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Abstract—In this letter, mixture subclass discriminant analysis function J(¥) = % subjectto constraints imposed in

(MSDA) that alleviates two shortcomings of subclass discriminant the properties off, where A, B are metric matrices ani()
analysis (SDA) is proposed. In particular, it is shown that for is the trace of a matrix.

data with Gaussian homoscedastic subclass structure a) SDA
does not guarantee to provide the discriminant subspace that
minimizes the Bayes error, and, b) the sample covariance matrix . S .
can not be used as the minimization metric of the discriminant A. Linear discriminant analysis

analysis stability criterion (DSC). Based on this analysis MSDA | DA seeks directions efficient for class separability. For

modifies the objective function of SDA and utilizes a novel par- : . P .
titioning procedure to aid discrimination of data with Gaussian C Gaussian homoscedastic class distributions, LDA provides

homoscedastic subclass structure. Experimental results confirm the € — 1)'dimens_i0n.a| subspgce that minimizes the Bayes
the improved classification performance of MSDA. error [1]. The objective function of LDA iSJiq.(®) =

%755‘3, definingthe between-class scatter matrix&s=

ZZ.CZI pi(p; — ) (p; —p)T and the within-class scatter matrix
asS,, = 3.7, p;%;, where,N;, &, = N Doex, (X— 1) (x—
n)" pi = Ni/N and p; = 33, 5,x are the number
Linear discriminant analysis (LDA) is one of the most popef samples, the sample covariance matrix, the prior and the
ular techniques in statistical pattern recognition [1]. Howevesample mean of-th class, respectively.
there are three major drawbacks restricting its use: i) The so-
called small sample size problem (SSS) [2], [3], ii) The (com- ) o )
mon) situation that real-world data have heteroscedastic cl&ssRobust linear discriminant analysis
distributions, which violates the fundamental homoscedasticityOne of the major drawbacks of LDA is the so-called
assumption of LDA [3]-[5], and, iii) The instability of the small sample size (SSS) problem, i.e., the situation that the
LDA criterion in cases when the metric to be minimized anflumber of training sampled’ is small compared with their
the metric to be maximized are in “conflict” [6]. Subclasgiimensionality F. In this case the class covariance matrix
discriminant analysis (SDA) [5] overcomes the above limiestimates:; and equivalently the within-class scatter matrix
tations. However, as we show, it presents two shortcomingg are highly unreliable [3]. To alleviate this, taking into
with respect to its use on data with Gaussian homoscedasgfigount thatXy = S, + S,, and that Xx is generally
subclass structure, which may be the case even if the classnore stable estimate tha®,, a robust LDA criterion
distributions are heteroscedastic. In this work, mixture SDRas been proposed, (¥) = %7;13 Consideringthat
(MSDA) is proposed to alleviate the latter shortcomings. tr(TTEx W) = tr(¥TS,¥) + tr(¥TS,¥), J,, (¥) and

‘This letter is organized as follows. Section Il reviews; , ) have the same maximizer according to the following
discriminant analysis (DA) methods and in section Il We,oorem (e.g. see [3)):

present the proposed method. Experiments are reported iRpaorem 2.1:Suppose thatyp € RE, u(vp) > 0,v(ep) >

EDICS Category: IMD-PATT

I. INTRODUCTION

section IV and conclusions are drawn in section V.
0,u(¥) + v(®) > 0. Let hi(w) = “E and hao(yp) =
II. DISCRIMINANT ANALYSIS W% Thenh; (1) has the maximum (including positive

The problem of discriminant analysis can be generallpfinity) at point4 iff h2(¢) has the maximum at the same
stated as follows [1]. Given a training set o¥ labelled POINt
samples/{ = {x;,...,xx} belonging to one ofC classes
{&1,..., X}, find a imgular transformation matrt¥ = ¢ Mixture discriminant analysis
[Yq,...,¥pl,p;, € R, D << F, for mapping theF'- . . o
dimensional samplex onto a D-dimensional discriminant A fundamental assumption of LDA is that class distributions
subspace spanned by the column vector@ofThe transfor- &ré homoscedastic, which is rarely true in practice. A more

mation matrix is usually identified by maximizing the objectivé@liStic strategy is to assume that there exists a subclass
homoscedastic partition of the dafe; 1, . .., Xc u. }, Where
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scattermatrix S is defined as the number of the subclasses referring to thil class is
c H; increased by onerT) = Hf“l) + 1, and, therefore, the
Sbs = D> pig(mi; — ) —mw)", (@) totgl number of subclasses is increased®yi.e., H" =
i=1j=1 ' S2¢  H" = H"=Y 4-C. Each subclass partition is evaluated

using either a leave-one-out-cross-validation based (LOOCV-
based) criterion, or the DSC criterion (3) settidg = S,

c H; —
-, opi i, and p; i, i, are the prior, 2] 9%
szalrﬁé)lgjrﬂégg]anldj sample %gveﬁ;éjncez jrnatrixij subglass andB = X, and the best subclass partition is chosen as the
. pe that optimizes the respective criterion.

respectively. Using theorem 2.1 and considering th
Yx = Sps + Sws, @ more stable criterion can be formed

_ tr(PTS,, W)
Ctr(PTEx W)

the within-subclass scatter matrixS,,s as Sys

IIl. MIXTURE SUBCLASS DISCRIMINANT ANALYSIS

(2) For data with a Gaussian homoscedastic subclass structure
and under stable situations (according to theorem 2.2) we pro-
L . . L pose the following mixture-based subclass objective function

D. Discriminantanalysis stability criterion

T

The discriminant analysis stability criterion (DSC) [6], Tmsda(®) = “(‘PTM . (6)
summarized in Theorem 2.2, has been formulated to detect tr(TTS,, W)
cases where DA does not work. This provides a discriminant subspace that minimizes the

Theorem 2.2.Let Wy = [thy,,.. .,v,bAp} and A, = Bayes error, as can be easily proven by treating the Gaussian
diag(M\,,...,Aa,) be the eigenvector and eigenvalue matrhomoscedastic subclasses as the main classes and constructing
ces of the metricA to be maximized, i.e. A¥ 4 = ¥ 4A 4, linear likelihood classification rules [1].
and,¥p = [¢p,,...,¢¥p |andAp = diag(As,, ..., Ap,) be
the eigenvector and eigenvalue matrices of the m@rio be A shortcomings of SDA

minimized , .e.B¥ 5 = ¥5Ap, Wherep andg are theranks o o show that the SDA objective function (4) proposed

of A andB respectivelya, > --- > Aa,, Ap, = - 2 Ap,, [5] is not equivalent with (6), i.e., SDA does not necessarily
andq > p. Define the discriminant analysis stability criterion_. - - o . o
minimize the Bayes error under the conditions identified at

mda(¥)

mda

1< 1 T the beginning of section Ill. The between-class scatter matrix
O=-> ) (cosbij)?=—3 > (¥i¥5)*>0, 3) canbe rewritten as, = > S0 pipi (s — ) (s —

i=1j=1 i=1j=1 )T, (e.g., see [7]-[9]). Similarly to this, we can express the
wherer < p, and 6, ; is the angle between the eigenvectorbetween-subclass scatter matrix (1) as
1,4, and Yp, . Then if © # 0 the basis vectors given by ¢ H, ¢ H
maximizing the DA criterion will not guarantee to minimize g, — piiea (s — ) (s s — )"
the Bayes error for the given data distribution. ;; kz:; ; R R ’

We should note that a large indicates a severe “conflict” ol e _
between DA metrics. Therefore, the design of algorithm&here,I :{ 1 i &> -We can rewrite the above as

minimizing ® may have a beneficial effect on DA methods. 0w

c
Sps = Z Z Pi,jpi,l(ﬂi,j - ,u'z',l)(/"i,j - Hi,l)T

E. Subclass discriminant analysis e

The between-subclass matrix (1) measures the scatter be- C-1H; C Hy
tween all subclasses. Therefore, the overall solution provided + Z Z Z Zpi,jpk,z(ﬂi,j = bpe) (i — Hk,z)T
by the MDA criterion (2) may be biased towards the directions i=1 j=1k=i+1 =1
minimizing the distance between subclasses of the same class. = Spg, + Spsp » @)
In subclass discriminant analysis (SDA) [5], a more useful
objective function is used to emphasize the separation\é)vI

Eeresbsb (5) is the scatter of means of subclasses between
subclasses belonging to different classes

erent classes (inter-subclass scatter of means)Sangd is

the scatter of means of subclasses within the same classes
_ tr(PTS, W) (intra-subclass scatter of means). Therefore, the sample co-

Jsda(lI’) (4)

C tr(PTEXW) variance matrix can be expressed as
whereS;, in (2) has been replaced B,s,, measuring only 3% = Sis + Sws = Shss + Shew + Sws - (8)
the scatter between subclasses of different classes

Replacing this expression in the optimization criterion of SDA

Cc—-1 H, C Hy,
Sesb = Z Z Z 2pi,jpk,l(ﬂi,j — B ) (B _Hk,z)T . (4), and assuming that(¥S,,, ) > 0 we get
i=1 j=1 k=i+1 I=1 Jsda(‘I’) _ ~ tr(posm\p) ~
(5) tr(TT Sy, ) +tr(¥T Sy, ¥)+tr(BTS,, L)
The optimization of (4) is done using an iterative procedure, = #ﬁpm , (9)
where at ther-th iteration a nearest neighbor based (NN- o -
based) clustering algorithm is used to provide a new subclagsereh(¥) = % is a function that varies indepen-

partition of the data{Xl(fl), . .,Xé’:}{c}. At each iteration dently with .J,,.q4,(¥). Due to this fact, theorem 2.1 can not
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be usedto show thatJ,q,(¥) and J,,s4.(¥) have the same

IV. EXPERIMENTS

maximum. Furthermore, according to (8) minimizidtx has A Artificial dataset

the desired effect of minimizin§.,,,, as well as the undesired
effect of minimizingS,,;,. This conclusion is important as it
reveals a second drawback of SDA, i.Ex can not be used
as the minimization metri® in theorem 2.2.

B. Mixture subclass discriminant analysis
Based on the above analysis and according to theorem

objective function

B tr(UT Sy, W)
(U W)
whereXy is definedasXx = Sy« + Sws. The optimization of

/
msda

(¥) (10)

)

An artificial dataset with Gaussian homoscedastic subclass

structure is used to justify the theoretical analysis of the

proposed method (Figure 1). The dataset consists of two
main classes’;, X,, and three subclassgs 1, A; 2, X2 1, i.€.,

the first class consists of two Gaussian subclasses, whereas

‘%

we further propose the following robust mixture SDA (MSDA)E

¢ second class is a single Gaussian. The parameters of
€ Gaussian distributions arg; , = [2 1], g,
6 =37, pyy =[5 0]7, By = By = By =

[1 0.7; 0.7 1]. The true subclass labelling of the data
is directly used, and LDA, SDA, and MSDA are applied to
derive the one dimensional projection that maximizes their
objective function. We should note that, in this example, re-

(6) or (10) is performed using an iterative procedure Similg.overing another 2D subspace would be useless, as this would

to SDA, and each subclass partition is evaluated using e

LOOCV-based criterion or the DSC criterion (3) settiAg=
Spsp aNdB =S,

ult in the same computational complexity and classification
error as the original space. The derived projection directions,

Yrpas Yspa and Y ,,6p4, are shown in Figure 1. As ex-

Moreover, in contrary to SDA, at each iteration a Speciﬁeected, LDA does not recover the optimal projection as the first

class is selected and only the number of subclasses of {HiRs
class is increased by one, i.e., only one additional subclas¢

s consists of two separate Gaussian distributions. Although
hg data have a clear subclass homoscedastic structure, SDA

introduced at each iteratiod(") = H("~1) 11). The selection also fails to provide the optimal projection. On the other

of the class to be re-partitioned is done using a nongaussiarﬂ

criterion based on the skewness and kurtosis. Estimates of
standardized skewness and kurtosis of Afyg subclass along
the k-th dimension can be computed as follows,

1 3
N7 apes, Tk = Hijk)"
Oijk
settingn = 3 andn = 4 respectively, wherer; is the

k-th element of samples, and p; ; «,0; . are the sample
mean and standard deviation &f ; subclass along thé-th

dimension. Then, an estimate of the skewmf,‘%%and kurtosis

(n) _
ik =

11)

)

7%) of the &; ; subclass can be obtained by averaging along

all dimensions

F F

(3) (4)
Z i35, Z ik
k=1 k=1

where|3| denotes absolute value gf Skewness and kurtosis
measure the deviation of a probability density from the Ga

@ _ 1

@ 1
Tig TR

Yij = F -3/,

k| ’ (12)

tively, and their estimates in (12) will be zeroAf; ; subclass

has a Gaussian distribution, and deviate from zero the mQre

the subclass distribution deviates from a Gaussian distributi
Thus, a measure of nongaussianity &f; subclass can be

defined as®; ; = %.(3.) + %(j;j) and similarly a measure of

nongaussianity oft; class with respect to its subclasses cafjnich is clearly wrong.

be defined as
1 & 1 &
3 4
=D P =g 00 ) @)
j=1 j=1

Thereforeatther-th iteration<I>Z(.r) is computed for each class,

5

@pd, using (10) MSDA correctly identifies the projection that
migimizes the Bayes error.

Fig. 1. Artificial dataset with Gaussian homoscedastic subclass distributions.

In a second experiment with the same data, we evaluate

. i USVo different formulations of the DSC criterion, denotéxg
sian density in terms of asymmetry and peakedness respecs o

. In the former, the minimization metriB is set to

B = Xx as in [5], while in the latter the within-subclass
atter matrix is used (B= S.,s). The NN-based algorithm

is applied to partition each class tb subclasses, where
L € [1,5]. Table | shows tha®yx is minimized forL =1, i.e.,
this criterion suggests to preserve the original class structure,
In contrary®.,s is minimized for

L = 2, which provides a better subclass division. This shows
that formulating the DSC criterion usinB = S,,s (MSDA
algorithm) instead ofB ¥x (SDA algorithm) is more
effective for selecting the suitable subclass division.

and the classt), to be re-partitioned is selected according t@. Real-life datasets

the following rule

Y= argmax(q)ET)) ) (14)
i=1,...,C

A subset of the MediaMill Challenge dataset is used to eval-
uate the proposed algorithm for event recognition [10]. This
subset consists of 492 shots in total belonging to one of five
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TABLE 1
Classification rates of various methods.

Dataset\, Method PCA DA amiC FS-LDA SDAs MSDA 5 MGMD SDAL MSDA L,
MediaMill 68% (101) | 64.9%(4) | 635%(4) | 63.9%(4) | 67.2%(44) | 68% (46) || 69.5%(27) | 69.3%(35) | 71.4% (23)
Shefield 94.9%(236) | 95.5%(19) | 96.6%(19) | 96.8%(19) | 96% (19) | 97% (21) = 97.2%(31) | 97.6% (24)

TABLE | .
Comparison of the two different formulations of the stability criterion. SamplesD along all CV cycles, are presented in Table II.

In this table we separate MSDA SDA;, and MGMD from
Gf 5 11073 0299 0399 O‘;g 0599 the other met_hods_ to den_ote tha_t t_hey_ require considerably
@;b 5 10=% T50=% Toos 7 1= 096 more processing time during optimization. We should pote
that we do not report results for MGMD on the Sheffield
dataset, because in this dataset the classes consist of only a
few high dimensional samples and MGMD, which requires the
different sport events, namely, baseball, basketball, footbajhversion of class covariance matrices, is severely affected by
golf and soccer. Each shot is represented by a 101-dimensiafgl SSS problem [12]. From these results it is concluded that
model vector, where the-th component of this vector is in MSDAg outperforms SDA and different LDA variants, and

the range[0, 1], expressing the degree of confidence that theat MSDA,, provides the highest classification performance.
k-th concept (out of 101 concepts) is present in the shot [10].
Likewise, the multiview Sheffield (previously UMIST) face V. CONCLUSIONS
database is used to perform experiments for face recognitionn this letter, two shortcomings of SDA have been presented
[11]. This database offers 564 gray-scale cropped facial imaggsd upon their analysis MSDA has been proposed. Experimen-
of 20 individuals. The facial images are scaled to $2& 32  tal results showed the effectiveness of the proposed method.
pixels using bicubic interpolation and then scanned column-
wise to provide 1024-dimensional feature vectors. ACKNOWLEDGMENT
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