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Abstract—Visual sentiment analysis has recently gained at-
tention as an important means of opinion mining, with many
applications. It involves a high level of abstraction and subjec-
tivity, which makes it a challenging task. The most recent works
are based on deep convolutional neural networks, and exploit
transfer learning from other image classification tasks. However,
transferring knowledge from tasks other than image classification
has not been investigated in the literature. Motivated by this, in
this work we examine the potential of transferring knowledge
from several pre-trained networks, some of which are out-of-
domain. We show that by simply concatenating these diverse
feature vectors we construct a rich image representation that can
be used to train a classifier with state of the art performance on
image sentiment analysis. We also evaluate a Mixture of Experts
approach, for learning from this combination of representations,
and highlight its performance advantages. We compare against
the top-performing recently-published methods on four popular
benchmark datasets and report new SOTA results on three of
the four.

I. INTRODUCTION

Visual sentiment analysis refers to the problem of identify-
ing the sentiment conveyed by an image. The term sentiment
may be used to define either the emotion (sad, fear, joy etc.)
or the polarity (positive, negative). The problem has recently
attracted significant attention due to the large-scale use of
images in social media. Images have the power to convey
strong emotions, thus sentiment analysis is an important means
of opinion mining with lots of applications in education, en-
tertainment and open source intelligence [1]. Visual sentiment
analysis is a challenging task because it involves a higher level
of human subjectivity in the classification process than other
image classification tasks. Many factors, such as the subject’s
ethnicity, culture and experiences play an important role to the
sentiment that an image will convey to her or him.

Several image classification methods have recently been
proposed to deal with the sentiment classification problem.
These include training deep convolutional neural networks
from scratch on sentiment-annotated training corpora, or fine-
tuning pre-trained networks, that most commonly have been
originally trained on ImageNet [2]. Many of the published
works focus on experimenting with advanced neural network
architectures, exploiting the principles of visual attention.
However, little emphasis has been given on investigating
the potential of transferring knowledge learned from neural
networks trained on tasks other than image classification. For

this reason, we employ several pre-trained networks, some
of which are trained on out-of-domain datasets and tasks.
We extract their encodings and concatenate them to create a
rich representation. Moreover, a well-known issue in image
sentiment analysis is the large intra-class variance, which is
much larger than in most other image classification tasks.
This motivated us to experiment with a Mixture of Experts
approach, with the hope that multiple experts implicitly par-
titioning and representing different subclasses of the original
classes would be able to tackle this issue more effectively. To
the best of our knowledge, it is the first time a MoE approach
is being investigated for this problem.

Our contribution is:

• To show that combining encodings learned from dif-
ferent architectures, datasets and tasks can generate
rich image representations that enable even simple
classifiers to reach (and even exceed) state of the art
performance on image sentiment classification, and

• To demonstrate that the MoE approach, which im-
plicitly derives appropriate partitions of the feature
space and reduces the intra-class variance for the
classification problem at hand, can lead to further
improved results.

II. RELATED WORK

A. Image sentiment analysis

Early work on visual sentiment analysis focused on utiliz-
ing hand-crafted features, such as color and texture, to train
classifiers. Theoretical and empirical concepts from psychol-
ogy and art theory were exploited in [3] to extract features
and perform emotion classification. The most important early
work was [4], where a large-scale visual sentiment ontology
of adjective-noun pairs (ANPs) was created to serve as a
mid-level representation, with the aim to bridge the “affective
gap” between low-level hand-crafted features and sentiments.
A large but noisy dataset was created by retrieving images
from each ANP from Flickr. A visual concept detector library,
named Sentibank, was then created to detect ANPs in images.

The advent of convolutional neural networks and deep
learning brought superior performance in almost all visual
recognition tasks [5], and shifted the focus to deep-learning-
based approaches. The networks are either trained from scratch
or fine-tuned on pre-trained models. In [6] the authors of
[4] improved on their classifiers previous performance by
employing deep neural nets. Some authors later used transfer978-1-7281-5919-5/20/$31.00 ©2021 European Union
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learning to train networks on the Flickr [4] dataset and then
fine-tune them on other datasets [7] [8]. Others, [9] and [10],
have followed the same approach, but by using networks pre-
trained on ILSVRC/ImageNet [2].

Other works exploit more sophisticated network architec-
tures, such as networks with a residual attention unit [11] or
other attention mechanisms, with the aim to extract more local-
ized information [12] [13]. The authors of [14] proposed a two-
branch convolutional network. The first fully convolutional
branch produces a sentiment map; the second branch utilizes
both the holistic and the localized information to perform
the classification. Others have proposed using off-the-shelf
methods to detect objects [15], or saliency regions [16] and
then fuse the global and local features for performing sentiment
classification. In [17] a semi-supervised approach based on a
teacher-student model was proposed to cope with the lack of
high-quality annotated images for sentiment analysis.

Most recently, methods that investigate the value of image
semantics have been proposed. In [18], typical visual features
are combined with features from a Bayesian network trained
on object semantics and sentiment relations. In [19], off-the-
shelf visual concept detectors and captioning algorithms are
employed to extract descriptive text from the images and then
fuse visual deep-learning-based features with the text features
to train a sentiment classifier.

B. Mixture of Experts

The original formulation of Mixture of Experts (MoE)
was introduced in [20] as a learning procedure involving
several “expert” networks that implicitly learn different subsets
of the training cases. More recently, the concept of MoE
has been applied on several image classification tasks. In
[21] it was shown that applying the MoE method to deep
convolutional neural networks improved the performance on
large-scale image classification tasks. In the architecture of
[21], the first part of the network produces a shared encoding
that is then passed from the experts and the gate. In [22] a
sequential MoE architecture was proposed that can be applied
on standard convolutional networks. Contrary to the previous
work, in this one the individual layers play the role of the
“experts” to dynamically increase the capacity of the network
without a proportional increase in computational complexity.

III. PROPOSED METHOD

Our proposed method is based on transferring knowledge
from 5 different neural networks. These networks have dif-
ferent architectures and are trained on different datasets, some
for problems other than image classification. They were chosen
for use in this study because they perform very well in their
respective domains. A feature vector is extracted from each
network. In the following section, we briefly describe each
network and how each feature vector is extracted. We classify
each feature vector in one of the two categories, either in-
domain for those coming from networks trained on image
classification tasks, or out-of-domain for those coming from
networks trained on other tasks. A summary of the employed
feature vectors can be seen in Table I.

A. In-Domain Feature Vectors

1) EfficientNet features: EfficientNet [23] is a recently
proposed deep convolutional neural network architecture that
achieves state-of-the-art performance on image classification
tasks. EfficientNet offers many variations, from the lightweight
“B0” model with 5.3 million parameters, to the heaviest
“B7” with 66 million parameters. For our work we used the
relatively lightweight “B2” model with 9.2 million parameters.
We used a model pre-trained on the 1000-class ImageNet
dataset. We remove the last fully connected layer, so the
network outputs a 1408-element feature vector, E.

2) Resnet features: Resnet [24] is a family of convolutional
neural networks based on residual blocks, that have shown
state-of-the-art performance in image classification tasks. We
use the 152-layer deep Resnet architecture trained on the
11k-class ImageNet dataset [2] and extract the 2048-element
“pool5” layer as the feature vector, R.

B. Out-of-Domain Feature Vectors

1) YT8M features: The YouTube-8M [25] is the largest
video dataset containing approximately 6 million videos with
a total duration of more than 500.000 hours and labeled with
3862 classes. We use extracted features for every second of
each video. For this initial feature extraction, an Inception
neural network [26] pre-trained on Imagenet [2] is used. The
ReLU activation of the last hidden layer of the network is
given as input to a rather simple CNN. It consists of a 1D
convolutional layer with 64 filters, a max-pooling layer, a
dropout and a Sigmoid of 3862 outputs. The 3862-element
output vector is our feature vector, Y. In contrast to the
EfficientNet and Resnet feature vectors discussed in Section
III-A, this feature vector contains semantic-level information.

2) “Signature” features: To obtain the “signature” features,
we utilize a cross-modal network designed for ad-hoc video
search. More specifically, the attention-based dual encoding
network presented in [27] is used. The network is trained to
translate a media item (i.e. an entire video) V or a textual item
(i.e. a natural-language video caption or search query) T into
a new common feature space f(·), resulting in representations
f(V) or f(T), respectively; such representations, despite
being derived from different data modalities, are directly
comparable. An illustration of this translation is displayed in
Fig. 1. The network is trained using large-sets of video-caption
pairs in order to find the optimal common feature space.

At the training stage, the network encodes each video into
a three-level representation. As the first level, the entire video
is sampled by a fixed number of keyframes. Each keyframe
is represented as the output of the flattened pool5 layer of
the Resnet-152 network trained on the ImageNet 11K dataset
[2]. The mean-pooling of these vectors constitutes the first
level representation. The keyframe’s vectors are then fed into
an attention-based bi-GRU [28] [27] and in this way the
second-level representation is generated. Finally, the output
of the second-level encoding is fed into a biGRU-CNN [29],
resulting in the third-level representation. The global video rep-
resentation is the concatenation of these three representations,
which is forwarded into a fully connected layer. Similarly
to the visual modality, a textual global representation f(T)
consisting of three levels (i.e. mean-pooling, attention-based
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TABLE I. BASIC INFORMATION FOR ALL FEATURE VECTORS.

Feature used Base architecture Training dataset Task
EfficientNet EfficientNet-B2 Imagenet 1k concepts image classification
Resnet Resnet-152 Imagenet 11k concepts image classification
YT8M Inception Youtube8M video classification
Signatures Attention-based dual encoding network Imagenet 11k, MSR-VTT, TGIF, Vatex, ActivityNet ad-hoc video search
GCN Resnet-152, Faster R-CNN, GCN ImageNet 1k, FCVID, YLI-MED video event recognition

Fig. 1. An illustration of the transformation that the adopted cross-modal network performs on the videos and captions, representing them into the common
“signature” feature space.

bi-GRU sequential model, and biGRU-CNN) is generated for
the corresponding captions. The network is trained using the
combination of four large-scale video-caption datasets: MSR-
VTT [30], TGIF [31], Vatex [32] and ActivityNet [33]. These
bring together, in their training portions, about 680.000 video-
caption pairs, which were used in this work for training the
network architecture of [27].

For leveraging this trained network as a feature generator
in the image sentiment classification task, we considered an
image as a special type of video comprising only one keyframe.
The image is used as input to the visual encoding branch of the
network, fed forward through the multi-level encoding layers,
and the global image representation f(V), a 2048-element
vector, is used as our “signature” feature S.

3) Graph Convolutional Network (GCN) features: To ob-
tain this feature vector, we employ a neural network used
for the task of video event recognition [34]. Following the
application of an object detector on the frames of the video,
a neural network is used to extract the object features and
graphs are used to model the relations between objects. Then,
a graph convolutional network (GCN) is utilized to perform
reasoning on the graphs. The resulting object-based frame-
level features are then forwarded to a long short-term memory
(LSTM) network for video event recognition.

More specifically, uniform sampling is first applied to
represent each video with a sequence of 9 frames. Then we
employ a Faster R-CNN object detector [35] to derive 50
objects for each video frame, where each object is associated
with a bounding box, an object class label and a feature vector
of dimensionality F = 2048. Moreover, a feature extractor
(the pool5 layer of a pretrained ResNet-152 on ImageNet11K)
is applied on the entire frame to derive a 2048-dimensional
feature vector, encoding the global appearance information.
The extracted feature vectors are then utilized for learning a
GCN, a LSTM and two fully-connected layers that comprise
our model. We use a two-layer GCN with 2048 units for
each layer, an LSTM layer of 4096 units, two FC layers with
2048 and 239 units, respectively, and a sigmoid nonlinearity
is utilized on the last FC layer to facilitate multilabel learning.

Fig. 2. The overall system architecture. E, S, R, Y and G are the 5 different
feature vectors.

Finally, the model is trained end-to-end on the FCVID [36]
dataset.

To extract the feature vector that we use for the image
sentiment analysis in this work, we fetch the output of the
GCN, which is a 2048-element vector G.

C. Mixture of Experts

The MoE-based network architecture utilized in our work
is illustrated in Figure 2 and is based on the MoE approach
described in [25]. More specifically, we concatenate the 5
feature vectors described above, resulting in a final 11414-
element feature vector, that will be used to train our Mixture
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of Experts classifier. This feature vector is fist passed through
a fully connected layer, yielding a 200-element vector. After
passing through a Dropout and a ReLU block, this 200-element
vector is the input I forwarded to the i = 2 experts, ec1(), e

c
2(),

which are defined for each class c, as well as to the associated
gates, gc1(), g

c
2(). For each class, there is also defined an extra

“dummy” expert (not shown in Figure 2 for simplicity of
illustration) that represents the rest-of-the-world class, and only
participates in partitioning the feature space through the gate
component of the Mixture of Expert classifier. The experts
and the gate are implemented as fully connected layers with a
sigmoid and a softmax nonlinearity, respectively. A confidence
score for the cth class is then computed by merging experts’
outputs into a single output oc(I) according to the gate’s
decision (Eq. (1)). The whole network is trained end-to-end.

oc(I) =
∑
i=1,2

σ(eci (I)) ∗ Softmax(gci (I)) (1)

IV. EXPERIMENTAL RESULTS

A. Datasets

We evaluate our method on four publicly available datasets:
TwitterI [7], TwitterII [4], EmotionROI [37] and FI [38]. The
TwitterI dataset is the most widely used image sentiment
classification dataset and has become the de facto benchmark.
It contains 1269 images collected from Twitter and labeled in
two categories, as either “positive” or “negative”, by Amazon
Mechanical Turk (AMT) workers. Each image was annotated
by 5 people, creating three distinct subsets “5-agree”, “4-
agree” and “3-agree”, depending on the number of agreements
between the annotators. For our experiments we used the more
reliable “5-agree” subset, that contains 882 images. TwitterII
contains 603 images from Twitter, also annotated as “positive”
or “negative” by AMT workers. EmotionROI contains 1980
images from Flickr, belonging to one of six emotion categories
(anger, disgust, fear, joy, sadness, surprise), but since we are
doing binary classification, images belonging to emotions joy
and surprise are labeled as “positive” and images belonging
to emotions anger, disgust, fear and sadness as “negative”,
as it is typically done in the literature works that experiment
with this dataset. The FI dataset contains 23308 images from
Flickr and Instagram. It is by far the largest of the four
datasets. The images are annotated by AMT workers into
8 emotion categories (amusement, anger, awe, contentment,
disgust, excitement, fear, sadness). We label as “positive”
images that belong to emotions amusement, awe, contentment
and excitement, and as “negative” the images that belong to
emotions anger, disgust, fear and sadness. It should be noted
that for all datasets more than one annotators were used for
labeling the images, resulting in strongly labeled datasets.

B. Experimental Setup

In order to compare against the literature, we apply the
same training-testing splitting criteria that are typically used
for each dataset. For the TwitterI dataset, no pre-specified
split to training/testing data exists, however it is common
practice to do a 80-20 random split. We perform 5 random
splits of 80% training and 20% testing sets and then report
the average classification accuracy (ACC) on these splits. On

TwitterII we use the dataset’s pre-existing 5-fold split to do
5-fold cross validation and report again the average accuracy.
On EmotionROI we use the pre-existing 80% training - 20%
testing split. On FI, we followed the common practice of
splitting randomly 80% for training, 15% for testing and
5% for validation. In our experiments we tested three main
configurations:

• using a single feature type to train a neural net-
work classifier. These include EfficientNet+NN, Sig-
natures+NN, Resnet+NN, YT8M+NN and GCN+NN

• using the concatenation of all feature types to train a
neural network classifier (combination+NN)

• using the concatenation of all feature types to train a
mixture of experts classifier (combination+MoE)

Although more combinations of feature vectors are pos-
sible, for our experiments we chose only these three config-
urations for simplicity. In the first two configurations (single
and combination+NN) we used the same parameters and setup
after preliminary experimentation. In the second configuration
(combination+NN) we applied sample-wise unit normalization
for each feature type before the concatenation. The neural
network (NN) classifier used was a simple 2-layer fully con-
nected network with a 200-neuron first layer followed by a
ReLU, a Dropout of 0.4 and a 2-neuron output layer plus a
softmax for the 2 classes (positive, negative). We used binary
cross-entropy as our loss function and Adam optimizer with
10−4 learning rate; set the batch size to 8, and trained for
20 epochs. For the third configuration (combination+MoE),
after preliminary experimentation we ended up with a different
set of parameters. Contrary to the first two configurations,
we didn’t apply any normalization before the concatenation
of the features, as it didn’t improve the results. We chose
10−3 weight decay, 256 batch size, binary cross-entropy loss
function and Adam optimizer with 10−4 learning rate. For the
third configuration we present 2 training schemas: (1) for 120
epochs with a 0.1 learning rate decay every 40 epochs, and
(2) for 60 epochs with a 0.1 learning rate decay every 20
epochs. In every configuration we use the same parameters
on all datasets; we do not do any dataset-specific parameters
optimization.

C. Results

A summary of the scores of our experiments and the best
literature methods can be seen in Table II. All reported scores
refer to Accuracy (%). The highest score for a dataset is
shown in bold, while the second-highest score is underlined.
Firstly, we evaluate the models trained with the first config-
uration i.e. each of the examined feature vectors separately.
On TwitterI, Resnet+NN performed the best. On TwitterII,
Signatures+NN produced the best results. EmotionROI and
FI were topped by GCN+NN and resnet+NN respectively.
The models trained with the out-of-domain features, with
the exception of YT8M+NN, performed on par with the in-
domain ones. YT8M+NN generally underperformed, proving
that semantic-level feature vectors are not so suitable for this
task. The first configuration experiments were intended as an
ablation study to verify the advantage of combining multiple
feature types. Still, most of the models exceed the SOTA in
TwitterI and one model (GCN+NN) the SOTA in EmotionROI
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TABLE II. THE PERFORMANCE OF DIFFERENT METHODS ON THE FOUR DATASETS, IN ACCURACY (%). THE FIRST HALF OF THE TABLE REPORTS ON
STATE-OF-THE-ART APPROACHES OF THE LITERATURE, WHILE THE SECOND HALF REPORTS OUR TESTED APPROACHES.

Method TwitterI 5-agree TwitterII EmotionROI FI
(ACC %) (ACC %) (ACC %) (ACC %)

Wang et al., 2016 [8] 83.80 - - -
Islam et al., 2016 [10] 86.10 - - -
Campos et al., 2017 [9] 84.40 - - -

Literature Song et al., 2018 [12] 85.10 - - -
Methods Yang et al., 2018 [14] 84.25 81.35 - -

Yang et al., 2018 [15] 88.65 80.48 81.26 86.35
He et al., 2019 [13] - 82.40 - -
Yadav et al., 2019 [11] 86.40 - - -
Wu et al., 2020 [16] 89.50 80.97 83.04 88.84
EfficientNet+NN 91.64 78.11 81.99 84.14
Resnet+NN 93.11 80.18 82.66 87.29

Proposed YT8M+NN 81.02 77.34 75.42 81.08
Approach Signatures+NN 91.30 80.74 81.65 86.65

GCN+NN 90.62 79.59 84.18 87.06
combination+NN 92.99 81.81 84.68 87.14
combination+MoE(1) 93.22 80.93 84.34 87.81
combination+MoE(2) 92.77 82.99 83.33 87.78

as well. The second configuration (combination+NN) is in
general better than any of the first configuration models as
it outperforms all of them on 3 out of 4 datasets. It exceeds
the SOTA on 2 of the 4 datasets. This was expected, as the
model is trained with a vastly richer feature vector. Finally,
in the third configuration with the MoE, as it was mentioned
earlier, we test 2 training schemas with 120 and 60 epochs
respectively. Schema 1 (120 epochs) achieves the best score
on TwitterI and FI. The second schema (60 epochs) is the only
model that managed to exceed the SOTA on TwitterII and on
3 of the 4 datasets in total. Training for fewer epochs seems to
help mitigate the overtraining on the smaller TwitterII dataset.
On FI, our models perform slightly worse than the method of
[16], which however performs worse than our models in the
other 3 datasets. However it should be noted that for TwitterI
and FI no pre-specified training-testing split exists, so strictly
fair comparison with the literature is not possible. A sample of
images from the EmotionROI dataset classified by our method
are shown in Figure 3, where we include indicative examples
of both correctly classified and misclassified images for both
of the two classes.

V. CONCLUSIONS

In this work we focused on the problem of image sentiment
analysis. Our motivation was twofold: First, to examine the
performance gains of combining multiple feature types to train
a sentiment classifier, and second, to evaluate a Mixture of
Experts approach for this problem. For evaluating our method,
we used 4 benchmark datasets. The results showed that, as
was expected, the combination of features resulted in a richer
image representation. The models trained on the combination
of features were generally able to outperform those trained on
a single type of features and outperformed the state-of-the-
art on 2 of the 4 datasets. The proposed Mixture of Experts
approach further improved the results, exceeding the SOTA
performance on 3 of the 4 datasets.
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