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Abstract

Efficient video content management and exploitation, in-
cluding coding and transmission, can greatly benefit from
taking into account the semantics of the video content.
However, the extraction of the latter is a non-trivial task
that involves associating low-level features of the image do-
main with high-level semantic descriptions. In this paper,
a knowledge-assisted approach for extracting semantics of
domain-specific video content is presented and is employed
for effecting content-adaptive coding and transmission of
the video. To this end, domain knowledge considers both
low-level features (color, motion, shape) and spatial be-
havior (topological and directional information) of video
content for the purpose of analysis, as well as domain-,
application- and user-specific importance factors associ-
ated with each domain concept that guide coding and trans-
mission on the basis of the output of the analysis. Exam-
ples of the application of the proposed approach to sports
videos, specifically belonging to the Formula One and Ten-
nis domains, are provided in the Results section.

1 Introduction

Recent advances in computing technologies have made
available vast amounts of digital video content, leading to
ever-increasing flow of audiovisual information. This re-
sults in a growing demand for efficient video content man-
agement and exploitation, including coding and transmis-
sion. A key enabling factor for this is the acquisition of
higher-level information about the meaning of the video
content, which however is a non-trivial problem.

The existing difficulty [1] in mapping semantic concepts
as perceived by humans into a set of automatically extracted
low-level image features, can be alleviated to some extent

for a particular application domain by means of domain spe-
cific knowledge. Different approaches have been used for
the implementation of particular parts of the domain knowl-
edge such as formal knowledge representation theories, se-
mantic web technologies, Dynamic Belief networks etc. For
example, in [4], semantic web technologies are used, while
in [16] a priori knowledge representation models are used
as a knowledge base that assists semantic-based classifica-
tion and clustering. In [7], an object ontology coupled with
a relevance feedback mechanism is introduced, in [14], se-
mantic entities, in the context of the MPEG-7 standard, are
used for knowledge-assisted video analysis and object de-
tection, while in [10], associating low-level representations
and high-level semantics is formulated as a probabilistic
pattern recognition problem.

Once a semantic interpretation of the video is extracted,
this can be used for effecting content-adaptive video coding
and transmission. Specifically, we present a novel method-
ology for the coding and transmission of video. Our method
allows the optimization of video delivery based on the video
content and the significance of its constituent objects.

In this paper a knowledge-assisted, domain-specific
video analysis framework is introduced and employed for
content-adaptive video coding and transmission. The anal-
ysis framework uses a genetic algorithm to support efficient
object localization and identification. An initial segmenta-
tion generates automatically a set of atom-regions and sub-
sequently their low-level descriptors are extracted. Analysis
is then performed using the necessary processing tools and
by relating high-level symbolic representations included in
the ontology to visual features extracted from the signal do-
main. Additionally, the genetic algorithm decides how the
atom-regions should be merged in order to form objects in
compliance with the object models defined in the domain
ontology. The output of this analysis process is then used
for the optimization of the coding and transmission of the
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video.
The remainder of the paper is structured as follows: sec-

tion 2 considers domain ontology development and section
3 contains a presentation of the segmentation and descrip-
tor extraction algorithms and discusses the implementation
of the genetic algorithm. Section 4 addresses the issues of
coding and transmission exploiting the previously generated
analysis results. Indicative results are presented in section 5
and finally, conclusions are drawn in section 6.

2 Domain Knowledge

The knowledge about the examined domain is encoded
in the form of an ontology. The developed ontology in-
cludes the objects that need to be detected, their visual fea-
tures and their spatiotemporal relations, as well as domain-
, application- and user-specific importance factors associ-
ated with each domain concept. These descriptions provide
the system with the required knowledge to find the opti-
mal interpretation for each of the examined video scenes,
i.e. the optimal set of mappings among the available atom-
regions and the corresponding domain-specific semantic
definitions, and to subsequently employ them for guiding
efficient coding and transmission. To account for objects of
no interest that may be present in a particular domain and
for atom-regions that fail to comply with any of the object
models included in the ontology, the unknown object con-
cept is introduced; this concept is assigned the m minimum
of the domain-, application- and user-specific importance
factors. In addition, support is provided for the definition
of associations between low-level descriptions and the al-
gorithms to be applied for their extraction. In the following,
a brief description of the main classes is presented.

Class Object is the superclass of all objects to be de-
tected during the analysis process: when the ontology is en-
riched with the domain specific information it is subclassed
to the corresponding domain salient objects. Class Object
Interrelation Description describes the objects spatiotem-
poral behavior, while Low-Level Description refers to the
set of their representative low-level visual features. Since
real-world objects tend to have multiple different instanti-
ations, it follows that each object prototype instance can
be associated with more than one spatial description and
respectively multiple low-level representations. Different
classes have been defined to account for the different types
of low-level information (color, shape, motion etc.). These
are further subclassed to reflect the different ways to repre-
sent such a feature (e.g. color information could be rep-
resented by any of the color descriptors standardized by
MPEG-7, the distribution models of the respective color
space etc.) The actual values that comprise the low-level
descriptors (e.g. the DC value elements, color space) are
under the Low-Level Descriptor Parameter class.

Class Importance Factors is the main class containing
knowledge about the coding of the given domain object. It
is subclassed to classes Domain-specific Importance Fac-
tor, Application-specific Importance Factor and User-
specific Importance Factor, which define the importance
factor values Id, Ia and Iu. During coding, these are com-
bined using an appropriate function f(Id, Ia, Iu) to drive
the coding process.

Providing domain-specific spatiotemporal information
proves to be particularly useful for the identification of
specific objects, since it allows discrimination of objects
with similar low-level characteristics as well as of objects
whose low-level features alone are not adequate for their
identification. The applied spatial relations consider two-
dimensional, binary relations, defined between regions with
connected boundaries. In the current implementation the
included spatial relations are the eight topological relations
resulting from the 9-intersection model as described in ear-
lier works on spatial relations representation and reasoning
[12, 3], enhanced by the four relative directional relations,
i.e. right, left, above, below. The used low-level descrip-
tors are the MPEG-7 Dominant Color and Region Shape
descriptors, the motion norm of the averaged global motion-
compensated block motion vectors for each region blocks
and the ratio between a region’s area and the square of its
perimeter (compactness).

3 Knowledge-Assisted Video Analysis

3.1 Color and motion initial segmentation

The color segmentation is based on the extraction of up
to eight dominant colors in the frame, as proposed in the
MPEG-7 Dominant Color descriptor [6], used to initialize a
simple K-means algorithm as detailed in [8].

The motion segmentation is based on a two step algo-
rithm. The first step follows the segmentation methodol-
ogy of [7], considering a block matching approach, in order
to obtain a coarse but very fast segmentation. Indeed, an
iterative rejection scheme [17] based on the bilinear mo-
tion model is used to effect foreground/background seg-
mentation. Meaningful foreground spatiotemporal objects
are formed by initially examining the temporal consistency
of the output of iterative rejection, clustering the resulting
foreground macroblocks to connected regions and finally
performing region tracking. Furthermore, this first step pro-
vides an efficient estimation of the 8 parameters of the bi-
linear camera motion model. As a second step, the previous
motion segmentation is used to initialize a region-based mo-
tion segmentation algorithm based on smoothing spline ac-
tive contours [11]. Smoothing splines offer a robust active
contour implementation to overcome the problem of noisy
data that working with MPEG streams implies. Hence, im-
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proved accuracy over the first step motion segmentation is
achieved. Furthermore, the contour defining the extracted
moving regions is given by a parametric equation which al-
lows a fast computation for geometric curve features such
as perimeter, area, or moments, involved in the low-level
feature descriptor extraction.

The generated color and motion segmentation masks are
merged giving priority to color information. That is to say,
if a motion-based segmented region consists of two or more
color-based segmented atom-regions, this region is split ac-
cording to the color segmentation. Finally, a region-based
smoothing spline active contour is applied to the resulted
segmentation mask in order to provide the parametric con-
tour equation of each atom-region.

3.2 Low-level descriptors extraction

The low-level descriptors defined in section 2 are ex-
tracted for each atom-region as follows. We compute the
Dominant Color descriptor applying the MPEG-7 eXper-
imentation Model (XM) [6]. The region motion feature,
based on the aforementioned motion segmentation algo-
rithm, is defined by the norm of the average global-motion-
compensated motion vectors evaluated on the blocks be-
longing to the atom-region considered. To extract the com-
pactness descriptor, we compute the area and the perimeter
of each region using a fast algorithm, proposed in [5], based
on spline properties of the parametric contour description.

3.3 Genetic Algorithm

As previously mentioned, the initially applied color and
motion segmentation algorithms, result in a set of over-
segmented atom-regions. Assuming for a single image NR

atom regions and a domain ontology of NO objects, there
are NNO

R possible scene interpretations. To overcome the
computational time constraints of testing all possible con-
figurations, a genetic algorithm is used [9]. Genetic al-
gorithms (GAs) have been widely applied in many fields
involving optimization problems, as they proved to outper-
form other traditional methods. They build on the principles
of evolution via natural selection: an initial population of
individuals (chromosomes encoding the possible solutions)
is created and by iterative application of the genetic opera-
tors (selection, crossover, mutation) the optimal, according
to the defined fitness function, solution is reached.

In our framework, each individual represents a possible
interpretation of the examined scene, i.e. the labelling of
all atom-regions either as one of the considered domain ob-
jects or as unknown. An object instantiation is identified by
its corresponding concept and an identifier used to differen-
tiate instances of the same concept. The domain ontology
contains information about the maximum allowed number

of detected instances for each object. In order to reduce the
search space, the initial population is generated by allowing
each gene to associate the corresponding atom-region only
with those objects that the particular atom-region is most
likely to represent. For example in the domain of Tennis
a green atom-region may be interpreted as a Field, Wall or
Unknown object but not as Ball or Player. Therefore, for
each individual included in the initial population, the cor-
responding gene is associated with one of the three afore-
mentioned object concepts (instead of the available NO).
The set of plausible candidates for each atom-region is es-
timated according to the low-level descriptions included in
the domain ontology.

The following functions are defined to estimate the de-
gree of matching in terms of low-level visual and spatial
features respectively between an atom-region ri and an ob-
ject concept oj .

• the interpretation function It
M (ri, oj), assuming that

gene gt associates region ri with object oj , to provide
an estimation of the degree of matching between oj

and ri. It
M (ri, oj) is calculated using the descriptor

distance functions realized in the MPEG-7 XM and is
subsequently normalized so that It

M (ri, oj) belongs to
[0, 1], with a value of 1 indicating a perfect match.

• the interpretation function It
R(ri, oj , rk, ol), which

provides an estimation of the degree to which the spa-
tial relation between atom-regions ri and rk satisfies
the relation R defined in the ontology between objects
oj , ol to which ri and rk are respectively mapped to by
gene gt.

Since each individual represents the scene interpretation,
the Fitness function has to consider the above defined low-
level visual and spatial matching estimations for all atom-
regions. As a consequence the employed Fitness function is
defined as follows:

Fitness(gt) = (
NR∑

i

It
M (ri, om))

NR∏

i

∏

j∈Si

It
R(ri, om, rj , ol)

where Si denotes the set of neighboring atom-regions of ri,
since the spatial relations used have been defined only for
regions with connected boundaries as mentioned in 2. It
follows from the above definitions that the optimal solution
is the one that maximizes the Fitness function. This process
elegantly handles the merging of atom-regions: any neigh-
boring such regions belonging to the same object according
to the generated optimal solution are simply merged. In our
implementation, the following genetic operators were used:
roulette wheel selection, in which individuals are given a
probability of being selected that is directly proportionate
to their fitness and uniform crossover, where genes of the
parent chromosomes are randomly copied.
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4 Content-Adaptive Coding and Transmis-
sion

The availability of a systematic way for the semantic de-
scription of video sequences provides new means to deal
with the subsequent delivery of video.

We assume that each object is compressed using a em-
bedded coding method. This means that the object is rep-
resented using a scalable stream that can be decoded at
arbitrary source rates depending on the required quality.
However, in a practical video transmission scenario, the
decoding quality does not depend only on source coding
but also on channel coding. Therefore, for the ith object
we denote the decoded quality as Di(ρi, n), where ρi is
the source+channel bitrate that is devoted to the source and
channel coding of the ith object, and n denotes the bit error
rate of the Binary Symmetric Channel over which the video
sequence is transmitted.

Based on the above, we define the total distortion func-
tion as

D =
N−1∑

i=0

fiDi(ρi, n) (1)

where fi is the relative importance of the ithe object, as
defined in section 2. The total bitrate for the coding and
transmission of the video sequence is

R =
N−1∑

i=0

ρi (2)

Since ρi = si + ci, where si and ci are the source and
channel bits for the coding of the ith object, the total rate
can be expressed as

R =
N−1∑

i=0

(si + ci) (3)

Using the above formulation, the allocation of bits to the
objects of the ontology can be achieved using Lagrangian
methods. Object-wise optimization of rate allocation is pos-
sible if the optimal source and channel rates for each block
are known. In practice, this can be achieved using the tech-
niques in [13], i.e., by solution of an unconstrained problem
which aims to the minimization of an objective function F
of the form

F = D + λLR (4)

where D and R and are given by (1) and (3), respectively,
and λL is a Lagrange multiplier. A similar optimization for
the blockwise coding of images was presented in [2].

5 Experimental Results

The proposed approach was tested on a variety of For-
mula One and Tennis domain videos. As illustrated in Fig.1
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Figure 1. Formula One and Tennis domain
analysis results

the system output is a segmentation mask outlining the se-
mantic interpretation, i.e. a mask where different colors rep-
resenting the objects defined in the ontology are assigned to
each of the produced regions. The objects of interest in-
cluded in each domain ontology are illustrated in table 1.
For all experimental domains, the low-level descriptors val-
ues included in the corresponding knowledge base were ex-
tracted from a training set of manually annotated images.

The time required for performing the previously de-
scribed tests was between 5 and 10 seconds per frame, ex-
cluding the process of motion information extraction via
block matching for which efficient and inexpensive hard-
ware implementations exist [15]. More specifically, the
time to perform pixel-level segmentation was about 2 sec-
onds, while the time required by the genetic algorithm to
reach an optimal solution varied depending on the number
of atom-regions and the number of spatial relations. The
extraction of the low-level and spatial descriptions is per-
formed before the application of the genetic algorithm. In
general, the proposed approach proved to produce satisfac-
tory results as long as the initial color-based segmentation
did not segment two objects as one atom-region.

The subsequent coding and transmission, using the tech-
niques described previously, appeared to benefit from the
novel content-aware approach. Specifically, objects desig-
nated as being of higher importance were consistently de-
coded at higher qualities than those of the other objects in
the ontology.

First International Workshop on Semantic Media Adaptation and Personalization (SMAP'06)
0-7695-2692-6/06 $20.00  © 2006



Table 1. Formula One and Tennis domain ob-
jects of interest

Domain Concept
Road

Formula One domain Car
Sand
Grass
Field
Player

Tennis domain Line
Ball
Wall

6 Conclusions

In this paper, a knowledge-assisted domain-specific
video analysis approach, which exploits the fuzzy inference
capabilities of a genetic algorithm, is employed for support-
ing content-adaptive video coding and transmission. Do-
main knowledge includes both low-level features and spa-
tial relations of video content for the purpose of analysis,
as well as domain-, application- and user-specific impor-
tance factors associated with each domain concept to guide
coding and transmission. The developed domain ontology
provides a flexible conceptualization that allows the easy
addition of new concepts, low-level and spatiotemporal de-
scriptors, as well as updated importance factors, thus sup-
porting different abstraction levels and flexible adaptation
of the analysis and coding process to different domains, ap-
plications and users.
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