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Abstract—In this letter, linear subclass support vector ma-
chines (LSSVMs) are proposed that can efficiently learn a piece-
wise linear decision function for binary classification problems.
This is achieved using a nongaussianity criterion to derive the
subclass structure of the data, and a new formulation of the opti-
mization problem that exploits the subclass information. LSSVMs
provide low computation cost during training and evaluation, and
offer competitive recognition performance in comparison to other
popular SVM-based algorithms. Experimental results on various
datasets confirm the advantages of LSSVMs.

Index Terms—Support vector machines, subclasses, mixture of
Gaussians, pattern recognition, classification, machine learning.

I. I NTRODUCTION

Binary pattern classifiers, based on ensembles of linear
support vector machines (LSVMs) [1], are recently receiv-
ing increasing attention due to some important advantages
they offer over kernel SVMs (KSVMs) [2], [3]: a) faster
training and testing times, and, b) competitive or superior
classification performance. These methods employ a clustering
algorithm to divide the feature space into several partitions
and train a number of LSVMs in order to derive a piecewise
linear decision function. The existing work in this area can
be roughly divided into two major categories: a) Mixture
of LSVM experts (MixLSVM) [2] utilize a gating network
to provide a soft partition of the feature space, and for
each partition an LSVM is used to learn the hyperplane
that separates the positive from the negative samples of the
partition. The gating network is then used to implicitly select
the appropriate LSVM expert for classifying an unlabelled
sample. b) Subclass-based approaches [3] divide each class to
a number of subclasses (i.e., in contrary to MixLSVMs, each
partition contains samples of only one class) and train one
LSVM for each subclass, to derive a hyperplane separating the
samples of a specific subclass from the samples in one or more
other subclasses. During evaluation an appropriate framework,
e.g. error correcting output codes (ECOC) [3], [4], is usually
applied to combine the results of the binary classifiers for
classifying a test sample.
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To the best of our knowledge, the approaches presented until
now in the literature break the multi-subclass problem into
multiple independent binary subclass problems and train one
LSVM for each problem. However, this yields binary classi-
fiers that may not generalize well, since correlations between
different subclasses are not adequately captured [5]. Moreover,
most of the approaches combining binary LSVMs to solve
multi-subclass binary problems do not provide an adequate
theoretical analysis on their generalization properties. These
issues can be addressed using multiclass SVMs (MSVMs)
that naturally extent the concept of margin considering all
data in a single constrained optimization problem (see for
instance [5], [6] and the many references therein). However,
a naive application of MSVMs directly in the derived sub-
classes will compute the parameters that enforce separability
between every pair of subclasses, including subclasses of the
same class. This will cause an unnecessary increase in the
computational cost of the algorithm, and may additionally
degrade the classification accuracy. To this end, inspired from
similar approaches in discriminant analysis [7], we propose
a new formulation of the optimization problem, that extends
the MSVM formulation, so that only those hyperplanes that
separate subclasses of different classes are computed. We
refer to this new method as linear subclass SVMs (LSSVMs).
For the efficient implementation of LSSVMs we exploit the
sequential dual method (SDM) described in [8]. Moreover,
we introduce a new nongaussianity measure for subclass
partitioning, and exploit an ECOC framework for combining
the binary subclass classifiers.

The rest of the paper is organized as follows: in section
II the proposed approach is described, while in section III
the performance of LSSVMs is evaluated using one artificial
dataset and eleven publicly available datasets. Finally, conclu-
sions are drawn in section IV.

II. L INEAR SUBCLASS SUPPORT VECTOR MACHINES

A. Problem formulation

Let U = {(x̄κ, (yκ, uκ)), κ = 1, . . . , N} be a subclass
partition of an annotated dataset consisting ofN training
samples, wherēxκ ∈ RF is the feature vector representation
of theκ-th sample (F is the feature vector length),yκ ∈ [1, 2]
anduκ ∈ [1,Hyκ

] are the class and subclass labels ofx̄κ, Hi is
the number of subclasses of thei-th class, andH =

∑2
i=1 Hi

is the total number of subclasses. MSVMs can effectively
utilize the subclass information considering all data in one
optimization problem [1], [5], [6]. For instance, the method
of [5] will yield the following formulation

JP (w, ξ) =
1
2

2∑

i=1

Hi∑

j=1

‖wi,j‖2 + C
N∑

κ=1

ξκ , (1)
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subjectto the constraints

(wyκ,uκ −wi,j)T xκ ≥ eκ,i,j − ξκ, ∀κ, i, j (2)

wherewi,j = [w̄T
i,j , bi,j ]T contains the weight vector̄wi,j ∈

RF and biasbi,j ∈ R referring to (i, j) subclass;xκ =
[x̄T

κ , 1]T , ξκ ≥ 0 is the slack variable corresponding to theκ-th
sample,C > 0 is the penalty term, andeκ,i,j = 1− δκ,i,j . In
the latter,δκ,i,j is the subclass indicator function, i.e.,δκ,i,j =
1 if (yκ, uκ) = (i, j), δκ,i,j = 0 otherwise. The number
of constraints in this formulation is

∑N
κ=1

∑2
i=1 Hi = NH.

However, the use of constraints that enforce separability be-
tween subclasses of the same class increases the computational
complexity without necessarily improving the classification
performance. In LSSVM, we extend the MSVM formulation
so that only the constraints that involve subclasses of different
classes are accounted in the optimization problem. Thus, we
seek to optimize (1) subject to the following set of constraints:

cκ,i,j = (wyκ,uκ −wi,j)T xκ − eκ,i,j + ξκ ≥ 0,
∀κ, (i 6= yκ, j) ∨ (i, j) = (yκ, uκ). (3)

It can be seen that LSSVMs require
∑2

i=1 Hi − Hyκ + 1
constraints for theκ-th training sample, and the total number
of constraints isJ =

∑N
κ=1(

∑2
i=1 Hi−Hyκ + 1) = N1H2 +

N2H1+N . Therefore, LSSVMs haveN1H1+N2H2−N fewer
constraints compared to MSVMs. The number of constraints
controls the number of Lagrange multipliers in the Lagrangian
formulation, which in turn determines the complexity of
the quadratic problem for identifying the parameters of the
decision functions. This reveals a significant advantage of the
LSSVM over naive application of MSVMs using subclasses:
LSSVMs have much lower computational cost during training.

B. Computation of the LSSVM parameters

The primal Lagrangian of the LSSVMs can be formed using
the equality constraints

LP (w, ξ) =
1
2

2∑

i=1

Hi∑

j=1

‖wi,j‖2 + C
N∑

κ=1

ξκ

+
N∑

κ=1

2∑

i=1

Hi∑

j=1

%κ,i,j [(wi,j −wyκ,uκ
)T xκ + eκ,i,j − ξκ],

(4)
where,%κ,i,j , ∀κ, i, j, is the set of dual variables for the set
of constraints in (3), andeκ,yκ,j = %κ,yκ,j = 0, ∀κ, j 6= uκ

are dummy variables introduced for notational convenience.
For the primal problem above the Karush-Kuhn-Tucker

(KKT) conditions may be stated:∂LP

∂ξm
= 0, ∂LP

∂wm,n
=

0, cκ,i,j ≥ 0, %κ,i,j ≥ 0, %κ,i,j cκ,i,j = 0. Evaluating the
equality constraints above we get

C =
2∑

i=1

Hi∑

j=1

%κ,m,n. (5)

wm,n =
N∑

κ=1

(Cδκ,m,n − %κ,m,n)xκ , (6)

Substituting (5), (6), back to (4), and definingακ,i,j =
(Cδκ,i,j − %κ,i,j) as the new dual variable we get the dual

formulation of the Lagrangian

LD(α) = −1
2

2∑

i=1

Hi∑

j=1

‖wi,j‖2 − CeT α, (7)

where, wi,j =
∑N

κ=1 ακ,i,jxκ is the weight vector ex-
pressed via the dual variables,e = [eT

1 , . . . , eT
N ]T , α =

[αT
1 , . . . , αT

N ]T , e, α ∈ RJ are block vectors whoseκ-th
blocks areeκ = [eκ,yκ,uκ , eκ,ỹκ,1, . . . , eκ,ỹκ,Hỹκ

]T , ακ =
[ακ,yκ,uκ , ακ,ỹκ,1, . . . , ακ,ỹκ,Hỹκ

]T , eκ, ακ ∈ RJyκ , Jyκ =
1 + Hỹκ , and, ỹκ is 1 for yκ = 2 and 2 for yκ = 1. That
is, theκ-th block contains the variables associated with theκ-
th sample excluding the dummy variableseκ,yκ,j = ακ,yκ,j =
0,∀j 6= uκ. Consequently, exploiting the KKT conditions the
dual optimization problem can now be stated as

min
α

− LD(α) subject to

{
α ≤ C,

1T α = 0,
(8)

where, 1 ∈ RJ is a vector of ones andC =
[CT

1 , . . . ,CT
N ]T is a block vector whoseκ-th block Cκ =

[Cκ,yκ,uκ , Cκ,ỹκ,1, . . . , Cκ,ỹκ,Hỹκ
]T contains the penalty terms

associated with theκ-th sample given byCκ,i,j = δκ,i,jC.
This optimization problem is quadratic in terms ofα with
linear constraints and therefore it can be solved using an
appropriate technique. Here we extend the sequential dual
method (SDM) presented in [8] to derive an efficient sequential
derivation of the LSSVM dual variables. This algorithm uses
the gradient information to optimize the dual variables and
the weight vector in a sequential manner. At each iteration
an additive updateδακ is computed for updating the dual
variables of the block vectorακ and the weight vectorswi,j ,
solving the following reduced optimization problem

min
δακ

1
2
Aκ‖δακ‖2 + gT

κ δακ subject to

{
δακ ≤ Cκ

1T
κ δακ = 0,

(9)
where, Aκ = ‖xκ‖2, 1κ is a vector of the same
length with ακ and with all elements equal to1, gκ =
[gκ,yκ,uκ , gκ,ỹκ,1, . . . , gκ,ỹκ,Hỹκ

]T , and gκ,i,j is the gradient
of (7) with respect to the dual variableακ,i,j given by

gκ,i,j = wT
i,jxκ + eκ,i,j . (10)

Optimality of ακ is checked using the quantityυκ =
ĝκ − ǧκ, where ĝκ = argmaxi,j gκ,i,j and ǧκ =
argmini,j:ακ,i,j<Cκ,i,j

gκ,i,j . That is, we consider that the
dual variables have converged to their optimal values when
υκ < ε, ∀κ, where ε is a positive tolerance parameter. The
overall procedure is described in Algorithm 1.

C. Classification

In MSVM formulations a test samplext is classified
to one of the subclasses usually according to the rule
argmaxi,j wT

i,jxt. This procedure is similar to the one-versus-
all classifier in multiclass problems. In contrast to this, we
use the results of the LSSVM to construct the separating
hyperplanes between the different subclasses, similarly to [9].
The advantage of the latter approach is that an appropriate
framework can be exploited to combine the derived binary
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Algorithm 1 LSSVM training
Input: Annotated datasetX, penaltyC
Output: α, wi,j , ∀i, j
1: Initialize: α = [0, . . . , 0]T , wi,j = [0, . . . , 0]T , ∀i, j
2: repeat
3: for κ = 1 to N do
4: Computegκ, υκ (10)
5: if υκ ≥ ε then
6: Computeδακ (9); ακ ← ακ + δακ

7: wi,j ← wi,j + δακ,i,jxκ, ∀(i 6= yκ, j) ∨ (i, j) = (yκ, uκ)
8: end if
9: end for

10: until υκ < ε, ∀κ

classifiers,as explained in the following. The hyperplane
ηp,q that separates subclassX1,p and X2,q is defined as
ηp,q = w1,p − w2,q, (p ∈ [1,H1], q ∈ [1,H2]). Hence, the
respective binary subclass classifier

gp,q(xt) = sign[(w1,p −w2,q)T xt] = sign(ηT
p,qxt) (11)

assigns the test sample toX1,p if gp,q(xt) > 0 and to
X2,q otherwise. The binary subclass classifiers can then be
combined to a binary classifier using a subclass ternary
error correcting output code (ECOC) framework [3]. In our
case, the ternary coding matrixM ∈ {1, 0,−1}H×H1H2

is defined so that the rows represent the subclasses,
(1, 1), . . . , (1,H1), (2, 1), . . . , (2,H2), and the columns rep-
resent the LSSVM decision functions,g1,1, . . . , gH1,H2 . That
is, each column corresponds to a distinct subclass pair
{(1, p), (2, q)}, and for such a column,M has +1 in row
corresponding to subclass(1, p), −1 to the row corresponding
to subclass(2, q), and zeros in all other rows. This simulates a
one-versus-one subclass coding design, where the subclasses
belong to different classes. For classifying an unlabelled
samplext, we use the linear loss-weighted (LLW) decoding
strategy on the output of the binary subclass classifiers [4]

LLW ((i, j),xt) =
H1∑
p=1

H2∑
q=1

−Mp,q
i,j gp,q(xt)M̃

p,q
i,j , (12)

whereMp,q
i,j , M̃p,q

i,j are the elements of the coding and weight-
ing matrix [4], respectively, that correspond to the(i, j)
subclass and the hyperplane that separates the subclasses(1, p)
and(2, q). Then, the test sample is classified according to the
rule argmini,jLLW ((i, j),xt).

D. Subclass partitioning

In the above, we exploit a partitioning of the data to
subclasses. Assuming that the data have a Gaussian subclass
structure, we use an iterative algorithm to derive this subclass
division. Starting from the initial class partition (i.e.H = 2),
at each iteration we increase the number of subclasses of thek-
th class according to the following rulek = argmaxi=1,2(Φi),
where Φi measures the nongaussianity of thei-th class.
Exploiting the work in [10] we define this measure as

Φi =
Hi∑

j=1

(
Ni,j β̂i,j

6
+ | γ̂i,j − F (F + 2)√

8F (F + 2)/Ni,j

|
)

, (13)

where F is the dimensionality of the feature vectors. The
quantities β̂i,j , γ̂i,j above are estimates of the multivariate

Fig. 1. Artificial dataset with a linearly separable subclass structure.

skewness and kurtosis of the(i, j) subclass respectively,
computed as follows

β̂i,j =
1

N2

Ni,j∑
κ=1

Ni,j∑
ν=1

[(x̄κ − µ̂i,j)
T Σ̂−1

i,j (x̄ν − µ̂i,j)]
3 (14)

γ̂i,j =
1
N

Ni,j∑
κ=1

[(x̄κ − µ̂i,j)
T Σ̂−1

i,j (x̄κ − µ̂i,j)]
2 (15)

whereNi,j , µ̂i,j = 1
Ni,j

∑Ni,j

κ=1 x̄κ, Σ̂i,j = 1
Ni,j

∑Ni,j

κ=1(x̄κ −
µ̂i,j)(x̄κ − µ̂i,j)T are the number of samples, the sample
mean and the sample covariance matrix of(i, j) subclass,
and the summands above are over the samplesx̄κ, x̄ν that
belong to the(i, j) subclass, i.e. the labels of the samples are
(yν , uν) = (yκ, uκ) = (i, j). It has been shown in [10] that
for large Ni,j , the quantitiesNi,j β̂i,j/6 and (γ̂i,j − F (F +
2))/

√
8F (F + 2)/Ni,j follow a chi-square distribution with

F (F +1)(F +2)/6 degrees of freedom and a standard normal
distributionN (0, 1) respectively. Consequently,Φi defined in
(13) expresses the departure of thei-th class distribution from
a multivariate Gaussian mixture.

Using the iterative procedure described above, the best par-
tition is selected using either cross-validation, i.e., we repeat
the splitting procedure until a maximum number of subclasses
is reached and then select the partition that provides the best
empirical recognition rate, or by inspecting the convergence of
a total nongaussianity measureΦ = Φ1 +Φ2 to a steady-state
solution. We used the former approach in our experiments.

III. E XPERIMENTAL RESULTS

A. Artificial dataset

A classification example with two non-linearly separable
classesX1,X2 is depicted in Figure 1.X1 consists of two
Gaussian subclassesX1,1,X1,2, whereasX2 is a single Gaus-
sian X2,1. In contrary to the main classes, this dataset has
a linearly separable subclass structure. From each subclass
distribution 300 samples were randomly drawn to form the
artificial dataset. The subclass partitioning (II-D) and the
LSSVM algorithm were then applied, correctly identifying the
subclass structure of the data and the separating hyperplanes
η1,1, η2,1. For comparison, the hyperplaneηsvm computed
by LSVM does not provide a valid solution for separating the
two classes. At the same time, LSSVM avoids the unnecessary
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computationsfor estimating the hyperplane that separates
subclassesX1,1 andX1,2, which MSVM would perform.

B. UCI and Delve datasets

We compare the performance of LSSVM with LSVM,
KSVM with radial basis function (RBF) kernel [1], MLSVM
[5], MixLSVM [2] and subclass ECOC (SECOC) [3], using
11 datasets from the UCI [11] and Delve [12] repositories:
WDBC, Ionosphere, Breast Cancer, Pima, German, Heart,
Splice, Titanic, and Monk-1,-2,-3. For the evaluation of the
algorithms, a division of the datasets to training and test
sets is necessary. This already exists for the Monk sets. For
Ionosphere, similarly to other works, we use the first 200
samples for training and the rest 151 as testing instances,
while, for WDBC we created a random50–50 train–test
split. For the Breast Cancer, Pima, German, Heart, Splice
and Titanic datasets we used 10 random partitions for each
dataset from the Gunnar Rätsch’s benchmark collection [13].
The recognition performance of a method regarding a dataset
is measured using the average correct recognition rate (CCR)
along all the partitions. Moreover, for assessing the statistical
significance of the difference in the performance between any
two algorithms, we used the McNemar’s hypothesis test [14].

For the experiments, LSSVM and MixLSVM were imple-
mented in Matlab, while for LSVM, KSVM, MSVM and the
base classifiers of SECOC, the libsvm [15] or the liblinear
[16] packages were used. In SECOC, for fair comparison with
LSSVM, we used LSVMs as base classifiers and the LLW
strategy for classifying a test sample. In the stage of model
selection, for LSVM we need to estimate the penalty term
C, while for KSVM and LSSVM we additionally optimize
over the scale parameterσ of the RBF function [1] and the
number of subclassesH, respectively. Three parameters are
optimized for MixLSVM, i.e,C, H and the scale parameter
τ of the gating function [2]. Finally, in SECOC we search for
the optimal values of the three splitting criteria (θsize, θperf

andθimpr) [3] and the penalty termC of the base classifiers.
The optimal parameters for each method are selected through
a grid search strategy where the primary metric is the CCR.

The evaluation results are presented in Table I. We can
see that LSSVM provides top recognition rate in 8 out of
the 11 datasets. Using the McNemar’s test with significance
level 0.025 we verified that the differences in performance
between LSSVM and MSVM are statistically significant in 8
of the datasets; and similarly in 7 of the datasets for the differ-
ences between LSSVM and MixLSVM, and between LSSVM
and SECOC. We experimentally verified that the training of
LSSVM is much faster than MixLSVM (on average, 25 times
faster) mainly due to the slow convergence of the expectation
maximization-based MixLSVM, and because LSSVM requires
the optimization of fewer training parameters; similarly, we
expect the training stage of LSSVM to be faster than SECOC,
due to the lower number of parameters that need to be
optimized. The LSSVM training and testing are also less
computationally demanding in comparison to MSVM and
KSVM, due to the lower number of constraints and the absence
of a kernel evaluation step, respectively.

LSVM LSSVM MSVM MixLSVM SECOC KSVM
Monk-1 70.6% 98.8% 94.7% 86.3% 81.7% 86.1%
Monk-2 67.1% 75.5% 74.5% 76.9% 67.3% 81.9%
Monk-3 81% 96.5% 86.6% 96.5% 93% 97%
WDBC 95.8% 96.1% 95.4% 96.1% 96.1% 94.4%
Ionosph. 97.4% 98.7% 95.4% 98% 97.4% 98%
B. Cancer 69.7% 77.9% 72.6% 74.6% 74% 74.7%
Pima 76.9% 79% 75.6% 77.7% 77.9% 77%
German 76.9% 79.7% 74% 76.9% 80.3% 77.9%
Heart 81.7% 85.6% 82.7% 83.7% 83.2% 84.4%
Splice 84.1% 89.6% 88.6% 87.5% 88% 88.4%
Titanic 76.6% 78.6% 76.8% 77.8% 77.6% 78%

TABLE I
CORRECT RECOGNITION RATES.

IV. CONCLUSIONS

In this letter, LSSVMs were proposed that exploit the sub-
class structure of the data to efficiently compute a separating
piecewise linear hyperplane. Experiments on various datasets
demonstrated the effectiveness of LSSVMs.
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