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Abstract—In this letter, linear subclass support vector ma- To the best of our knowledge, the approaches presented until
chines (LSSVMs) are proposed that can efficiently learn a piece- now in the literature break the multi-subclass problem into
wise linear decision function for binary classification problems. multiple independent binary subclass problems and train one

This is achieved using a nongaussianity criterion to derive the R . .
subclass structure of the data, and a new formulation of the opti- LSVM for each problem. However, this yields binary classi-

mization problem that exploits the subclass information. LSSVMs  fiers that may not generalize well, since correlations between
provide low computation cost during training and evaluation, and different subclasses are not adequately captured [5]. Moreover,

offer competitive recognition performance in comparison to other most of the approaches combining binary LSVMs to solve
popular SVM-_based algorithms. Experimental results on various multi-subclass binary problems do not provide an adequate
datasets confirm the advantages of LSSVMs. - . . o .
theoretical analysis on their generalization properties. These

Index Terms—Support vector machines, subclasses, mixture of jssues can be addressed using multiclass SVMs (MSVMs)
Gaussians, pattern recognition, classification, machine leamning. 5+ naturally extent the concept of margin considering all
data in a single constrained optimization problem (see for
instance [5], [6] and the many references therein). However,
a naive application of MSVMs directly in the derived sub-

Binary pattern classifiers, based on ensembles of lineglasses will compute the parameters that enforce separability
support vector machines (LSVMs) [1], are recently receietween every pair of subclasses, including subclasses of the
ing increasing attention due to some important advantaggme class. This will cause an unnecessary increase in the
they offer over kernel SVMs (KSVMs) [2], [3]: a) fastercomputational cost of the algorithm, and may additionally
training and testing times, and, b) competitive or superigiegrade the classification accuracy. To this end, inspired from
classification performance. These methods employ a clusterfigiilar approaches in discriminant analysis [7], we propose
algorithm to divide the feature space into several partitio@snew formulation of the optimization problem, that extends
and train a number of LSVMs in order to derive a piecewidée MSVM formulation, so that only those hyperplanes that
linear decision function. The existing work in this area cageparate subclasses of different classes are computed. We
be roughly divided into two major categories: a) Mixturgefer to this new method as linear subclass SVMs (LSSVMs).
of LSVM experts (MixLSVM) [2] utilize a gating network For the efficient implementation of LSSVMs we exploit the
to provide a soft partition of the feature space, and f@equential dual method (SDM) described in [8]. Moreover,
each partition an LSVM is used to learn the hyperplange introduce a new nongaussianity measure for subclass
that separates the positive from the negative samples of fratitioning, and exploit an ECOC framework for combining
partition. The gating network is then used to implicitly seledhe binary subclass classifiers.
the appropriate LSVM expert for classifying an unlabelled The rest of the paper is organized as follows: in section
sample. b) Subclass-based approaches [3] divide each cladé b€ proposed approach is described, while in section IlI
a number of subclasses (i.e., in contrary to MixLSVMs, eadhe performance of LSSVMs is evaluated using one artificial
partition contains samples of only one class) and train of@taset and eleven publicly available datasets. Finally, conclu-
LSVM for each subclass, to derive a hyperplane separating §iens are drawn in section IV.
samples of a specific subclass from the samples in one or more
other subclasses. During evaluation an appropriate framework, .
e.g. error correcting output codes (ECOC) [3], [4], is usualfy- Problem formulation
applied to combine the results of the binary classifiers forLet U = {(X«, (yx,ux)), & = 1,...,N} be a subclass
classifying a test sample. partition of an annotated dataset consisting Méf training

samples, wher&,. € R” is the feature vector representation
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subjectto the constraints formulation of the Lagrangian

w —wi ) X > i — &y VR, 2 2 H

( Yr Uk ’L,]) K .KZ,’L,] £K7 . ) 7;7 ( ) ED(a) _ 71 Z Z ||W7J,]||2 o CeTa7 (7)
wherew; ; = [W/;,b; ;]7 contains the weight vecto,; ; 204
RF and biasb; ; € R referring to (i,5) subclass;x, = N ) ]
%7, 1]7, €, > 0is the slack variable corresponding to then  Where, wi; = 3 ., axi ;X is the %/ve|ght TV(;CtOl‘ ex-
sample,C' > 0 is the penalty term, and,; ; =1 —d,; ;. In preTssed via Tthe dual vagablee, = lei,...epl’, a =
the latter,d,, ; ; is the subclass indicator function, i.6,;,; = [®1:---»@n]', e;a € R7 are block vectors \;vhose;-th
1 if (ye,us) = (4,7), 0si; = 0 otherwise. The number blocks aree, = [ewmumemﬂ?l»--wemﬂmng] » Qe =
of constraints in this formulation 2N | Y2 H, = NH. [@rueuc Crgets- - Ongoty, |0 e 0 € RO, Jy, =

However, the use of constraints that enforce separability be® Hu.» and, g, is 1 for y,, = 2 and2 for y, = 1. That
tween subclasses of the same class increases the computatignii€#-th block contains the variables associated withsthe
complexity without necessarily improving the classificatiof’ SamPple excluding the dummy variables,, ; = a.y,,; =
performance. In LSSVM, we extend the MSVM formulatior: ¥/ 7 . Consequently, exploiting the KKT conditions the
so that only the constraints that involve subclasses of differéfft@! OPtimization problem can now be stated as

classes are accounted in the optimization problem. Thus, we . ) a<C,

seek to optimize (1) subject to the following set of constraints: min — £p(a) subject to{ 17a =0, (®)

Cryij = (Wz{mu,c 7YV’L'-,J')7‘1X'K — €nyij + 8k >0, 3) where, 1 e R’ is a vector of ones andC =
Ve, (0 # Yy )V (65) = (Yns ) [CT,...,C%]T is a block vector whose:-th block C,, =

It can be seen that LSSVMs requi@:f:1 H; — H, +1 [C”’W’_W’C""'*ﬂ_ml""’C”’@MH%]T contains the penalty terms
constraints for the:-th training sample, and the total numbefSSociated with thec-th sample given byC'y;; = 0x.i;C.

of constraints is/ — ijﬂ(zz{l Hi— H, +1)= Ny Hy+ ThIS 0pt|m|zat.|on problem is qanratlc in terms af Wltlh

N, H,+N. Therefore, LS_SVMs_hava1H1+N2H2—Nfewer linear c.onstralnts.and therefore it can be solved using an
constraints compared to MSVMs. The number of constrairffPPropriate technique. H.ere we ex'tend the_ ;equentlal d.ual
controls the number of Lagrange multipliers in the Lagrangia{ﬂemm_j (SDM) presented in [8] to ‘?'e“"e an e;fﬂment ;equentlal
formulation, which in turn determines the complexity O]denvatlorj of t_he LSSYM dual v_arl_ables. This a'gof'thm uses
the quadratic problem for identifying the parameters of tH3€ 9radient information to optimize the dual variables and
decision functions. This reveals a significant advantage of tH¢ Weight vector in a sequential manner. At each iteration
LSSVM over naive application of MSVMs using subclasse&! 2dditive updat@a,; is computed for updating the dual

LSSVMs have much lower computational cost during trainin%."’lriables of the block vectar,. and the weight vectorsr; ;,

olving the following reduced optimization problem

B. Computation of the LSSVM parameters min lAanSanHz + gT6a,  subject to { 6%,.; <C,
The primal Lagrangian of the LSSVMs can be formed usiné‘“ 1,00 = 0&9)
the equality constraints where, A, = |x.|? 1. is a vector of the same
1 S ) N length with a,, and with all elements equal to, g, =
Lp(w,&) = S IwisllP+CD> G (Gt s Gresiirls - - - G Hy, ) s @NA g ;5 IS the gradient
[N i=1j=1 k=1 of (7) with respect to the dual variabte, ; ; given by
A3 YD onisl(Wig = Wyw) X+ €nig — Gl Greyij = Wi i Xpe + €pij- (10)
k=1 i=1 j=1

(4) Optimality of «a, is checked using the quantity, =
where, o,.; j, Vr,i,7, is the set of dual variables for the sefix — g, Where g. = argmax;;g..; and g. =
of constraints in (3), an@,.,,. j = On.y.; = 0,VK,j # u, AWML, ;.0 o . grij- That is, we consider that the
are dummy variables introduced for notational conveniencedual variables have converged to their optimal values when
For the primal problem above the Karush-Kuhn-Tuckets < €, Vs, Wheree is a positive tolerance parameter. The

(KKT) conditions may be statedg% = 0, % — overall procedure is described in Algorithm 1.
Oacn,i,j >0, Ok ,i,j >0, Ok,i,j Cm,i,’; = 0. Evalua‘filhng the
equality constraints above we get C. Classification
2 H; In MSVM formulations a test samplex; is classified
C = DY) oxmn (5) to one of the subclasses usually according to the rule
i=1 j=1 argmax; ; w,}fjxt. This procedure is similar to the one-versus-
N all classifier in multiclass problems. In contrast to this, we
Wi = O (COpmmn — Onmin)Xn » (6) use the results of the LSSVM to construct the separating
w=1 hyperplanes between the different subclasses, similarly to [9].
Substituting (5), (6), back to (4), and defining.;; = The advantage of the latter approach is that an appropriate

(Cdwi; — 0x,,;) as the new dual variable we get the dudramework can be exploited to combine the derived binary

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6236010



IEEE Signal Processing Letters, vol. 19, no. 9, pp. 575-578, September 2012. 3

Algorithm 1 LSSVM training w, =007 % =[40;01

} _—
Input: Annotated datset X, penaltyC =12 |7]T z,=140:02
Ooutput: o, w; j, Vi, j by, =00MOT 3, =[43:34]

N
=

1: Initialize: & = [0, ...,0]7, wi; = [0,..., 0], vi, j 15
2: repeat

3: for k =1to N do

4 Computeg,., v, (10) - 10
5 if v, > ethen

6 Computedax,, (9); o «— o + Sy

7 Wi j — Wi+ 00k jXe, V(i Z Yr,J) V (4,7) = (Yn, Ur)

8 end if

9 end for

10: until v, < €, VK

classifiers,as explained in the following. The hyperplane
n,, that separates subclas¥, , and &>, is defined as
np,q = Wip — Wog (p S [1,H1],q S [1,H2]) Hence, the
respective binary subclass classifier skewness and kurtosis of th@,j) subclass respectively,

Gp.q(x¢) = sign[(w1, — wQ,q)Txt] _ Sign(niqxt) (11) computed as follows

assigns the test sample &, if g,,(x;) > 0 and to - 1 _ T . \13
X, , otherwise. The binary sjbclasg qclassifiers can then be Pii = ﬁz Z[(X"‘ —hay) i (R — i g)l” (14)
combined to a binary classifier using a subclass ternary N*"f:? v=t

error correcting output code (ECOC) framework [3]. In our . 1 <= Y NTO—1/o .12
case, the ternary coding matriv e {1,0, —1}*Ht> Virg ;[(X“_“’Vﬂ i (% = i) (15)

is defined so that the rows represent the subclasses, " .
(1,1),...,(1,H1),(2,1),...,(2,H), and the columns rep- where N, ;, fi; ; = A%JZ?;{ Xny Dij = W SN (% —
resent the LSSVM decision functiong, s, ..., gu, 1, That  fu, ) (%, — fu; ;)" are the number of samples, the sample
is, each column corresponds to a distinct subclass pgiean and the sample covariance matrix (afj) subclass,
{(1,p),(2,¢9)}, and for such a columnM has+1 in row and the summands above are over the samplex, that
corresponding to subclags, p), —1 to the row corresponding belong to the(i, j) subclass, i.e. the labels of the samples are
to subclasg2, ¢), and zeros in all other rows. This simulates @&y, u,) = (y.,u.) = (i,5). It has been shown in [10] that
one-versus-one subclass coding design, where the subclagsetarge N; ;, the quantitiequ;,jBiyj/G and (%;; — F(F +
belong to different classes. For classifying an unlabelled)/,/SF(F +2)/N, ; follow a chi-square distribution with
samplex;, we use the linear loss-weighted (LLW) decoding”(F" +1)(F +2)/6 degrees of freedom and a standard normal
strategy on the output of the binary subclass classifiers [4]distribution A'(0, 1) respectively. Consequenti, defined in

Fig. 1. Artificial dataset with a linearly separable subclass structure.

Nij Nij

=|

Hy Ho (13) expresses the departure of thth class distribution from
LLW((i,5),%¢) = Z Z — Mg, q4(x) MDY, (12) @& multivariate Gaussian mixture.
p=1q=1 ’ ’ Using the iterative procedure described above, the best par-

P ) . tition is selected using either cross-validation, i.e., we repeat
where M5, M7 are the elements of the coding and weighye gpjitting procedure until a maximum number of subclasses
ing matrix [4], respectively, that correspond to tHe j) s reached and then select the partition that provides the best
subclass and the hyperplane that separates the subdlasses onirical recognition rate, or by inspecting the convergence of

and(2, ¢). Then, the t'egt sample is classified according to the, ., nongaussianity measube— ®, + ®, to a steady-state
rule argmin; ; LLW ((i, j), %¢). solution. We used the former approach in our experiments.

D. Subclass partitioning I1l. EXPERIMENTAL RESULTS
In the above, we exploit a partitioning of the data tQ\ Artificial dataset

subclasses. Assuming that the data have a Gaussian subclais

structure, we use an iterative algorithm to derive this subclaC %Sscelgis'fﬁa“ign dgxir:aﬂeinwg? J\;\éo 1n)3n-(lzlgﬁgrsl¥s S;p?\/;ible
division. Starting from the initial class partition (i.& = 2), 12 P 9 !

] . . Gaussian subclass X, o, whereasY, is a single Gaus-
at each iteration we increase the number of subclasses bf the’ 851, 412 2 9

th class according to the following rule— argmax,_, (®;), sian X, ;. In contrary to the main classes, this dataset has

. R a linearly separable subclass structure. From each subclass
where ¢; measures the nongaussianity of theh class. distribution 300 samples were randomly drawn to form the
Exploiting the work in [10] we define this measure as P y

artificial dataset. The subclass partitioning (II-D) and the
INyEN Bi i i — F(F +2) LSSVM algorithm were then applied, correctly identifying the
@, =y (NP g Ji ). @3 -
6 SE(F + 2)/N, subclass structure of the data and the separating hyperplanes
! 1.1, My, FOr comparison, the hyperplang,,,, computed
where F' is the dimensionality of the feature vectors. Théy LSVM does not provide a valid solution for separating the
quantities 5; ;, 4;,; above are estimates of the multivariatéwo classes. At the same time, LSSVM avoids the unnecessary

j=1
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. . . LSVM LSSVM MSVM MixLSVM SECOC KSVM
computationsfor estimating the hyperplane that separates—gnct ~06% 938% 947% 863% 817%  86.1%

subclassest; ; and X 5, which MSVM would perform. Monk-2 67.1% 755%  745%  76.9% 67.3% 81.9%
’ ’ Monk-3 81%  965%  86.6%  96.5% 93%  97%
WDBC 95.8% 96.1% 95.4% 96.1% 96.1% 94.4%
lonosph. 97.4% 98.7% 95.4% 98% 97.4% 98%
B. UCI and Delve datasets B. Cancer 69.7% 77.9%  72.6%  74.6% 74% 74.7%
Pima 76.9% 79% 75.6% 77.7% 77.9% 77%
We compare the performance of LSSVM with LSVM, German  76.9% 79.7%  74%  76.9%  80.3%  77.9%
: : . . Heart 81.7% 85.6% 82.7% 83.7% 83.2% 84.4%
KSVM with radial basis function (RBF) kernel [1], MLSVM Splice 841% B9.6% 88.6%  87.5% 86% 88.4%

[5], MixLSVM [2] and subclass ECOC (SECOC) [3], using _Titanic 76.6% 78.6%  76.8%  77.8% 77.6%  78%
11 datasets from the UCI [11] and Delve [12] repositories:
WDBC, lonosphere, Breast Cancer, Pima, German, Heart,
Splice, Titanic, and Monk-1,-2,-3. For the evaluation of the
algorithms, a division of the datasets to training and test
sets is necessary. This already exists for the Monk sets. For
lonosphere, similarly to other works, we use the first 200 IV. CONCLUSIONS
samples for training and the rest 151 as testing instancesln this letter, LSSVMs were proposed that exploit the sub-
while, for WDBC we created a randord0-50 train—test class structure of the data to efficiently compute a separating
split. For the Breast Cancer, Pima, German, Heart, Splipeecewise linear hyperplane. Experiments on various datasets
and Titanic datasets we used 10 random partitions for eatdmonstrated the effectiveness of LSSVMs.
dataset from the Gunnara®&sch’s benchmark collection [13].
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