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Abstract

This report presents an overview of the runs submitted to Ad-hoc Video Search (AVS) on behalf of
the ITI-CERTH team. Our participation in the AVS task is based on a transformer-based extension
of a cross-modal deep network architecture. We analyzed visual information at multiple levels of
granularity using detected objects. During the retrieval stage, we employed a dual-softmax approach
to adjust the calculated text-video similarities.

1 Introduction

In this report, the work carried out in the context of TRECVID 2023 by the ITI-CERTH1 team in
the area of video analysis, retrieval and understanding is presented. ITI-CERTH has participated
in TRECVID [1] for many years as it is one of the most popular video understanding challenges.
Especially, the ITI-CERTH team participated in the Search and Semantic Indexing (SIN) tasks under
the research network COST292 (TRECVID 2006-2008) and the MESH and K-SPACE (TRECVID
2007-2008) EU-Funded research projects, correspondingly. From 2009 to 2015 [2, 3, 4, 5, 6, 7, 8] ITI-
CERTH participated as a stand-alone organization in a significant number of tasks including but not
limited to SIN, KIS, INS, and MED. In both 2016 [9] and 2017 [10], ITI-CERTH participated in the
AVS, MED, INS and SED tasks. In 2018 [11], ITI-CERTH participated in the AVS, INS and ActEV;
in 2019 [12], the participation was limited to the ActEV task. In 2020 [13] ITI-CERTH participated
in the AVS, DSDI and ActEV tasks. Lastly, in 2021 [14] and 2022 [15], ITI-CERTH participated in
the AVS and ActEV tasks. Considering the abovementioned submissions, this year we aim to evaluate
improved algorithms and systems for the AVS task. The following sections will present the employed
algorithms and the evaluation of the submitted runs.

2 Ad-hoc Video Search

The TRECVID 2023 [16] Ad-hoc Video Search (AVS) task aims to develop a system for retrieving a
ranked list of 1000 video shots for each ad-hoc textual query, ranked from the most relevant to the
least relevant shot for the query.

To address this task, we extend our T×V cross-modal network that combines different textual and
visual features with additional modules for object detection and feature extraction and transformer-
based aggregation, aiming to extract objects and calculate object-based visual features. Using all
these, we develop multiple joint latent feature spaces. Then, we examine the performance of our
different runs using this year’s queries and queries from previous years.
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2.1 Approach

In our AVS 2023 participation, we utilize the T × V + Objects network, an extension of the T × V
cross-modal network presented in [17].

Our original T × V network consists of two key sub-networks, one for the textual and one for
the visual stream. The textual sub-network inputs a free-text query s and vectorizes it into textual
features. These features are used as input to a set of K textual encoders that encode the input
sentence. Each of these encoders can be either a trainable network or simply an identity function
forwarding its input. Similarly to the textual one, the visual sub-network inputs a video shot v
consisting of a sequence of keyframes, and we use L pre-trained DNNs to extract the initial frame
representations. To obtain video-shot level representations we follow the mean-pooling strategy.

The T × V +Objects network is an extension of the T × V model that utilizes visual information
at more than one level of granularity by introducing an extra object-based video encoder using trans-
formers. An overview of the network is illustrated in Fig. 1. An object detector extracts O objects
from each frame, represented with a bounding box, an object class label and the associated degree
of confidence. The ViT backbone network is applied to represent each object with a feature vector;
these feature representations are sorted and stacked column-wise to form a matrix for the nth selected
frame. Next, we proceed by employing transformer-based aggregation, where we calculate scaled dot-
product attention scores to derive the self-attended outputs. Finally, we create the (L + 1)th extra
branch of visual frame representation by mean-pooling the self-attended outputs (illustrated as the
object video encoder in Fig. 1).

Figure 1: Illustration of the T × V +Objects network, where various textual and visual features are
combined with the object video encoder creating different joint spaces.

Subsequently, we create all the possible textual encodings-visual feature pairs and a joint embed-
ding space is created for each pair, using to this end two fully connected layers. Thus, K × (L + 1)
different joint spaces are created. The objective of our network is to learn a similarity function
sim(s, v) that will consider every individual similarity in each joint latent space utilizing multi-loss-
based training.

Following [17] and our 2022 [15] approach, we apply a query-video similarities revision approach
based on a dual softmax operation. More specifically, at the retrieval stage, and for a given query
s, we calculate the similarities with the videos from the evaluation dataset, resulting in a vector
y(s) = [sim(s, v1), sim(s, v2), . . . , sim(s, vD)]T , where D is the number of evaluation videos. To
revise these similarities, we utilize a set of background textual queries (queries that are individual
from the examined one) and calculate their similarities with the available videos within the dataset,
resulting in a similarity matrix X ∈ RC×D, where C is the number of background queries. A matrix
Z(s) = concat(y(s);X) is constructed, and a dual softmax operation revises the similarities as follows:

Z∗(s) = Softmax(Z(s), dim = 0)⊙ Softmax(Z(s), dim = 1)



where ⊙ denotes the Hadamard product.

2.2 Submission

Our network is trained using a combination of four large-scale video captioning datasets: MSR-
VTTT [18], TGIF [19], ActivityNet [20] and Vatex [21]. The V3C2 [22] dataset is utilized to evaluate
the networks’ performance. Moreover, we examine the performance of our runs on the V3C1-V3C2
datasets for the queries of years 2019-2020-2021-2022. The evaluation measure we use is the mean
extended inferred average precision (MxinfAP). As initial textual features, we utilize four models: i)
Bag-of-Words (bow), ii) Word2Vec model [23] iii) Bert [24] and iv) Clip model [25]. Also, we utilize
two textual encoders that input the textual features and encode the text further; i) the textual sub-
network (ATT) presented in [26] and ii) a Clip encoder that feedforwards the corresponding features
through an identity layer. As video feature extractors, we use three trained networks: i) a ResNet-152
[27] network, trained on the ImageNet-11k dataset, ii) a ResNeXt-101 network, pre-trained by weakly
supervised learning on web images followed and fine-tuned on ImageNet [28], and iii) the ViT-B/32
Clip model [25]. Moreover, we utilize the object detector and the feature extractor modules of the
ViGAT network [29] to obtain the initial object-based visual representations.

Similarly to previous works [30] [26], [17] where the combination of multiple models leads to
improved performance, we utilize different model configurations to train multiple models using three
learning rates (10−4, 5 ∗ 10−5, 10−5) and two optimizers (i.e., Adam and RMSprop).

This year, we submitted four runs for the AVS 2023 main task and four additional runs for the
AVS progress subtask. Overall, we evaluate our methods on 40 ad-hoc queries (20 from the main task
and 20 from the progress subtask). The submitted runs are briefly described below:

• ITI CERTH.23 run 1: The T ×V +Objects model, using two textual encoders and three visual
features. For the extra object-based branch, the transformer-based aggregation is used for
developing the frame-level representation. Late fusion of six different trained models is derived
from six different model configurations. Finally, query-video shot similarities revision through
the dual softmax operation using all AVS 2022 queries as background queries.

• ITI CERTH.23 run 2: Similar to run 1, but with mean-pooling aggregation of the detected
objects features in the extra object-based branch, instead of the transformer-based aggregation
mechanism of run 1.

• ITI CERTH.23 run 3: The T × V model, without the extra object branch, using two textual
encoders and three visual features. Late fusion of six different trained models derived from six
different model configurations. And finally, query-video shot similarities revision through the
dual softmax operation using all AVS 2022 queries as background queries.

• ITI CERTH.23 run 4: Late fusion for combining the above three runs.

2.3 Experimental Results

Table 1 summarizes the evaluation results of our runs for the 2023 main AVS task, while Table 2
displays the results of these runs for the 2019-2022 main AVS queries. By examining the performance of
our runs on this year’s main queries in Table 1, we conclude that the original T×V model outperforms
its extension (T × V +Objects). Moreover, there is no significant difference in performance between
run 1 and run 2. In the AVS 2023 queries, the object features aggregation choice does not affect the
overall performance. When it comes to the Progress queries, run 3 performed the best. However, the
performance gap between run 3 and run 1 is even less significant than in the Main task.

In addition to the official AVS 2023 results, we also examine the performance of our 2023 methods
on previous years’ AVS queries in Table 2. Here, we notice a different behavior regarding runs’
performance since run 1 (T ×V +Objects model with transformer aggregator) is the best-performing
run in 2019 and 2021 and close to the best-performing one for the rest of the years.

Figure 2 illustrates the performance of all submitted runs in the AVS 2023 competition. Our
runs achieved 19th, 22nd, 23rd, and 24th place across all submitted runs and 6th place among all
participating teams; it should be noted that this year, the differences in absolute MXinfAP scores
among the various participating teams are, in most cases, relatively low.



Figure 2: AVS 2023 ranking list of all submitted runs regarding the main task in MXinfAP terms.
Orange bars indicate our submitted runs.

Table 1: Mean Extended Inferred Average Precision (MXinfAP) for all submitted runs for the
fully-automatic AVS task.

Run id: Main Progress
ITI CERTH.23 run 1 0.225 0.211
ITI CERTH.23 run 2 0.224 0.202
ITI CERTH.23 run 3 0.240 0.216
ITI CERTH.23 run 4 0.233 0.213

Table 2: Mean Extended Inferred Average Precision (MXinfAP) for all submitted runs for the 2019,
2020, 2021 and 2022 fully-automatic AVS tasks.

Run id: 2019 2020 2021 2022
ITI CERTH.23 run 1 0.242 0.343 0.343 0.204
ITI CERTH.23 run 2 0.234 0.344 0.340 0.194
ITI CERTH.23 run 3 0.233 0.339 0.326 0.209
ITI CERTH.23 run 4 0.238 0.342 0.340 0.208

3 Conclusions

In this paper, the results of ITI-CERTH in the TRECVID 2023 challenge [16] are reported. ITI-
CERTH this year participated by developing new techniques and algorithms for the AVS task. Specif-
ically, we examined the performance of the T ×V +Objects model, an extension of the T ×V model,
which utilizes visual information at more than one levels of granularity using object detection and
transformer-based aggregation. In contrast to our preliminary evaluation results on the past AVS
queries, where the extended model slightly outperformed its predecessor, the 2023 results concluded
the opposite since the run based on the original T × V model achieved, by a small margin, the best
result among all other ITI-CERTH runs.
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