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Abstract

This paper provides an overview of the runs submitted to TRECVID 2015 by ITI-CERTH. ITI-
CERTH participated in the Semantic Indexing (SIN), Multimedia Event Detection (MED), Instance
Search (INS) and Surveillance Event Detection (SED) tasks. Our SIN task participation is based on the
extraction of discriminative features and the improvement of the concept learning module. Specifically,
DCNN-based descriptors are combined with local descriptors. Furthermore, a MTL approach is used
to share knowledge between tasks and improve the concept detection accuracy. In the MED task, a
kernel subclass version of our discriminant analysis method (KSDA) combined with a fast linear SVM,
along with the RDSVM for exploiting “near-miss” samples, is employed. Motion descriptors as well as
local and DCNN-based visual descriptors are used. Moreover, we use our zero-example event detection
framework for the 000Ex training condition. The INS task is performed by employing VERGE, which
is an interactive retrieval application that integrates multiple retrieval functionalities considering only
visual information. Finally, the interactive SED task integrates a sophisticated activity detection
algorithm into a simple and user-friendly graphical interface.

1 Introduction

This paper describes the recent work of ITI-CERTH! in the domain of video analysis and retrieval.
Being one of the major evaluation activities in the area, TRECVID [1] has always been a target
initiative for ITI-CERTH. In the past, ITI-CERTH participated in the Search task under the research
network COST292 (TRECVID 2006, 2007 and 2008) and in the Semantic Indexing (SIN) task (also
known as high-level feature extraction task - HLFE) under the MESH (TRECVID 2008) and K-
SPACE (TRECVID 2007 and 2008) EU-funded research projects. In 2009 ITI-CERTH participated
as a stand-alone organization in the SIN and Search tasks ([2]), in 2010 and 2011 in the KIS, INS,
SIN and MED tasks ([3], [4]) and in 2012, 2013 and 2014 in the INS, SIN, MED and MER tasks ([5],
[6], [7]) of TRECVID. Based on the acquired experience from previous submissions to TRECVID, our
aim is to evaluate our algorithms and systems in order to improve and enhance them. This year, ITI-
CERTH participated in four tasks: SIN, MED, INS and SED. In the following sections we will present
in detail the employed algorithms and the evaluation for the runs we performed in the aforementioned
tasks.

nformation Technologies Institute - Centre for Research and Technology Hellas



2 Semantic Indexing

2.1 Objective of the Submission

The goal in the TRECVID 2015 SIN task [8] is the development and use of concept detectors to
retrieve for each concept a ranked list of 2000 test shots that are mostly related with it. The ITI-
CERTH participation in the SIN task was based on the extraction of discriminative features and
the improvement of the concept learning module. Our aim was to improve system’s performance, in
comparison to our SIN 2014 participation. To achieve our goal we focused on four different directions,
which correspond to sub-components of one or more of our submitted runs: i) Features extracted with
the use of pre-trained and fine-tuned deep convolutional neural networks (DCNN). ii) Dimensionality
reduction using Kernel Subclass Discriminant Analysis (KSDA) [9, 10, 11]. iii) Cascades of local and
DCNN-based descriptors [12, 13]. iv) Multi-task learning (MTL) using the Logistic-lasso algorithm
[14].

2.2 System Overview

Similar to our TRECVID 2014 participation [7], we developed a two-layer concept detection system.
The first layer builds multiple independent concept detectors. The second layer takes as input the
output of the first layer, exploits concept correlations and refines the initial scores.

Specifically, in the first layer of our system, the video stream is initially sampled, generating one
keyframe per shot. Each sample is represented using one or more types of i) hand-crafted features
(e.g. local descriptors, such as SIFT, SURF, ORB etc., aggregated into global image descriptor
vectors using the VLAD encoding) and ii) DCNN-based features. Subsequently, we experimented
with different learning methods that use these features and build concept detectors:

e Each type of features serves as input to Linear Support Vector Machine (LSVM) or Logistic
Regression (LR) classifier.

e An extended and speeded-up version of our KSDA method [9, 10, 11] for dimensionality reduction
is used to reduce the dimensionality of the feature vectors; the reduced vectors similarly to the
previous case serve as input to LSVMs or LR classifiers.

e We propose an improved way of ordering and combining independently trained LSVMs using a
cascade.

e A MTL approach is used to share knowledge between tasks and improve the concept detection
accuracy.

In the second layer of the stacking architecture, the fused scores from the first layer are aggregated
in model vectors and refined by two different approaches that work sequentially. The first approach
uses a multi-label learning algorithm that incorporates concept correlations [15]. The second ap-
proach is a temporal re-ranking method that re-evaluates the detection scores based on adjacent video
segments as proposed in [16].

The key components of our concept detection experiments are presented below.

2.2.1 Hand-crafted Visual Features

We employed image representations that are based on hand-crafted local descriptors following the
experimental setup of our TRECVID 2014 SIN submission [7]. More specifically, we calculate 128-
SIFT, 128-SURF and 256-ORB grayscale descriptors. We also calculate two color extensions, in
the RGB and Opponent color space, for each of the grayscale descriptors [15]. For each of these
descriptors, the local feature vectors are subsequently aggregated using the VLAD encoding. The
VLAD encodings are then compressed into 4000-element vectors by applying a modification of the
random projection matrix [17].

2.2.2 DCNN-based Visual Features

We used features based on three different pre-trained DCNN networks: i) The 16-layer deep ConvNet
network provided by [18], ii) the 22-layer GoogLeNet network provided by [19], and iii) the 8-layer



CaffeNet network described in [20]. We apply each of these networks on the TRECVID keyframes
and we use as a feature i) the output of the last hidden layer of ConvNet (fc7), which results in
a 4096-element vector, ii) the output of the last fully-connected (fc) layer of CaffeNet (fc8), which
results in a 1000-element vector, iii) the output of the last fc layer of GoogLeNet (loss3), which results
in a 1000-element vector. We refer to these features as CONV, CAFFE and GNET in the sequel,
respectively.

We also fine-tuned the GoogLeNet and the CaffeNet network, on the training set of the TRECVID
SIN 2015 positive samples for the 60 concepts. We used features based on three different fine-tuned
DCNN networks: i) the GoogLeNet extended by one layer, ii) the CaffeNet extended by one layer,
and iii) the GoogLeNet extended by two layers. With respect to the first two fine-tuned networks,
the output classification layer for the 1000 ImageNet ISLVRC concepts of the pre-trained GoogLeNet
and CaffeNet networks is discarded and replaced with a 1024-dimensional fc layer, along with RELU
and dropout layers, followed by a 60-dimensional fc layer, which constitutes the classification layer
for the 60 SIN test concepts. This approach extends the GoogleNet and CaffeNet network by one
layer (considering layers with weights only). Due to the fact that the GoogLeNet has three classifiers,
one hidden layer is added before each classification fc layer. We use the output of the last classi-
fication layer for each of the two fine-tuned networks as a feature vector to train concept detectors
separately for each concept. We refer to these features as GNET_E1, CAFFE_E1, for GoogleNet
and CaffeNet fine-tuned networks, respectively. Furthermore, we use the output of the extended hid-
den layer corresponding to the second (Loss2_fci) and third classifier (Loss3_fci) of the GoogLeNet
fine-tuned network, which results in a 1024-element vector for each of the layers. We refer to these
features as GNET_E1_L2_FCI, GNET_E1_L3_FCI. With respect to the third fine-tuned network, we
extend the pre-trained GoogLeNet network with two 512-dimensional fc layers, along with RELU
and dropout layers, followed with a 60-dimensional fc classification layer. We use as a feature the
output of the two hidden layers that correspond to the third classifier of the fine-tuned GoogLeNet
(Loss3_fci, Loss3_fc_ii), which results in a 512-element vector for each layer. We refer to these features
as GNET_E2_L3_FCI, GNET_E2_L3_FCII.

Both the reduced VLAD vectors and the DCNN-based features are used for learning concept
detectors in one of the following ways: i) they serve as input directly to LSVM classifiers, ii) they are
reduced using KSDA and serve as input to LSVM classifiers, iii) they are reduced using KSDA and
serve as input to the Logistic-lasso algorithm for MTL.

2.2.3 Kernel Subclass Discriminant Analysis and LSVMs for Classification

While previous features can serve as input directly to LSVMs or LR classifiers, in some of our ex-
periments we used KSDA+LSVM for classification [9, 10]. Specifically, the KSDA method is used
to derive a lower dimensional embedding of the original feature vectors. Then, the features in the
resulting subspace serve as input to LSVMs. For more details on an extended and speeded-up version
of KSDA that was used for the SIN task please refer to [11].

2.2.4 Cascade of Classifiers

For each concept many base classifiers are trained on different types of features. The simplest way to
combine the output of them for the same concept is late fusion, e.g., in terms of arithmetic mean. For
some of our experiments we introduce a more elaborate approach that arranges the base classifiers on
a cascade architecture. We use the cascade of classifiers proposed in [12], where the trained classifiers
are arranged in stages using a search-based algorithm. A keyframe is classified sequentially by each
stage and the next stage is triggered only if the previous one returns a positive prediction (i.e. that
the concept appears in the keyframe). The rationale behind this is to rapidly reject keyframes that
clearly do not match the classification criteria and focus on those keyframes that are more difficult
and more likely to depict the sought concept or object. This procedure is able to reduce the number
of classifier evaluations and consequently the number of classifiers to be fused.



2.2.5 Multi-task Learning

We used a MTL algorithm to share knowledge between tasks and improve the concept detection per-
formance. Assuming that some groups of concepts are expected to be related through some underlying
structure, we utilize the Logistic-lasso [21] implementation for MTL learning. Logistic-lasso algorithm
can define this relatedness on the parameters of the independently trained concept detectors. The
MALSAR MTL library [14] was used as the source of the Logistic-lasso algorithm. Each type of
features serves as input to the Logistic-lasso algorithm to train MTL models. The scores returned
from the MTL models for the same concept are fused using late fusion (arithmetic mean).

2.2.6 Stacking for Exploiting Concept Correlations

All the above techniques were part of the first layer of the stacking architecture in one or more runs.
For the second layer of the stack in all runs we use a multi-label learning algorithm in order to capture
concept correlations. More specifically, we obtain concept score predictions from the individual concept
detectors in the first layer, in order to create a model vector for each shot. These vectors form a meta-
level training set, which is used to train a multi-label learning algorithm. We choose the LP [15]
algorithm that models correlations among sets of more than two concepts. For more details, please
refer to our previous submission [7].

2.3 Description of Runs

Four SIN runs were submitted in order to evaluate the potential of the aforementioned approaches on
the TRECVID 2015 SIN dataset [8]. The submitted runs are based on different combinations of the
following four developed systems:

e System A: A cascade of 11 different visual descriptors that have been arranged on four cascade
stages; specifically, the cascade consists of one binary local descriptor and its two color variants
(ORBx3), two types of non-binary local descriptors with their color variants (SURFx3, SIFTx3),
the output of the CONV layer and the output of the GNET_E1 layer. We train one LSVM for
each of the 11 visual descriptors. Therefore, 11 LSVMs per concept are trained and arranged
on cascade stages. The scores returned from them are fused using the cascade.

e System B: A cascade of 11 different visual descriptors; specifically, the cascade consists of one
binary local descriptor and its two color variants (ORBx3), two types of non-binary local de-
scriptors with their color variants (SURFx3, SIFTx3), the output of the CONV layer and the
output of the GNET_E1_L3_FCI layer. In contrast to A, each descriptor was firstly reduced to
a lower dimensional feature space using the KSDA method.

e System C: Late fusion of the 11 descriptors of B using MTL; in this case the Logistic-lasso
algorithm is applied separately to each descriptor in order to train one MTL model for each
of the 11 descriptors. The corresponding descriptors that were used as stages of the cascade
method in B, are firstly combined by averaging the MTL model’s output scores and then the
combined outputs of all stages are further fused together.

e System D: Late fusion of 7 DCNN-based descriptors; specifically, we train five LR models
using cross validated committees method [7] for each of the following DCNN-based descrip-
tors: i) CAFFE, ii) GNET, iii) CAFFE_E1, iv) GNET_E1 L2 _FCI, v) GNET_E1_L3_FCI, vi)
GNET_E2_L3_FCI, vii) GNET_E2_L3_FCII. Therefore 35 LR models per concept are generated.
The scores returned from the 35 LR models are fused using the arithmetic mean.

For each of the above four systems, the fused scores per concept are refined in the second layer of the
stacking architecture, firstly by applying the LP multi-label learning algorithm that captures concept
correlations, and secondly by applying the temporal re-ranking method.

The 4 submitted runs for the main task of the 2015 TRECVID SIN competition are briefly de-
scribed in the following. When the combination of different systems is indicated, we mean a late fusion
combination which takes the output scores from the combined systems and calculates the arithmetic
mean of these scores:

e ITI-CERTH-Runl: “Combination”. In this run we combine the output scores of the four systems
presented above (Systems A to D).



e ITI-CERTH-Run2: “MTL-LogLasso”. This run is a subset of the previous one (“Combination”),
that combines only systems C and D.

o ITI-CERTH-Run3: “Cascade-KDA”. This run is a subset of the “Combination” run that com-
bines only systems B and D.

e ITI-CERTH-Run4:

only systems A and D.

2.4 Semantic Indexing Task Results

“Cascade”. This run is a subset of the “Combination” run that combines

Table 1: Mean Extended Inferred Average Precision (MXinfAP) for all submitted runs, and for the
four developed systems (System A to D) that contribute to these runs.

Submitted run: ITI-CERTH 1 | ITI-CERTH 2 | ITI-CERTH 3 | ITI-CERTH 4
MXinfAP (with the bug) 0.130 0.112 0.096 0.110
MXinfAP (without the bug) 0.263 0.260 0.250 0.252
Developed systems: System A System B System C System D
MXinfAP (without the bug) 0.239 0.258 0.219 0.232

Table 1 summarizes the evaluation results of the aforementioned runs in terms of the Mean Ex-
tended Inferred Average Precision (MXinfAP). Furthermore, we present the MXinfAP for each of the
four developed systems that have been presented in the previous section. It should be noted that
after submission we discovered a bug in the feature extraction process, which led to wrong results.
We fixed this bug and Table 1 reports both the official results (with the bug), but also the correct
results (without the bug). From the obtained results the following conclusions can be drawn:

The “Cascade” and the “Cascade-KDA” run (ITI-CERTH-Run-4 and ITI-CERTH-Run-3, respec-
tively), present similar accuracy. It should be noted that the employed cascades lead to approximately
37% relative decrease in the amount of classifier evaluations compared to the late fusion alternative,
without decreasing the overall concept detection accuracy. The “MTL-LogLasso” run (ITI-CERTH-
Run-2) uses MTL to take advantage of the relations between different concepts. The improved ac-
curacy achieved by this run demonstrates the significance of transferring learning among different
concepts, rather than training each concept independently from the others. Finally, the “Combina-
tion” run (ITI-CERTH-Run-1) that combines the four developed systems can only slightly improve
the previous runs, which shows that the different systems are not really complementary to each other.
Overall, considering our best run (0.263 MXinfAP), our system performs above the median for 28 out
of 30 evaluated concepts, as shown in Fig. 1.
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Figure 1: Extended Inferred Average Precision (XinfAP) per concept for our submitted runs (results
without the bug).



3 Multimedia Event Detection

3.1 Objective of the Submission

In our submission we applied methods for learning i) solely from the textual description of an event
class (000Ex task) and ii) from few (010Ex task) or from an abundance of training videos (100Ex
task), while we also exploited “near-miss” video samples as weighted negative or weighted positive
ones using an automatic weighting scheme.

3.2 System Overview
3.2.1 O000Ex: Learning video event detectors from events’ textual descriptions

In the 000Ex task we use our zero-example event detection framework presented in [22]. This frame-
work uses only the textual description of each event class, namely the Event Kit. For linking this
textual information with the visual content of the MED15-EvalSub video collection, we use a) a pool
of 1000 concepts along with their titles and, in some cases, a limited number of subtitles (e.g. concept
bicycle-built-for-two has the subtitles tandem bicycle and tandem), and b) a pre-trained detector for
these concepts. The latter is the 16-layer deep ConvNet [18] trained on the ImageNet data [23].

Given the textual description of an event, our framework first identifies N words or phrases that
most closely relate to the event; this word-set is called Event Language Model (ELM). Three different
types of ELMs are constructed; The first type of ELM is based on the automatic extraction of word
terms solely from the title of an event; in the second type, the visual cues of the event kit are used
along with title of the event; and, the third type is the enrichment of the second type with audio cues.

In parallel, for each of the 1000 concepts of our concept pool, our framework similarly identifies M
words or phrases: the Concept Language Model (CLM) of the corresponding concept. Six different
types of CLMs, depending on the textual information used for each concept (the title of the concept
or the Bag of Words (BoW) representation of the top-20 articles in Google or in Wikipedia), as well
as the weighting technique (Tf-Idf or none) adopted for transforming this textual information in a
BoW representation.

Subsequently, for each word in ELM and each word in each one of CLMs we calculate the Explicit
Semantic Analysis (ESA) distance [24] between them. For each CLM, the resulting N x M distance
matrix expresses the relation between the given event and the corresponding concept. In order to
compute a single score expressing this relation, we apply to this matrix different operators, such as
various matrix norms (I3, Frobenius or l,) or distance measures (Hausdorff distance). Consequently, a
score is computed for each pair of ELM and CLM. The 1000 considered concepts are ordered according
to these scores (in descending order) and the K-top concepts along with their scores constitute our
event detector. Multiple event detectors are produced as the result of different combinations of the
above steps.

3.2.2 010Ex, 100Ex: Learning video event detectors from positive and related video
examples

The target of an event detection system is to learn a decision function f: F — {£1}, where F denotes
the space where the video representations lie in. f assigns a test video to the event class (labelled with
the integer 1) or to the “rest of the world” class (labelled with the integer —1). For each event class,
this is typically achieved using a training set X = {(x;,v;): x; € F,y; € {0,£1},i=1,..., N}, where
x; denotes the representation of the i-th training video and y; denotes the corrsponding ground truth
label. Labels —1, 41 correspond respectively to negative and positive training examples, while label
y; = 0 indicates that the i-th video example does not exactly fulfill the requirements to be characterized
as a true positive example, nevertheless is closely related to the corresponding event class; we refer to
these samples as “near-miss”. In some runs we treat near-miss videos as either weighted negatives or
weighted positives in conjunction with an automatic weighting selection scheme.

Our method exploits three types of visual information, i.e., motion features, local descriptors, and
DCNN-based features. For the extraction of local visual descriptors and DCNN-based features, the
procedure described in Section 2 is applied. We briefly describe the different visual modalities in the
following:



EO021 - Attempting a bike trick E031 - Beekeeping

E022 - Cleaning an appliance E032 - Wedding shower

E023 - Dog show E033 - Non-motorized vehicle repair
E024 - Giving directions to a location EO034 - Fixing musical instrument
E025 - Marriage proposal E035 - Horse riding competition
EO026 - Renovating a home EO036 - Felling a tree

E027 - Rock climbing EO037 - Parking a vehicle

EO028 - Town hall meeting E038 - Playing fetch

EO029 - Winning a race without a vehicle EO039 - Tailgating

E030 - Working on a metal crafts project | E040 - Tuning a musical instrument

Table 2: MED 2015 Pre-Specified (PS) events.

e Each video is decoded into a set of keyframes at fixed temporal intervals (1 keyframe every 6
seconds). Low-level feature extraction and encoding is performed as described in Section 2.2.1.
Specifically, four different local descriptors (SIFT, OpponentSIFT, RGB-SIFT, RGB-SURF),
are applied to extract local visual information for every keyframe. The extracted features for
each local descriptor are encoded using VLAD, compressed using a modification of the random
projection matrix [17] technique to R%%% and averaged over all keyframes of the video. The
four feature vectors are then concatenated to provide a single feature vector in R'6%%0 at video
level, encoding static visual information.

e Each video is decoded into a set of keyframes at fixed temporal intervals (approximately 2
keyframes per second). Each keyframe is represented using the last one or two hidden layers
(fc7, fc8) of the 16-layer deep ConvNet network [18] also presented in Section 3.2.1. Thus, each
keyframe is represented either by a 1000-element vector or a (4096+1000)-element vector. Then,
a video-level model vector is computed for each video by taking the average of the corresponding
keyframe-level representations.

e For encoding motion information we use improved dense trajectories (DT) [25]. Specifically we
employ the following four low-level feature descriptors: Histogram of Oriented Gradients (HOG),
Histogram of Optical Flow (HOF), and Motion Boundary Histograms in both  (MBHx) and
y (MBHy) directions. Hellinger kernel normalization is applied to the resulting feature vectors,
followed by Fisher Vector (FV) encoding with 256 GMM codewords. Subsequently, the four

feature vectors are concatenated to yield the final motion feature descriptor for each video in
R101376_

The final feature vector representing a video is formed by concatenating the feature vectors derived
for each visual modality (static local, motion, model vectors), yielding a new feature vector in R17722,
In our submission we used two different machine learning methods for building our event detectors:

o We utilized an extended and speeded-up version of our Kernel Subclass Discriminant Analysis
[9, 10] for dimensionality reduction, followed by a fast linear SVM (KSDA+LSVM), as discussed
in Section 2.2.3. The GPU-accelerated implementation of this method [11] was not used in our
MED 2015 experiments; due to the limited number of training samples, it was not necessary for
us to exploit the GPU computing capabilities.

e We also used Relevance Degree SVM (RDSVM) proposed in [26] for handling “near-miss” video
samples as weighted negative or weighted positive ones using an automatic weighting selection
scheme as in our previous works [22].

3.3 Dataset Description

For training our Pre-Specified (PS) event detectors we used the PS-Training video sets, consisting of
2000 (80 hours) positive (or near-miss) videos, and the Event-BG video set containing 5000 (200 hours)
of background videos. The 20 PS event classes are shown in Table 2 for the shake of completeness.

For the evaluation of our systems we processed the MED15-EvalSub set consisting of 32000 videos
(960 hours). We submitted runs for the 000Ex, the 010Ex, and the 100Ex evaluation conditions (i.e.,
0, 10 or 100 positive exemplars, respectively, are used for learning the specified event detector).



3.4

Description of Runs

3.4.1 O000Ex

For our 000Ex submission we experimented with 3 different CLMs, 3 different ELMs, 2 weighting
techniques and 4 different matrix operators, as described in Section 3.2.1, which resulted in 72 different
design choices for building an event detector. We chose the best of them (hereafter called the best
detector), as well as the top-10 of them, based on experiments on previous MED datasets, as in [22].
We submitted 5 different runs in the OEx task, one primary and four contrastives:

c-loneCosine: In the first contrastive run we use our best detector as the event detector and
the cosine similarity as the similarity measure.

c-2avgCosine: In this run, the arithmetic mean of the top-10 detectors is employed and the
cosine similarity is used as the similarity measure.

c-3oneHist: In the third run, the best detector is used as the event detector and the Histogram
Intersection is used as the similarity measure.

c-davgHist: In the last contrastive run we use the arithmetic mean of the top-10 detectors and
the Histogram Intersection is used as the similarity measure.

p-1Fusion: As our primary run we use the fusion in terms of arithmetic mean of the above four
contrastive runs.

3.4.2 010Ex & 100Ex

For each of the training conditions of 010Ex and 100Ex, we submitted 4 runs; one primary and three
contrastives:

3.5

c-1IKDALSVM: In the first contrastive run, the KSDA+LSVM method is used to build the
event detectors and perform the event search in the MED15-EvalSub set using motion, static
local, and DCNN-based features, as discussed in Section 3.2.2.

c-2RDKSVM: In the second contrastive run, RDSVM is used to build the event detectors by
treating near-miss videos as weighted negatives or positives, as discussed in Section 3.2.2. Only
the output of the last hidden layer (fc8) of the pre-trained DCNN described in Section 3.2.2 is
used for representing each video.

c-3RDKSVM: In the third contrastive run, similarly to previous run, RDSVM is used, together
with the last two hidden layers of the DCNN-based feature representation (fc7+fc8).
p-1Fusion: As our primary run we use the fusion in terms of arithmetic mean of the above
three contrastive runs.

Multimedia Event Detection Results

In Table 3, the evaluation results of our 000Ex(3a), 010Ex(3b), and 100Ex(3c) systems for the MED
task are shown in terms of InfAP@200 along the 20 target events for the PS task.

Table 3: ITI-CERTH results

(a) 000Ex (b) 010Ex (c) 100Ex
Run ID mInfAP@200 Run ID mInfAP@200 Run ID mInfAP@200
p-1Fusion 0.0617 p-1Fusion 0.211 p-1Fusion 0.3649
c-loneCosine_1 0.0478 ¢-1KDALSVM 0.2493 c-1KDALSVM 0.4111
c-2avgCosine_1 0.0473 c-2RDKSVM 0.1588 c-2RDKSVM 0.2894
c-3oneHist_1 0.0474 ¢-3RDKSVM 0.2026 ¢-3RDKSVM 0.2367
c-4avgHist_1 0.0592

From the analysis of the evaluation results we can conclude the following:

e Concerning the 000Ex task, it seems that the exploitation of a large number of detectors, pro-

duced by our various design strategies described in Section 3.2.1, gives a boost to the performance
of our method. Furthermore, late fusion led to better detection results.



e Concerning the 010Ex and 100Ex training conditions, we observe that our KSDA method (Sec-
tion 3.2.2) achieved the best results (24.93% and 41.11%, respectively), while the contrastive
runs that exploited “near-miss” samples as weighted negatives/positives using RDSVM (Sec-
tion 3.2.2) achieved worse results than KSDA+LSVM, due to the fact that they used only the
DCNN-based features, in contrast with the KSDA+LSVM run, where very high dimensional
features capturing motion, static local and DCNN-output information were used for training
the event detectors.

e Our run based on KSDA+LSVM using all the features presented in Section 3.2.2 (run c-
1KDALSVM) achieved mInfAP@200=0.4111, which is the second-best result among all par-
ticipants’ runs validated on the MED15-EvalSub set.

4 Instance Search

4.1 Objective of the Submission

According to the TRECVID guidelines, the INS task represents the situation, in which the user is
searching for video segments of a specific person, object, or place contained in a video collection. The
searcher is provided with visual examples of the specific query object in order to commence with the
searching. It should be noted that the videos used in the INS task are provided by BBC and they are
part of the EastEnders TV series (Programme material BBC).

ITI-CERTH’s participation in the TRECVID 2015 instance search (INS) task aimed at studying
and drawing conclusions regarding the effectiveness of a more object-oriented visual search approach
in comparison with our last year’s concept-oriented approach. Our system is integrated in VERGE!
interactive video search engine. Three runs were submitted this year that differ slightly on the algo-
rithmic steps for building the BoW model which was used in our system.

4.2 System Overview

The system employed for the Instance Search task was VERGE, which is an interactive retrieval
application that combines retrieval functionalities considering visual information, accessible through
a friendly Graphical User Interface (GUI), as shown in Fig. 2. The following modules are integrated
in the developed search application:

e Object-based Visual Search Module;
e High Level Visual Concept Retrieval;

A detailed description of the aforementioned modules is presented in the following sections.
The existence of a friendly and smartly designed graphical interface (GUI) plays a vital role in the
procedure of searching. The interface comprises of four main components:

the video search toolbar

the main results area

the topics drawer

the visual similarity search panel

The main results area of the interface includes a shot-based representation of the available videos
in a grid-like interface. When the user hovers over a shot keyframe, three options appear on its
corners as shown in Fig. 3. A selection tool that lets the user select the current keyframe, a cross
tool that expands a view of the temporarily related shots given from the scene segmentation, and a
magnifier tool that opens up a frame that contains a larger preview of the image and gives the user the
opportunity to crop an object in order to make an object-based search. All the shots from the main
results area are draggable. When a user starts to drag an image, the Visual Similarity Search Panel
that resides at the lower side of the screen slides up and he can drop the image on this area in order
to make a search with one or more images/object instances. On the left side of the interface resides
a list of the given topics. When the user selects a topic, the Visual Similarity Search Panel slides up
and loads the four related given frames and their masked versions in order to let the user run a visual
similarity search with these images. The aforementioned magnifier tool is also available in this case
to give the user the choice to crop any part of these frames in order to make a more targeted search.



Below we demonstrate a usage scenario, supposing that a user is interested in finding shots which
contain instances of a specific topic named “this yellow VW beetle with roofrack” (Fig. 2). When
the user selects the topic, the images given for the topic and their masked versions are loaded to the
Visual Similarity Search Panel, giving the option of initiating a search based on these images. From
the results appearing, the user selects the shots illustrating the desired object, which in this case is
the yellow car, and uses them in order to make a more effective query. When a shot with the desired
object is spotted, the user can expand it using the cross tool with the aim to find more related shots.
It is very possible for a scene to have more than one shots with the desired object. Finally, the user
can choose from the concept list the one which is closer to the described topic in order to complement
the visual search. In this example, the related concept car could be selected.

It should be noted, that the search system is built on open source web technologies and more
specifically the PHP, HTML5, JavaScript and MongoDB database.
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Figure 2: User interface of the interactive search platform.

Selection tool

Magnifier Cross tool

Figure 3: Shot options appearing over the shot.
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4.2.1 Object-based Visual Search Module

The Object-based Visual Search module performs instance-based object retrieval and is based on the
widely used Bag-Of-Word (BoW) model. Visual similarity is determined based on local features. In
particular, fast Hessian detector and SIFT descriptor are exploited in order to extract local feature
vectors from every keyframe of the dataset. For computational reasons, each keyframe’s size was
reduced at a pre-processing step to 75% of its original size.

The features detected in the whole image dataset are randomly sampled and afterwards, clustered
using Repeated Bisecting K-Means [27] and a 2-layer visual vocabulary is constructed. Vocabularies
of various sizes up to 150K were explored and the final representation of each keyframe is the result
of a hard assignment. The size of the vocabulary used in the official runs is 100K.

In order to accelerate the online search time, an inverted index is built off-line using the open-
source Apache Lucene? software for fast online search of the image database BoW vectors. The index
is accessed every time a query is made in order to return the indices of the most similar keyframes. For
querying the system, the whole keyframe (containing the object of interest) or any object/cropped
part of the image can be selected. The similarity score between a query image and a video frame
is obtained based on Lucene’s scoring function (which exploits the tf-idf weighting scheme) and the
ranking position of the frame in the retrieved list, i.e. Borda Count is computed for all frames in the
list in order to form the final ranking.

After experimentation with the topics used in INS 2014 and based on the observation that the
context around an object of interest (i.e. the background information) is sometimes helpful (e.g. some
of the topics always appear in the same room/place), during our official experiments, we encouraged
the usage of 8 images per query, i.e. the 4 original frames containing the object of interest and the
4 frames extracted after applying the provided masks. In this way, the most similar results for each
query image (the object of interest but also its probably useful background) would be part of the
initial retrieved list letting the user decide which of the results are best to use in order to re-query the
system. The top-100 results are returned for each query image.

The BoW vector is computed online for each query image except for the case where the query is
a video keyframe (i.e. the BoW vector is already stored in the index). The ranking lists returned for
all query images are finally fused in order to display the retrieval results to the user. For the frames
appearing in more than one ranking lists, we keep the maximum score (i.e. Borda count) and discard
the others (MQ-Max method [28]).

In order to boost the final accuracy, the user is prompted to expand the visual search by using
any number of “relevant images” from the initial ranking list. The user could use the whole images or
could crop the depicting object of interest. In the first case, the retrieval is significantly faster (since
the BoW vectors of the video frames are already computed and stored in the index), while in the
second case, the computation of the BoW vectors for the cropped queries is performed online and the
retrieval process requires more time to complete.

4.2.2 High Level Visual Concept Retrieval

This module facilitates search by indexing the video shots based on high level visual concept infor-
mation, such as water, aircraft, landscape and crowd. The concepts that are incorporated into the
system are the 346 concepts studied in the TRECVID 2014 SIN task using the techniques and the
algorithms described in detail in [7] Section 2 (Semantic Indexing).

4.3 Instance Search Task Results

We submitted three runs to the interactive INS task. In our first submission (I_A_ITI_.CERTH_2), the
baseline BoW model described above was utilized. In the second submission (I_A_ITI_.CERTH_3), we
examined the impact of employing a saliency detection algorithm [29] before the feature extraction and
the visual vocabulary construction on the retrieval results. Finally, our third run (I_A_ITT_CERTH_1)
includes the results from the simple late fusion of the two aforementioned submissions (two different
modalities). The two modalities run in parallel for each query and their results are fused using the
MQ-Max method.

?https://lucene.apache.org/core/



According to the TRECVID guidelines the time duration for each run was set to fifteen minutes.
Regarding the users that participated in INS runs, eight users were engaged in total. Although the
educational and age profile of the users is similar, their experience with similar systems differs (e.g
some users were expert users while others were moderate users). The mean average precision as well
the recall for all runs are illustrated in Table 4 along with the results from our last year’s participation.

Table 4: Evaluation of instance search task results.

Run IDs Mean Average Precision Recall

T AITI.CERTH_1 0.064 831/8817
I A ITI.CERTH_2 0.053 651/8817
I_AITI.CERTH_3 0.046 525/8817
I_NO_ITI_CERTH-1 (INS 2014) 0.032 532/9336
INOITI_.CERTH_2 (INS 2014) 0.028 315/9336

Based on the first three rows of table 4, we can conclude that despite the fact that the saliency-
based BoW model performed worse than the baseline BoW model, their fusion resulted in higher
Mean Average Precision and Recall values which suggests that the study of the video frames’ saliency
can benefit the system’s retrieval performance at least for some objects. Comparing this year’s results
with the ones obtained from the 2014 submissions, it can be reported that the BoW representation
seems to work better than VLAD for the INS task. Even though the efficiency of our system is still
low compared to the other competing systems, it should be noted that we increased our system’s
performance considerably.

5 Surveillance Event Detection

5.1 Objective of the Submission

Surveillance Event Detection (SED) task addresses the case where observations of specific events
need to be detected in a collection of surveillance video data files. The interactive event detec-
tion task involves human interaction with the built system, though, for no more than 25 minutes.
TRECVID iSED 2015 provides approximately 100-hour videos for development (2008 DevSet and
EvalSet, Gatwick data) and a 9 hour subset of the multi-camera data for the main evaluation. A
new Group Dynamic Subset (SUB15) using only 2 hours of this video and limited to the Embrace,
PeopleMeet and PeopleSplitUp events is also introduced this year.

Since this is the first ITI-CERTH’s participation to the iSED task, we aimed at building a generic
system for the detection of events involving solely people. Therefore, we took under consideration a
subset of five (out of seven) events of interest and only one run was submitted.

5.2 System Overview

The interface developed for the Interactive SED task shown in Fig. 4, allows the user to detect visual
events that would be important for airport security management. The user selects the event of interest
from the drop-down list placed at the upper left corner of the screen and the system instantly returns
a list of video segments that are more possible to meet the event’s definition. The interface makes use
of the HTML5 wideo tag and its feature that allows playing a certain video segment. When the user
hovers a video appeared in the results returned, the specific video segment is being looped. Thus, the
user can easily evaluate if the particular video segment belongs to the event that needs to be detected.
Two options are given for each video during the manual annotation, an option for indicating the right
detections (check symbol at the upper right corner of each video segment) and a second one for noting
the false alarms (x symbol at the upper left corner of each video segment). When the user finishes
with the evaluation, he submits the results he previously marked as correct detections by clicking on
the corresponding button (upper right corner of the screen).
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Figure 4: User interface for the SED task.

5.2.1 Surveillance Event Detection System

A generic event detection system targeting on a subset of 5 events of interest, i.e. PersonRuns,
PeopleMeet, PeopleSplitUp, Embrace and Pointing, was designed. The events involving a single
person plus an object (i.e. CellToEar and ObjectPut) are considered more challenging and we intend
to incorporate them to our system in a future version.

Our interactive surveillance event detection system is based on the following three steps [30]:

1. Low-level feature extraction, which is performed by using Motion Boundary Activity Areas
(MBAA) to sample dense trajectories and represented with HOG/HOF descriptors.

2. Applying Gaussian Mixture Model (GMM) on the computed training descriptors, as an inter-
mediate representation level, for the construction of a thorough visual vocabulary and Fisher
encoding to represent each activity.

3. High level representation with the use of linear SVMs for event learning and classification.

Our activity detection system entails two separate stages. One offline that is used to build a
discriminative visual vocabulary and linear SVM models from the training videos and one online that
uses our detection algorithm to localize in a spatio-temporal manner the desired activities inside the
test videos.

The first offline/training stage, uses Motion Boundary Activity Areas in the videos of the train-
ing set in order to sample trajectory points inside them and build dense trajectories [31] over them.
HOGHOF [32] descriptors are then extracted around the trajectory points in order to capture ap-
pearance and motion information and concatenated in a common spatio-temporal descriptor in order
to form the action descriptor. Trajectory coordinates are also concatenated to the vector to include
global spatial information in the final descriptor, as proposed in [30]. A visual vocabulary is subse-
quently constructed by using a Gaussian Mixture Model (GMM) with 64 clusters and Fisher vector
encoding framework is deployed in order to characterize each video segment. Finally, the 5 considered
event models are learned by 5 linear SVMs. Training data from cameras 1,2,3 and 5 were used in this
offline stage to build the event models (the videos of CAM4 were discarded since they contain a very
limited number of events).

In the online/testing stage, a 50-frame sliding window traverses every video sequence of the test
set with a temporal step of 15 frames in order to process all video content and detect the specified
events of interest.

The overall process is depicted in Fig. 5.
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Figure 5: Block diagram of the surveillance event detection system.

5.3 Interactive Surveillance Event Detection (iSED) Results

As already reported, we submitted one run to the iSED 2015 task. Two users participated in the
official run which was performed on a 64-bit Windows PC with Intel Core i7 3.50 GHz and 32 GB
RAM. The performance of our generic system is reported in Table 5. As it can be seen from the
results, we achieved the 2nd best performance in three out of five events, i.e. PeopleMeet, PersonRuns
and Pointing. Even though the efficiency of our system is not optimal yet, we believe that it has the
potential to develop in order to become more competitive.

Table 5: The Actual DCR and Minimum DCR of the 2015 interactive result.

Event Rank | ADCR | MDCR | #CorDet | #FA | #Miss
Embrace 3 0.9855 | 0.9855 2 0 136
PeopleMeet 2 0.9990 | 0.9984 1 5 255
PeopleSplitUp 3 0.9868 | 0.9868 2 0 150
PersonRuns 2 0.9834 | 0.9823 1 6 49
Pointing 2 1.0054 | 1.0006 3 16 791

6 Conclusions

In this paper we reported the ITI-CERTH framework for the TRECVID 2015 evaluation [8]. ITI-
CERTH participated in the SIN, MED, INS and SED tasks in order to evaluate new techniques and
algorithms. Regarding the SIN task, the combination of visual DCNN-based descriptors with local
descriptors significantly improved our TRECVID 2014 SIN results. Furthermore, Multi-task learning
seems to be an important direction that can further improve concept detection accuracy. Concerning
the MED task, a new algorithm, combining discriminant analysis and LSVMs (KSDA+LSVM) was
evaluated, providing very good performance in terms of both accuracy and training time. Our run
based on KSDA+LSVM that uses all the features presented in Section 3.2.2 (run c-1KDALSVM)
achieved mInfAP@200 equal to 0.4111, which is the second-best result among all participants’ runs
validated on the MED15-EvalSub set. As far as INS task is concerned, the results reported were
significantly better than last year results but there is still a lot of room for improvement in order for
the system to become competitive against the other systems. The most important conclusions from
this year runs was that the BoW model is more suitable for the INS task than VLAD encoding and



that saliency detection can be exploited in order to boost the retrieval performance. Finally, with
respect to the SED task, despite the fact that this is our first participation to the task, we achieved
satisfactory results which inspire us to continue evolving our system.
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