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Abstract

In this paper, a generic motion-based approach to se-
mantic video analysis is presented. The examined video is
initially segmented into shots and for every resulting shot
appropriate motion features are extracted at fixed time in-
tervals. Then, Hidden Markov Models (HMMs) are em-
ployed for performing the association of each shot with one
of the semantic classes that are of interest in any given do-
main. Regarding the motion feature extraction procedure,
higher order statistics of the motion estimates are calcu-
lated and a new representation for providing local-level mo-
tion information to HMMs is presented. The latter is based
on the combination of energy distribution-related informa-
tion and spatial attributes of the motion signal. Experimen-
tal results as well as comparative evaluation from the ap-
plication of the proposed approach in the domain of news
broadcast video are presented.

1. Introduction

Given the continuously increasing amount of video con-
tent generated everyday and the richness of the available
means for sharing and distributing it, the need for efficient
and advanced methodologies regarding video manipulation
emerges as a challenging and imperative issue. To this end,
several approaches have been proposed in the literature re-
garding the tasks of indexing, searching, retrieval, as well
as personalized delivery of video content [1].

More recently, the fundamental principle of shifting
video manipulation techniques towards the processing of
the visual content at a semantic level has been widely
adopted, thus attempting to bridge the so called semantic
gap [11]. Among the video analysis methodologies of the
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latter category, approaches that exploit a priori knowledge
have been particularly favored and have so far exhibited
promising results.

Knowledge-assisted video analysis techniques have been
dominated by the usage of Machine Learning (ML) algo-
rithms. ML-based approaches utilize probabilistic methods
for acquiring the appropriate implicit knowledge that will
enable the mapping of the low-level audio-visual data to
high-level semantic concepts and entities. In [4], a HMM-
based system is proposed for performing joint scene classi-
fication and video temporal segmentation. Additionally, in
[9], Support Vector Machines (SVMs) are employed for de-
tecting semantically meaningful events in broadcast video
of multiple field sports. Although many methods have
already been presented for realizing knowledge-assisted
video analysis, most of them are only limited to domain spe-
cific applications, i.e. they exploit specific facts and charac-
teristics that are only present in a single domain, thus failing
to effectively handle the problem of semantic video analysis
at a more generic level.

In this paper, a generic motion-based approach to seman-
tic video analysis, making use of ML algorithms for implicit
knowledge acquisition, is presented. The examined video is
initially segmented into shots and for every resulting shot
appropriate motion features are extracted at fixed time in-
tervals, thus forming a motion observation sequence. Then,
HMMs are employed for performing the association of each
shot with one of the supported semantic classes based on its
formed observation sequence. Regarding the motion feature
extraction procedure, higher order statistics of the motion
estimates are calculated and result into a kurtosis field. The
latter is highly sensitive to outliers, and hence provides a ro-
bust indication of which motion values originate from true
motion rather than measurement noise. Additionally, a new
representation for providing local-level motion information
to HMMs is presented. This representation is based on the
combination of energy distribution-related information and
spatial attributes of the motion signal, for efficiently captur-
ing the semantics present in the visual medium.
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The paper is organized as follows: The video pre-
processing steps are described in Section 2. Section 3
presents the statistical analysis of the motion signal. Sec-
tion 4 details the extraction of the motion features. Section
5 discusses how HMMs are utilized for performing motion-
based classification. Experimental results and comparative
evaluation from the application of the proposed approach in
the news broadcast domain are presented in Section 6, and
conclusions are drawn in Section 7.

2. Video Pre-Processing

The examined video sequence is initially segmented into
a set of shots, denoted by S = {si, i = 1, ...I}, which con-
stitute the elementary image sequences of video; under the
proposed approach each shot will be associated with one of
the supported semantic classes, denoted by E = {ej , j =
1, ..J}, on the basis of its semantic contents. For shot detec-
tion, the algorithm of [5] is used, mainly due to its low com-
putational complexity. After shot segmentation, each shot
si is further divided into a set of sequential time intervals
of equal duration, denoted by Wi = {wir, r = 1, ...Ri},
starting from the first frame. The duration of each inter-
val, i.e. the length of the selected time window, is set equal
to TW . For every time interval wir, an individual obser-
vation vector will be estimated for representing its motion
information, to support shot-class association. In parallel to
temporal video segmentation, a dense motion field is esti-
mated for every frame, making use of the optical flow esti-
mation algorithm of [7]. From the computed motion field a
corresponding motion energy field is calculated, according
to the following equation:

M(x, y, t) = ‖−→V (x, y, t)‖ (1)

where −→
V (x, y, t) is the estimated dense motion field, ‖.‖

denotes the norm of a vector, and M(x, y, t) is the result-
ing motion energy field. Variables x, y get values in the
ranges [1, Vdim] and [1,Hdim] respectively, where Vdim and
Hdim are the motion field vertical and horizontal dimen-
sions (same as the corresponding frame dimensions in pix-
els), whereas variable t denotes the temporal order of the
frames. The choice of transforming the motion vector field
to an energy field is justified by the observation that often
the latter provides more appropriate information for motion-
based recognition problems [6].

3. Statistical Motion Analysis

The motion energy estimates at each pixel represent
changes in illumination that originate either from measure-
ment noise, or from pixel displacement (true motion) and
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Figure 1. Example of kurtosis field and activ-
ity area mask computation

measurement noise. This can be expressed as the following
hypotheses:

H0 : M0(x, y, t) = n(x, y, t)
H1 : M1(x, y, t) = o(x, y, t) + n(x, y, t), (2)

where o(x, y, t) represents the noiseless motion energy field
and n(x, y, t) additive noise. There is no prior knowledge
about the statistical distribution of measurement noise, how-
ever the standard assumption in the literature is that it is
independent from pixel to pixel, and follows a Gaussian
distribution. This leads to the detection of which velocity
estimates correspond to a pixel that is actually moving by
simply examining the non-gaussianity of the data [2]. The
classical measure of a random variable’s non-gaussianity is
its kurtosis, defined by:

kurt(ψ) = E[ψ4] − 3(E[ψ2])2, (3)

where ψ is a random variable. The kurtosis value for Gaus-
sian data is zero.

Although the Gaussian model is only an approximation
of the unknown noise in the motion estimates, the kurtosis
remains appropriate for detecting the true velocity measure-
ments. This is because they appear as outliers, and in [10] it
is proven that the kurtosis is a robust, locally optimum test
statistic, for the detection of outliers, even in the presence
of non-Gaussian noise.

In order to determine the pixels that undergo true mo-
tion within a particular time interval wir, the kurtosis value
of every pixel is calculated, taking into account the com-
puted motion energy estimates, M(x, y, t), over all frames
that belong to the specific time interval, according to the
following equation:

Kir(x, y) = E[M(x, y, t)4] − 3(E[M(x, y, t)2])2, (4)

where Kir(x, y) is the estimated kurtosis field and the
expectations E[·] are approximated by the corresponding
arithmetic means.
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From the kurtosis field computation procedure, it is ev-
ident that pixels which undergo true motion present signif-
icantly higher kurtosis values, compared to the pixels that
exhibit only measurement noise. Thus, the kurtosis fields
can be considered as a reliable indicator of pixels’ activity,
allowing the distinction between ‘active’ and ‘static’ pix-
els by simple thresholding. Since there is no generally ap-
plicable way to determine the value of this threshold, the
following well-performing value was selected after experi-
mentation.

TH = |Kir(x, y)| + 4 · σ|Kir(x,y)| , (5)

where the arithmetic mean |Kir(x, y)| and standard devi-
ation σ|Kir(x,y)| are calculated over all the kurtosis fields
Kir(x, y) that have been computed for all shots si of a set of
annotated video content that has been assembled for train-
ing purposes. Using this value, for every estimated kurtosis
field a corresponding activity area mask is computed, ac-
cording to the following equation:

Air(x, y) =
{

1, if |Kir(x, y)| ≥ TH
0, otherwise , (6)

where Air(x, y) is the estimated binary activity area mask.
In order to demonstrate how the kurtosis estimates pro-

vide reliable localization of active pixels, an indicative ex-
ample showing the estimated kurtosis field and the corre-
sponding binary activity area mask for a news domain video
sequence is given in Fig. 1. It is evident from this figure that
the kurtosis of the active pixels obtains much higher values
than that of the static pixels.

4. Motion Features Extraction

The majority of the HMM-based analysis methods
present in the relevant literature are focusing only at global-
or camera-level motion representation approaches [3][12].
Nevertheless, local-level analysis of the motion signal can
provide significant cues which, if suitably exploited, can fa-
cilitate in efficiently capturing the underlying semantics of
the examined video. To this end, a new representation for
providing local-level motion information to HMMs is pre-
sented here. It must be noted that the motion information
processing described in this section applies to a single shot
si at any time, thus indices i are omitted in this section for
notational simplicity.

As already described in Section 3, the kurtosis fields con-
stitute a robust indicator for identifying pixels that undergo
true motion. Hence, it is reasonable to focus only on the
pixels that are characterized as active in the corresponding
activity area mask, i.e. the pixels where true motion is ob-
served, since these are more likely to bear significant infor-
mation about the motion patterns that are discriminative for

every supported class. In particular, for every computed ac-
tivity area mask Ar(x, y) a corresponding ‘localized’ mask
AL

r (xl, yl), where xlε[xL0
r , xL1

r ] (1 ≤ xL0
r ≤ xL1

r ≤ Vdim)
and ylε[yL0

r , yL1
r ] (1 ≤ yL0

r ≤ yL1
r ≤ Hdim), is esti-

mated. The latter is defined as the minimum rectangle that
includes all the active pixels of the respective Ar(x, y), and
maintains the same aspect ratio and orientation as the origi-
nal Ar(x, y). The corresponding ‘localized’ kurtosis field
is denoted by KL

r (xl, yl), and comprises those pixels of
Kr(x, y) that belong to AL

r (xl, yl). The remainder of the
motion analysis procedure considers only the KL

r (xl, yl)
and AL

r (xl, yl).

4.1. Polynomial Approximation

The estimated localized kurtosis field, KL
r (xl, yl), is

usually of high dimensionality, which decelerates the video
processing, while motion information at this level of detail
is not always required for the analysis purposes. Thus, it
is consequently down-sampled, according to the following
equations:

KΛ
r (xλ, yλ) = KL

r (xd, yd)

xd = xL0
r +

2xλ − 1
2

· Vstep

yd = yL0
r +

2yλ − 1
2

·Hstep

xλ = 1, ...D , yλ = 1, ...D

Vstep = �x
L1
r − xL0

r

D
� , Hstep = �y

L1
r − yL0

r

D
� (7)

whereKΛ
r (xλ, yλ) is the estimated down-sampled localized

kurtosis field and Hstep, Vstep are the corresponding hori-
zontal and vertical spatial sampling frequencies. As can be
seen from Eq. (7), the dimensions of the down-sampled
field are predetermined and set equal to D. It must be noted
that if xL1

r −xL0
r < D or yL1

r − yL0
r < D, KL

r (xl, yl) is in-
terpolated, before being down-sampled, following the bilin-
ear method, so that the condition xL1

r −xL0
r , yL1

r −yL0
r ≥ D

is satisfied.
According to the HMM theory [8], the set of sequen-

tial observation vectors that constitute an observation se-
quence need to be of fixed length and simultaneously of
low-dimensionality. The latter constraint ensures the avoid-
ance of HMM under-training occurrences. Thus, a compact
and discriminative representation of motion features is re-
quired. For that purpose, the aforementioned KΛ

r (xλ, yλ)
field, which actually represents a higher-order statistic of
the motion energy distribution surface, is approximated by
a 2D polynomial function, of the following form:

f(p, q) =
∑
b,c

abc · ((p− p0)b · (q − q0)c) ,
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0 ≤ b, c ≤ T and 0 ≤ b+ c ≤ T (8)

where T is the order of the function, abc its coefficients and
p0, q0 are defined as p0 = q0 = D

2 . The approximation is
performed using the least-squares method.

In Fig. 2, an indicative example of localized kurtosis
field estimation and approximation by a polynomial func-
tion is illustrated for a news video sequence. As can be seen
from this figure, the polynomial approximation efficiently
captures the most dominant motion characteristics.

4.2. Spatial Attributes Extraction

The estimated polynomial coefficients abc do not encom-
pass information about the spatial properties of the motion
signal (e.g. size and position of the computed KΛ

r (xλ, yλ)).
Hence, in this section, an additional set of features is defined
for capturing the spatial attributes of the latter. These fea-
tures, which constitute complementary information to the
computed polynomial coefficients, highlight particular spa-
tial attributes of the motion signal and are calculated from
the estimated AL

r (xl, yl) mask. In particular, the employed
features, which are extracted for every time interval wr, are
defined as follows:

• relative area of the estimated AL
r (xl, yl), which is cal-

culated as follows:

arear =
(xL1

r − xL0
r ) · (yL1

r − yL0
r )

Vdim ·Hdim
(9)

• rectangularity, which denotes how dense the active
pixels’ area is. It is defined as the percentage of the ac-
tive pixels’ Minimum Bounding Rectangle (MBR) that
belongs to the respective AL

r (xl, yl), and is estimated
according to the following equation:

rectangularityr =

∑
xm

∑
ym
AL

r (xm, ym)
(xM1

r − xM0
r ) · (yM1

r − yM0
r )

, (10)

where xmε[xM0
r , xM1

r ], ymε[yM0
r , yM1

r ], and
{xM0

r , xM1
r , yM0

r , yM1
r } denotes the MBR of the

active pixels (xL0
r ≤ xM0

r ≤ xM1
r ≤ xL1

r , yL0
r ≤

yM0
r ≤ yM1

r ≤ yL1
r ).

• elongatedness of the active pixels’ MBR:

elongatednessr =
xM1

r − xM0
r

yM1
r − yM0

r

(11)

• orientation, which denotes the overall direction of the
active pixels’ region and is estimated as follows:

orientationr =
1
2
· tan−1 · 2 · μ11

μ20 − μ02
, (12)

where μ11, μ20, μ02 are the corresponding central mo-
ments of AL

r (xl, yl).

• center of gravity of the active pixels’ region, which is
calculated according to the following equations:

−−→
CGr = (CG0

r, CG
1
r)

CG0
r =

∑
xl

∑
yl
xl ·AL

r (xl, yl)
Vdim · ∑xl

∑
yl
AL

r (xl, yl)

CG1
r =

∑
xl

∑
yl
yl ·AL

r (xl, yl)
Hdim · ∑xl

∑
yl
AL

r (xl, yl)
(13)

• displacement of the active pixels’ center of gravity in
sequential time intervals:

−−−−→
DCGr = (CG0

r − CG0
r−1, CG

1
r − CG1

r−1) (14)

• accumulated active pixels ratio, which is defined as the
percentage of the total number of active pixels that are
estimated from the beginning of shot si and are present
in the current time interval wr. This feature achieves
to efficiently model the variation of motion intensity in
time and is defined as follows:

Rr =
Er∑r

r=1Er

Er =
∑
xl

∑
yl

AL
r (xl, yl) (15)

5. HMM-based Classification

HMMs constitute a powerful statistical tool for solving
problems that exhibit an inherent temporality, i.e. consist
of a process that unfolds in time [8]. The fundamental idea
is that every process is made of a set of internal states and
every state generates an observation when the process lies
in that state. Thus, the sequential transition of the process
among its constituent states generates a characteristic ob-
servation sequence. It must be noted that a HMM requires
a set of suitable training data for adjusting its internal struc-
ture. At the evaluation stage, a HMM, which receives as
input a possible observation sequence, estimates a posterior
probability, which denotes the fitness of the input sequence
to that model.

Under the proposed approach, HMMs are employed for
associating every video shot with a particular semantic
class. In accordance to the HMM theory, each class cor-
responds to a process that is to be modeled by an individual
HMM and the features extracted from the video stream con-
stitute the respective observation sequences. Specifically,
since the polynomial coefficients and spatial attributes of
the motion signal are estimated for a time interval wir of
shot si (as detailed in Section 4), they are used to form a
single observation vector. These observation vectors for all
wir of shot si form a respective shot observation sequence.
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Figure 2. Example of localized kurtosis field approximation with polynomial function

Then, a set of J HMMs is employed, where an individual
HMM is introduced for every defined class ej , in order to
perform the association of the examined shot, si, with the
defined classes, ej , based on the computed shot observation
sequence. More specifically, each HMM receives the afore-
mentioned observation sequence as input and estimates a
posterior probability, which indicates the degree of confi-
dence hij with which class ej is associated with shot si.

6. Experimental Results

In this section experimental results from the application
of the proposed method, as well as comparative evaluation
with other approaches in the literature, are presented. Al-
though the method is generic, a domain needs to be se-
lected for experimentation; to this end, the domain of news
broadcast video is utilized in this work. For the selected do-
main, the following semantic classes were defined: anchor
(when the anchor person announces the news in a studio en-
vironment), reporting (when live-reporting takes place or a
speech/interview is broadcasted), reportage (comprises of
the displayed scenes, either indoors or outdoors, relevant
to every broadcasted news item) and graphics (when any
kind of graphics is depicted in the video sequence, includ-
ing news start/end signals, maps, tables or text scenes).

Then, a set of 24 videos of news broadcast from
Deutsche Welle1 was collected. After the temporal segmen-
tation algorithm of [5] was applied, a corresponding set of
924 shots was formed, which were manually annotated ac-
cording to the class definitions already described. From the
aforementioned videos 8 of them (342 shots) were used for
training the developed HMM structure and the remaining
16 (582 shots) were used for evaluation.

Every shot was further divided into a set of sequential
time intervals of equal duration, as described in Section
2. The duration of every interval, TW , was set to 0.40sec
based on experimentation. It has been observed that small
deviations from this value (±20%) resulted into negligible
changes in the overall detection performance. Then, for ev-

1http://www.dw-world.de/

ery resulting interval the respective kurtosis field and ac-
tivity area mask were calculated, as outlined in Section 3.
Subsequently, local-level energy distribution-related infor-
mation, as well as spatial attributes of the motion signal,
were estimated, as detailed in Section 4. A third order poly-
nomial function was used for the approximation procedure
(Eq. (8)), since it produced the most accurate approxima-
tion results compared to the cases where e.g. a second or
a fourth order polynomial function was used. The value of
parameter D in Eq. (7) was set equal to 40. This value was
shown to represent a good compromise between the need
for time efficiency and effective polynomial approximation.
The motion features extracted for every time interval were
used to form the motion observation sequence for the re-
spective shot, which was in turn provided as input to the de-
veloped HMM structure in order to associate the shot with
one of the supported classes, as described in Section 5.

Regarding the HMM structure implementation details,
fully connected first order HMMs were utilized. For every
hidden state the observations were modeled as a mixture of
Gaussians, which were set to have full covariance matrices.
Additionally, the Baum-Welch (or Forward-Backward) al-
gorithm was used for training, while the Viterbi algorithm
was utilized during the evaluation. The number of hidden
states of the HMMs was considered as a free variable.

In Table 1, quantitative class association results are given
in the form of the calculated confusion matrices from the
application of the proposed approach in videos of the se-
lected domain, when: a) only energy distribution-related
information is utilized (first row), b) spatial attributes of
the motion signal are also used (second row). Additionally,
the value of the overall classification accuracy is also given,
which is defined as the percentage of the video shots that are
correctly classified. It has been regarded that arg maxj(hij)
indicates the class ej that is associated with shot si.

From the results presented in Table 1, it can be seen
that the combination of energy distribution-related infor-
mation and spatial attributes of the motion signal leads
to better recognition results, compared to the case when
only distribution-related information is used. Addition-
ally, it is observed that the proposed motion feature extrac-
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tion approach for providing motion information to HMMs
achieves an overall classification accuracy of 86.83%, while
most of the supported classes are correctly identified at high
recognition rates. With respect to the class reporting, al-
though it exhibits satisfactory results (63.41%), it tends to
be confused with anchor and reportage. The latter is caused
by the fact that speech or interview occurrences may present
similar motion patterns with anchor speaking or reportage
scenes, respectively.

The performance of the proposed method is also com-
pared with the motion representation approaches for provid-
ing motion information to HMM-based systems presented
in [4], [3] and [12]. Specifically, Huang et al. considers
the first four dominant motion vectors and their appearance
frequencies, along with the mean and the standard deviation
of motion vectors in the frame [4]. On the other hand, Gib-
ert et al. estimates the principal motion direction of every
frame [3], while Xie et al. calculates the motion intensity at
frame level [12]. From the presented results, it can be easily
observed that the proposed approach outperforms the afore-
mentioned algorithms for all supported classes as well as in
overall classification accuracy. This verifies that local-level
analysis of the motion signal can lead to increased class as-
sociation performance.

7. Conclusions

In this paper, a generic motion-based approach to seman-
tic video analysis was presented. The proposed algorithm is
based on the extraction of higher order statistics of the mo-
tion energy estimates and a new representation for provid-
ing local-level motion information to HMMs. Future work
includes the investigation of corresponding algorithms for
color/audio signal processing that will allow the integration
of the proposed motion-based approach in a multi-modal
video analysis scheme.
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