

k={7,8,10,11}
Ik(r, θ) (5)

An example image generated using Eq. 4 can be seen in
Fig. 4(b). The choice of the imagesIk (Fig. 3) that are
employed in this initialization process was done based on
visual evaluation of allK generated images and is in line
with the aforementioned observations regarding the texture
properties of the lumen and wall areas, in combination with

the characteristics of the filter bank used for the generation of
imagesIk .

Using the above image data, the lumen contour is initialized
as the set of pixels

cint,t = {pint,t = [ρ, θ]} (6)

for which

Iint,t(ρ, θ) > T and Iint,t(r, θ) < T ∀r < ρ (7)

thus defining a lumen contour functionCint,t(θ) = ρ
(Fig. 4(b)). T is the threshold already defined for intensity-
based initialization.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Results of contour initialization for (a) the lumen, using intensity information, (b) the lumen, using texture information, (c) the media-adventitia
boundary, and (d), (e), (f) the corresponding contours after contour refinement using LPF-based approximation.

3) Media-adventitia contour initialization:The motivation
behind the choice of image data to be used for the initialization
of the media-adventitia boundary lies under the proposed
approach in the observation that in many cases the adventitia
is represented in IVUS images by a thick bright ring (a thick
bright zone in polar coordinates) that is dominant in the image,
as opposed to the media region or any other region of an IVUS
image. Consequently, for the localization of the adventitia
region, low-pass filtering could be used to suppress undesirable
details of the image while preserving well the former.

Based on the above observation, the detail component
ILL of the DWF decomposition discussed in the Texture
Analysis section is used in this work for detecting the media-
adventitia boundary. Using this, the media-adventitia contour
is initialized as the set of pixels

cext = {pext = [µ, θ]} (8)

for which
ILL(µ, θ) = max

r>ρ
{ILL(r, θ)}, (9)

where [ρ, θ] are the points of the lumen contour, as obtained
by the initialization process. This defines a contour function
Cext(θ) = µ for the media-adventitia contour (Fig. 4(c)).

Selecting, according to the above equations, the pixels to
which the intensity of the low-pass filtered image is maximized
serves the purpose of identifying the most dominant low-
frequency detail in the image, in case low-pass filtering has
failed to suppress all other higher-frequency information. The
selected pixels correspond to those on the boundary between
the adventitia and the media regions.

C. Contour Refinement

In contrast to the initial contours generated as described
in the previous section, which are not smooth and are char-
acterized by discontinuities (Fig. 4(a), (b) and (c)), the true
lumen and media-adventitia boundaries are smooth, continu-
ous functions ofθ. Consequently, in order to obtain smooth
contours that are consistent with the true ones, the application
of a filtering or approximation procedure to the initial contour

H(z)
initial

contour
H(z

2
) H(z

2
)

M-1
 ...

final

contour

Fig. 5. Illustration of the low-pass filtering-based contour smoothing
procedure.

functions Cint(θ), Cext(θ) is required. In this work, two
different approaches are used: one based on low-pass filtering
(LPF) of the non-smooth, non-continuous contour functions
generated by the initialization process, and one based on
Radial Basis Function (RBF) approximation.

1) LPF-based contour smoothing:LPF-based contour
smoothing is a common approach, realized in this work
by applying a simple filtering solution that takes advantage
of the filtering functionalities developed for the purpose of
texture analysis. More specifically, the low-pass filtersH(z2i

),
i = 0, . . . , M − 1 that are based on the low pass Haar
filter (Eq. 1) are successively applied to each of the two
initial contour functions (Fig. 5). ParameterM controls the
smoothness of the resulting contour and was set to7 for the
purpose of this application, based on experimentation. Results
of this process are illustrated in Fig. 4(d), (e) and (f). This
simple procedure is shown to perform acceptably in smoothing
the contours; however, better results can be obtained using a
more elaborate approximation technique such as one based on
radial basis functions, as discussed in the following section
and also shown in the Results section.

2) RBF-based contour approximation:Polyharmonic Ra-
dial Basis Functions (Carr et al., 2001) have been proposed
for reconstructing smooth surfaces from point-cloud data and
for repairing incomplete meshes through interpolation meth-
ods and approximation techniques. Under this approach, the
desired smooth surface is defined as the zero set of an RBFs
fitted to the given initial surface data, i.e. as the set of points
x for which s(x) = 0. An RBF s is defined as a function of
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the following form

s(x) = p(x) +
N∑

i=1

λiφ(|x− xi|), (10)

wherex is a point in the 2-dimensional (2D) or 3-dimensional
(3D) space, depending on whether the curve to be approxi-
mated is a 2D curve or a 3D surface, where the RBFs is
evaluated;p(x) is a low degree polynomial,φ is a real function
called basic function,xi are the centers of the RBF,λi are
the RBF coefficients, and|.| denotes here Euclidean distance
measured in the polar coordinate image. Fitting an RBF to the
given initial data refers to calculating the RBF coefficientsλi

and the weights ofp(x).
Various functions have been proposed for serving as a basic

function φ (Carr et al., 2001). In this work, the biharmonic
spline was used:

φ(|x− xi|) = |x− xi|2 ln(|x− xi|) (11)

The centersxi appearing in Eqs. 10 and 11 above are a
subset of the points in the 2D or 3D space at which a function
f has been defined. The latter represents the initial input data
that the RBF is to approximate and is defined as discussed
separately for the 2D and 3D cases in the two following
subsections.

3) RBF-based contour approximation in the 2D space:
The use of an RBF for the approximation of one of the initial
contours in a frame, i.e. the generation of a contourc′ that is a
smooth, reasonable approximation ofc, requires the definition
for each such contour of a functionf , as follows:

f(θ, C(θ)) = 0 (12)

whereC(θ) here denotes eitherCint(θ) or Cext(θ), depending
on the contour being examined. Functionf is used for
formulating the approximation problem as one of finding an
RBF s for which s(.) ' f(.). To avoid the trivial solution ofs
being zero at every point,f must also be defined for a set of
points not belonging to the initial contour (off-surface points),
so that

f(θ, r 6= C(θ)) 6= 0 (13)

In order to avoid identifying as off-surface points at this stage
points which potentially belong to the true contour under
examination, the former points are defined in this work as
those which satisfy the following equations:

r = max
θ
{C(θ)}+ 1 (14)

r = min
θ
{C(θ)} − 1 (15)

For the above points in the 2D space, functionf is defined as
the signed Euclidean distance from the initialized contour for
θ = const, i.e.

f(θ, r 6= C(θ)) = r − C(θ) (16)

Following the definition off , the FastRBF library (FarField,
2001) is used to generate the smooth contour approximation
c′, as follows: First, duplicate points wheref has been defined
(i.e. points in the 2D space which are located within a specific

minimum distance from other input points) are removed; the
remaining points serve as the centers of the RBF,xi, that
were defined in the previous section. Subsequently, the fitting
of an RBF to this data is performed using the spline smoothing
technique, chosen for not requiring the prior estimation of the
noise measure related to each input data point, as opposed to
other fitting options such error bar fitting. Finally the fitted
RBF is evaluated in order to find the points which correspond
to zero value; the latter define the contour approximationc′.
An illustrative example of the final smooth curve generated
using the results of initialization and the off-surface points
selected according to the above procedure is shown in Fig. 6.

4) RBF-based contour approximation in the 3D space:Un-
der the approach described in the previous section, the RBF-
based approximation was applied to each frame independently.
However, a similar process can be applied to all frames, so
as to directly generate a smooth surface in the 3D space for
each of the two boundaries of interest (i.e. lumen and media-
adventitia). In the absence of any information regarding the
correct spatial localization of each 2D plane (represented by
a frame of the IVUS image sequence) in the 3D space, each
point [Ct(θ), θ] belonging to the examined boundary at frame
t (t ∈ [0, L − 1]) according to the initialization procedure
(whichever is employed) is represented in the 3D space as
[Ct(θ), θ, t] (the index t is introduced toC(θ) here simply
to differentiate between initial contour functions at different
frames of the image sequence).

Similarly to the 2D case, functionf is defined as follows:

f(θ, Ct(θ), t) = 0 (17)

and
f(θ, r 6= Ct(θ), t) = r − Ct(θ) (18)

for the points[θ, r, t] that satisfy the following equations:

r = max
θ,t
{Ct(θ)}+ 1 (19)

r = min
θ,t
{Ct(θ)} − 1 (20)

Similarly with the 2D case, the FastRBF library was then
used, to generate in this case the smooth 3D contour approx-
imation over the whole sequence of IVUS frames.

D. In-vivo validation of segmentation techniques

1) IVUS image datasets:To validate in-vivo the proposed
segmentation techniques, we investigated with IVUS 18 ar-
terial segments (right coronary artery, RCA,n = 7; left
anterior descending, LAD,n = 5; left circumflex artery, LCx
n = 6) from 10 patients randomly selected during routine
diagnostic and therapeutic interventional procedures. From this
pool of IVUS images we selected a dataset of (a) 270 IVUS
images (i.e. 30 consecutive gated images per artery from 8
arteries, and 30 randomly selected images from the remaining
9 arteries) acquired with a mechanical IVUS imaging system
(ClearView, Boston Scientific, Natick, MA, USA) using a 2.6F,
40 MHz IVUS catheter (Atlantis SR Pro, Boston Scientific,
Natick, MA, USA), and (b) 50 IVUS images, all from the
same arterial segment, acquired with a solid-state electronic
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Fig. 6. Example of 2D RBF-based contour smoothing in polar representation: (a) contour initialization results (in blue) and selected off-surface points (in
black), (b) final smooth contour generated by 2D RBF-based contour smoothing.

IVUS imaging system (Volcano Therapeutics Inc. Rancho
Cordova, CA, USA) using a 2.9F, 20 MHz IVUS catheter. In
the mechanical imaging system a motorized pullback device
was used to withdraw the IVUS catheters at a constant speed
of 0.5 mm/sec. The ultrasound data was recorded in a 0.5-inch
S-VHS videotape. The S-VHS data was digitized at512×512
pixels with 8-bit grey scale in a rate of 7.5 images/sec and
the end-diastolic images were selected (peak of R-wave on
ECG) (Giannoglou et al., 2006a). In the solid-state imaging
system the ultrasound data were digitally recorded in DICOM
along with the ECG, which was used for the selection of end-
diastolic images (peak of R-wave on ECG). The Institutional
Medical Ethics Committee approved the study, and all patients
gave written informed consent.

2) Method comparison study:Each of these images was
segmented manually by an experienced expert, and automat-
ically with each of the six possible combinations of the two
lumen contour initialization approaches (intensity-based and
texture-based) and the three contour refinement approaches
(LPF, 2D RBF and 3D RBF-based) presented in the Materials
and Methods section. The inter-observer and intra-observer
agreement of manual segmentation was previously tested and
found to be extremely high (Giannoglou et al., 2007).

For this comparison three morphometric parameters were
calculated in each IVUS image: these were the Lumen cross-
sectional area-LCSA, Vessel cross-sectional area-VCSA, and
Wall area-cross-sectional WCSA, (Fig. 1). The values of these
parameters in the manually segmented images were used as
reference.

For the temporal evaluation of the automated segmentation
versus the manual reference, the mean duration per frame of
manual and automated segmentation were also calculated and
compared.

3) Statistical analysis:The statistical analysis of the results
expressed by the parameters was performed with the statistical
package SPSS 12.0 (SPSS Inc, Chicago, IL, USA). For the
method comparison study, Bland-Altman analysis, and linear
regression analysis were applied.P < 0.05 was considered as
the level of significance.

III. RESULTS

A. Results of automated versus manual segmentation

The differences between automated and manual tracings,
for the images acquired with the mechanical IVUS system
“Boston Scientific”, are presented in Figs. 7 to 9 (Bland-
Altman and linear regression plots) and Table I (Md±SD, i.e.
mean and standard deviation of the differences between auto-
mated and manual tracings). These results reveal the improved
overall performance of the approach that uses texture features
for lumen boundary initialization and 2D RBFs for contour
approximation, as compared to the other combinations of ini-
tialization and contour smoothing techniques considered in this
work. Also, in this approach, as depicted in the corresponding
plots, the vast majority of differences were distributed within
the limits of agreement (i.e. Md±2SD), suggesting a high level
of agreement between manual and automated segmentation. In
addition, linear regression analysis revealed that the results of
texture 2D RBF-based automated segmentation were strongly
correlated with the reference manual segmentation, yielding
slopes close to 1 and intercepts close to 0 for all the examined
morphometric parameters (Figs. 7 to 9).

Indicative results of the different combinations of the pro-
posed methods for one image are shown in Fig. 10, where
the superiority of texture-based contour initialization versus
the intensity-based one is demonstrated (for example, see the
lumen contours in Fig. 10(c) and (d), and compare them with
those in (f) and (g), respectively), as well as the superiority
of RBF-based contour smoothing versus the LPF-based one
(for example, compare the lumen contours in Fig. 10(c)
and (d)). In Fig. 11, additional indicative results are shown
for the combination of texture-based initialization and RBF-
based approximation, that is shown to outperform the other
approaches considered in this work. These results demon-
strate the suitability of the proposed approach for segmenting
heterogeneous IVUS images including images which contain
branches, calcified areas and guidewire artifacts.

With respect to the 3D RBF-based contour refinement
approach, it is seen from the comparative evaluation results
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(a)

(b)

Fig. 7. Bland-Altman and linear regression plots of the differences between automated and manual segmentation, when (a) intensity-based, (b) texture-based
lumen contour initialization, and LPF-based contour refinement are used for the automated contour detection; LCSA: lumen cross-sectional area, VSCA:
vessel cross-sectional area, WCSA: wall cross-sectional area.

reported in Table I that this, regardless of the employed
initialization procedure, generally results in a higher error than
the corresponding 2D approach. This outcome was actually
expected and is caused by the fact that, in the absence of any
information regarding the correct localization of each IVUS
frame in the 3D space, all vessel frames are placed sequen-
tially in a straight line, assuming that this does not deviate
significantly from the real three dimensional vessel geometry.
This however results in the construction of a straight artery in
the 3D space, whose morphology is likely to be quite different
than the real one. Under the above restrictive assumption, the
information from previous and next frames that is exploited
during contour refinement is likely to be incorrect and the
effect of this is often seen as a displacement of the detected

boundaries in the 2D plane, as compared to the true ones
(Fig. 12). Cardiac motion is another factor contributing to the
difficulty in exploiting information available from previous
and next frames for the accurate contour refinement in any
given frame. The above results justify the choice of performing
contour initialization in every IVUS image independently,
despite the fact that the proposed initialization processes could
easily be modified to take into account the result in the
previous frame as well.

Results of statistical analysis of the differences between au-
tomated and manual tracings, for the images acquired with the
solid-state IVUS system “Volcano”, are presented in Table II
(Md±SD, i.e. mean and standard deviation of the differences
between automated and manual tracings). Indicative results
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(a)

(b)

Fig. 8. Bland-Altman and linear regression plots of the differences between automated and manual tracings, when (a) intensity-based, (b) texture-based
lumen contour initialization, and 2D RBF-based contour refinement are used for the automated contour detection; LCSA: lumen cross-sectional area, VSCA:
vessel cross-sectional area, WCSA: wall cross-sectional area.

of the different combinations of the proposed methods for
one image of this set are shown in Fig. 13. These results
support the conclusions drawn from the results presented
above for the images acquired with the mechanical IVUS
system “Boston Scientific”, and highlight the possibility of
applying the techniques discussed in this work in combination
with different image acquisition systems.

Finally, in Table III, the average execution time per frame
for the contour initialization and approximation approaches
proposed in this work are reported; these were recorded on
a 3Ghz PC with 1GB RAM. For initialization, since texture
analysis is in any case required for the initialization of the
media-adventitia contour, the execution time varies very little
with respect to the lumen contour initialization approach that

is followed. As can be seen from Table III, the proposed
approaches require relatively limited processing time and
consequently their time efficiency is not prohibitive for their
use in a clinical environment, after appropriate optimization
of the code with respect to computational efficiency.

IV. DISCUSSION

In this paper an automated approach for the detection
of lumen and media-adventitia boundaries in IVUS images
is presented, based on the results of texture analysis and
the use of RBFs. The proposed approach does not require
manual initialization of the contours, which is a common
requirement of several other prior approaches to IVUS image
segmentation. The experiments conducted with the various
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(a)

(b)

Fig. 9. Bland-Altman and linear regression plots of the differences between automated and manual tracings, when (a) intensity-based, (b) texture-based
lumen contour initialization, and 3D RBF-based contour refinement are used for the automated contour detection; LCSA: lumen cross-sectional area, VSCA:
vessel cross-sectional area, WCSA: wall cross-sectional area.

combinations of contour initialization and contour refinement
methods proposed in this work demonstrated the usefulness of
the employed texture features for IVUS image analysis as well
as the contribution of the approximation technique based on
Radial Basis Functions to the overall analysis outcome. The
comparative evaluation of the different examined approaches
revealed that use of the texture based initialization and the
2D RBF-based approximation results in a reliable and quick
IVUS segmentation, comparable to the manual segmentation.

Our automated segmentation algorithm has several clinical
applications. It could facilitate plaque morphometric analysis
i.e. planimetric, volumetric and wall thickness calculations,
contributing to rapid, and potentially on-site, decision-making.
Similarly, our method could be utilized for the evaluation of

plaque progression or regression in serial studies investigating
the effect of drugs in atherosclerosis. We and others developed
and validated an in-vivo IVUS and biplane angiography fusion
technique for the geometrically correct 3D reconstruction of
human coronary arteries (Giannoglou et al., 2006a), (Slager
et al., 2000), (Chatzizisis et al., 2006), (Giannoglou et al.,
2006b), (Coskun et al., 2003). This technique is coupled with
computational fluid dynamics permitting the investigation of
the role of local hemodynamic factors (e.g. endothelial shear
stress, tensile stress) (Stone et al., 2003), (Chatzizisis et al.,
2007a), (Chatzizisis et al., 2007b), (Chatzizisis et al., 2008)
and local geometric parameters (e.g. vessel curvature) (Krams
et al., 1997) at certain points along the coronary lumen,
on atherosclerosis development and on arterial remodeling.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. Experimental results from a representative image acquired with the mechanical IVUS imaging system (a) Original image, (b) Manually segmented
image, (c) texture-based initialization, LPF smoothing, (d) texture-based initialization, 2D RBF smoothing, (e) texture-based initialization, 3D RBF smoothing,
(f) intensity-based initialization, LPF smoothing, (g) intensity-based initialization, 2D RBF smoothing, (h) intensity-based initialization, 3D RBF smoothing.

TABLE I
MEAN DIFFERENCE BETWEEN AUTOMATIC AND MANUALLY-GENERATED RESULTS AND CORRESPONDING STANDARD DEVIATION FOR THREEIVUS

EVALUATION PARAMETERS, FOR THE IMAGES ACQUIRED WITH THE MECHANICAL IVUS IMAGING SYSTEM.

Parameter/ Lumen area Vessel area Wall area
Method (LCSA) (mm2) (VCSA) (mm2) (WCSA) (mm2)
Intensity, LPF 0.298± 1.685 0.094±2.01 −0.203± 1.75

Texture, LPF 0.169± 1.337 0.196± 1.679 0.027±1.528

Intensity, 2D RBF 0.362± 1.505 −0.063±1.704 −0.425± 1.586

Texture, 2D RBF 0.127±1.209 0.059±1.589 −0.067± 1.363

Intensity, 3D RBF 0.273± 1.619 −0.935± 2.112 −1.181± 1.681

Texture, 3D RBF −0.115±1.735 −0.726± 2.046 −0.611±1.798

TABLE II
MEAN DIFFERENCE BETWEEN AUTOMATIC AND MANUALLY-GENERATED RESULTS AND CORRESPONDING STANDARD DEVIATION FOR THREEIVUS

EVALUATION PARAMETERS, FOR THE IMAGES ACQUIRED WITH THE SOLID-STATE IVUS IMAGING SYSTEM.

Parameter/ Lumen area Vessel area Wall area
Method (LCSA) (mm2) (VCSA) (mm2) (WCSA) (mm2)
Intensity, LPF 0.312± 0.552 0.053±0.596 −0.258± 0.784

Texture, LPF 0.101± 0.381 −0.098± 0.577 −0.208±0.695

Intensity, 2D RBF 0.115± 0.410 −0.088±0.415 −0.183± 0.525

Texture, 2D RBF 0.092±0.345 −0.047±0.338 −0.140±0.408

Intensity, 3D RBF −0.285± 0.551 −0.749± 1.190 −0.463± 0.895

Texture, 3D RBF −0.276±0.468 −0.571± 1.081 −0.295±0.970

The reliable and quick IVUS segmentation constitutes the
foundation for the implementation of the above mentioned re-
construction technique, and the proposed IVUS segmentation
method provides this potential.

With respect to the algorithms limitations, it should be noted
that the algorithm was not tested with either stents or thrombus
in the images. When considering relatively small calcifications,
there were no noticeable differences in the algorithm’s perfor-
mance on calcified segments compared to non-calcified seg-
ments. When considering larger calcifications, the initialization
process for the media-adventitia contour was susceptible to

errors; in several images, however, this was corrected by
the subsequent contour approximation process. Regarding the
applicability of the proposed approach to images acquired with
the use of different catheters and image acquisition systems,
our experiments revealed that this is high. However, it may
require the experimental re-adjustment of thresholdT that is
introduced in the lumen contour initialization process. This
could possibly be alleviated by further preprocessing of the
images, aiming to suppress differences (e.g. in luminance
distribution) that may be introduced by the different catheters,
due to inter-catheter variability, or the different acquisition
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TABLE III
AVERAGE EXECUTION TIMES FOR CONTOUR INITIALIZATION AND APPROXIMATION PROCESSES FOR THE DATASET OFIVUS MAGES ACQUIRED WITH

THE MECHANICAL SYSTEM.

Process Average execution time (per frame)
Contour initialization for both Lumen and Media-Adventitia,
using intensity approach for the former

1.81 sec (using C code)

Contour initialization for both Lumen and Media-Adventitia,
using texture approach for the former

1.82 sec (using C code)

LPF-based approximation for both Lumen and Media-Adventitia1.24 sec (using C code)
2D RBF-based approximation for both Lumen and Media-
Adventitia

14.09 sec (using Matlab)

3D RBF-based approximation for both Lumen and Media-
Adventitia

14.86 sec (using Matlab)

Manual segmentation 85.8 sec

systems.
Future work includes the combination of IVUS image data

with a coronary angiography, which will allow the exploitation
of information regarding the correct 3D morphology of the
vessel, both for the initialization procedure and for the RBF-
based contour refinement; the former could also benefit from
such an approach, providing that it is extended accordingly.
The combined use of texture, intensity and possibly additional
information for the initialization step, and the integration of
the developed automated analysis methodology to a computer
aided diagnosis tool that will also support manual intervention
of the medical expert also belong to future work.
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Fig. 11. Experimental results for different images of the proposed approach using texture-based contour initialization and RBF-based approximation, shown on
the second and fourth column, and comparison with corresponding contours manually generated by medical experts on the first and third column accordingly.
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(a) (b) (c)

Fig. 12. (a) Original IVUS image manually segmented, (b) segmentation by texture-based contour initialization and 2D RBF-based refinement, (c) segmentation
by texture-based contour initialization and 3D RBF-based refinement. The displacement of the contours, due to failure of the simple assumptions made for
the 3D geometry of the vessel, is evident in (c).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13. Experimental results acquired with the solid-state IVUS imaging system. (a) Original image, (b) Manually segmented image, (c) texture-based
initialization, LPF smoothing, (d) texture-based initialization, 2D RBF smoothing, (e) texture-based initialization, 3D RBF smoothing, (f) intensity-based
initialization, LPF smoothing, (g) intensity-based initialization, 2D RBF smoothing, (h) intensity-based initialization, 3D RBF smoothing.


