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Abstract. In this paper, an ontology-driven approach for the semantic
analysis of video is proposed. This approach builds on an ontology in-
frastructure and in particular a multimedia ontology that is based on the
notions of Visual Information Object (VIO) and Multimedia Information
Object (MMIO). The latter constitute extensions of the Information Ob-
ject (IO) design pattern, previously proposed for refining and extending
the DOLCE core ontology. This multimedia ontology, along with the
more domain-specific parts of the developed knowledge infrastructure,
supports the analysis of video material, models the content layer of video,
and defines generic as well as domain-specific concepts whose detection
is important for the analysis and description of video of the specified do-
main. The signal-level video processing that is necessary for linking the
developed ontology infrastructure with the signal domain includes the
combined use of a temporal and a spatial segmentation algorithm, a lay-
ered structure of Support Vector Machines (SVMs)-based classifiers and
a classifier fusion mechanism. A Genetic Algorithm (GA) is introduced
for optimizing the performed information fusion step. These processing
methods support the decomposition of visual information, as specified
by the multimedia ontology, and the detection of the defined domain-
specific concepts that each piece of video signal, treated as a VIO, is
related to. Experimental results in the domain of disaster news video
demonstrate the efficiency of the proposed approach.

1 Introduction

Over the past decades, access to multimedia content has become the cornerstone
of several everyday activities, as well as a key enabling factor at professional level.
However, due to the fact that literally vast amounts of multimedia data are gen-
erated, stored and distributed from multiple information sources, new needs arise
regarding their effective and efficient manipulation. This has triggered intense re-
search efforts towards the development of intelligent systems capable of automat-
ically locating, organizing, accessing and presenting such huge and heterogeneous
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amounts of multimedia information in an intuitive way, while attempting to un-
derstand the underlying semantics of the multimedia content [1].

Among the proposed solutions for the problem of semantic analysis of mul-
timedia content, i.e. bridging the so called semantic gap between the low-level
numerical audio-visual data and the higher-level human perceivable concepts and
entities [2], the exploitation of a priori knowledge emerges as a very promising
one. Approaches belonging to this category require the specification of appro-
priate knowledge structures for defining a representation of the prior knowledge
necessary for analyzing multimedia content and providing support for learning
possible links between low-level audiovisual information and semantically mean-
ingful concepts [3].

Regarding the possible domain knowledge representation formalisms, ontolo-
gies have been particularly favored due to the significant advantages they present.
In particular, they achieve to exhibit a coherent domain knowledge representa-
tion model, provide machine-processable semantics definitions and allow auto-
matic analysis and further processing of the extracted semantic descriptions [4].
Concerning the process of semantic video analysis, ontologies have been broadly
used in a wide range of approaches. In [5], an ontology framework is proposed for
detecting events in video sequences, based on the notion that complex events are
constructed from simpler ones by operations such as sequencing, iteration and
alternation. A large-scale concept ontology for multimedia (LSCOM) is designed
in [6] to simultaneously cover a large semantic space and increase observability
in diverse broadcast news video data sets. Additionally, in [7], a pictorially en-
riched ontology is used both to directly assign multimedia objects to concepts
and to extend the initial knowledge for the soccer video domain.

In this paper, an ontology-driven approach for the semantic analysis of video
is proposed. The approach builds on an ontology infrastructure and principally
a multimedia ontology, whose design is based on the notion of the MMIO. The
developed infrastructure is accompanied with signal-level video processing tech-
niques, that are necessary for associating the developed ontology infrastructure
with the signal domain. The proposed system supports the decomposition of the
visual information and the detection of the defined ontological concepts, thus
resulting in a higher-level semantic representation of the video content. Exper-
imental results in the domain of disaster news video demonstrate the efficiency
of the proposed approach. The remainder of the paper is organized as follows:
Section 2 presents the overall system architecture. Sections 3 and 4 describe
the employed high-level knowledge and the low-level information processing, re-
spectively. Sections 5 and 6 detail individual system components. Experimental
results are presented in Section 7 and conclusions are drawn in Section 8.

2 System Overview

The first step to the development of the proposed ontology-driven semantic video
analysis architecture is the definition of an appropriate knowledge infrastructure
that will model the knowledge components that need to be explicitly defined
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Fig. 1. Knowledge Infrastructure

for the analysis process. For that purpose, ontologies were used, due to the ad-
vantageous characteristics that they present and were discussed in the previous
section. The developed knowledge architecture, which is depicted in Fig. 1, con-
sists of four individual modules: the Core Ontology (DOLCE), the Mid-Level
Ontology, the Domain Ontology and the Multimedia Ontology.

The Core Ontology, which is based on the DOLCE core ontology [8], contains
specifications of domain independent concepts and relations based on formal
principles derived from philosophy, mathematics, linguistics and psychology. In
the proposed framework, it is introduced in order to facilitate the integration
and alignment of the individual ontological modules. The Mid-Level Ontology
aims to include additional concepts that are generic and not included in the
core ontology, thus attempting to ease the alignment of the abstract philosophy
of the Core Ontology and the concrete philosophy of the Domain Ontology.
Moreover, the Domain Ontology provides a conceptualization of the domain of
interest by defining a taxonomy of domain concepts, which are in turn separated
into global and local ones. The latter can be used to further characterize parts
of a video signal that can be associated with a global one. Furthermore, the
Multimedia Ontology, which models the content of multimedia data, serves as an
intermediate layer between the Domain Ontology and the audiovisual features,
through which the associations of the domain concepts are realized, and includes
algorithms for processing the content.

The design of the Multimedia Ontology is based on the notion of the MMIO,
and in particular the VIO. The latter constitute extensions and adaptations
of the IO design pattern, previously proposed for refining and extending the
DOLCE core ontology. Each VIO represents a piece of the video signal to be an-
alyzed, defines its relations and interactions with other VIOs and encompasses
the means and methods for its semantic interpretation. The aforementioned on-
tological modules are suitably aligned and are used to drive the semantic video
analysis process. Regarding the particular domain of experimentation, the dis-
aster news video domain was selected and an appropriate Domain ontology was
developed.

At the signal level, the video processing procedure, that is necessary for asso-
ciating the developed ontology infrastructure with the visual domain, is initiated
with the application of a temporal segmentation algorithm for segmenting the
video sequence into shots and is followed by a keyframe extraction step. More
specifically, for every shot a single keyframe is extracted. Subsequently, low-level
global frame descriptors are estimated for every keyframe and form a frame
feature vector. This is utilized for associating the keyframe with the global con-
cepts defined in the domain ontology based on global-level descriptors, serving as
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Fig. 2. System Architecture: The dashed arcs denote properties of the developed on-
tologies that correspond to specific multimedia content processing algorithms

input to a set of SVMs, where each SVM has been trained to detect instances
of a particular concept. Every SVM returns a numerical value which denotes
the degree of confidence to which the corresponding frame is assigned to the
ontology global concept associated with the particular SVM.

In parallel to this process, spatial segmentation is performed for every
keyframe and low-level descriptions are estimated for every resulting segment.
These are employed for generating hypotheses regarding the region’s association
to an ontology concept. This is realized by evaluating the low-level region feature
vector and using a second set of SVMs, where each SVM is trained this time to
identify instances of a local concept defined in the domain ontology. SVMs were
selected for the aforementioned tasks due to their reported generalization ability
[9]. The computed region-level hypothesis sets are subsequently introduced to a
decision function that is defined in the Multimedia Ontology and which realizes
keyframe-global concept association based on local-level information.

Then, a fusion mechanism is introduced, which implements the fusion of
the computed keyframe-global concept association based on global- and local-
features, in order to make a final keyframe semantic annotation decision. A GA
is employed for optimizing the parameters of the fusion mechanism. The choice
of a GA for this task is based on its extensive use in a wide variety of global
optimization problems [10], where they have been shown to outperform other
traditional methods.

Since the final semantic annotation decision is made for every keyframe, it is
in turn used to indicate the respective video shot semantic interpretation. Thus,
the output of the proposed semantic video analysis framework is a set of shots, to
which the input video sequence is decomposed to, and a global concept, defined
in the domain ontology, associated with each shot. The overall architecture of
the proposed system is illustrated in Fig. 2.

3 Multimedia Ontology

As was described in the previous section, the Multimedia Ontology generally
models the content of the multimedia data, serves as an intermediate layer
between the Domain Ontology and the audiovisual features, through which the
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associations of the domain concepts are realized, and includes algorithms for
processing the content. Because of its crucial role in the overall semantic video
analysis approach, it is described in detail in this section.

Under the proposed approach, the role of the multimedia ontology is to pro-
vide the adequate amount of knowledge so that the semantic video analysis pro-
cedure is tailored to the specific requirements of a particular application case.
More specifically, the multimedia ontology aims to suitably model the content
layer of video, define a mapping between low-level audio-visual features or video
processing techniques and high-level domain concepts, and generally drive the
overall semantic video analysis procedure.

Since the multimedia ontology objective is to guide the semantic video analy-
sis process, its structure should be designed in a way so that both the multimedia
properties for specific domain concepts can be described in an arbitrary way and
the actual multimedia material is appropriately modeled. For that purpose, the
IO design pattern, previously proposed for refining and extending the DOLCE
core ontology [11], was adapted and suitably extended. In particular, the DOLCE
IO was enriched with two additional properties, namely the ‘hasDecomposition’
and the ‘refersTo’ properties, and the resulting information object is denoted
with the term MMIO [12]. The MMIO model combines the DOLCE IO pat-
tern with the MPEG-7 standard for the representation of media content and
multimedia features [13][14].

Regarding the IO extensions, the ‘hasDecomposition’ property, the range of
which is ‘Decomposition’, is introduced for describing the decomposition of mul-
timedia objects. Every piece of multimedia information is considered as a multi-
media object. ‘Decomposition’ will provide the MMIO with the needed concepts
for the structural description of the multimedia content, in accordance to the
respective MPEG-7 description scheme. For that purpose, a variation of the
MPEG-7 subpart of the SWIntO [15] ontology, which is in turn an MPEG-7
based ontology for semantic annotation of multimedia content, was adopted.
This part of the SWIntO ontology focusses on the MPEG-7 Content Description
and Content Management Description Scheme that suffice to model concepts
describing storage features (e.g. format, encoding), spatial, temporal and spatio-
temporal components (e.g. scene cuts, region segmentation, motion tracking),
and low-level features (e.g. color, shape, texture, timbre, melody) of multimedia
content. Additionally, the ‘refersTo’ property is introduced for realizing the con-
nection between MMIOs that are expressed in different modalities but refer to
the same content unit. Thus, objects that derive through decomposition of the
multimedia content can constitute independent MMIOs with the capability of
one referring to another.

The remaining MMIO properties that were inherited from the prototypical
DOLCE IO are: the ‘about’ property, which is used for refering to domain on-
tology classes or properties; the ‘realizedBy’ property, which is used as the link
to the ‘MultimediaFile’ class, which in turn describes the physical realization of
the MMIO; the ‘orderedBy’ property, which denotes the format that expresses
the MMIO (it can represent a multimedia standards’ format, e.g. JPG, UTF-8,
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Fig. 3. Multimedia Information Object (MMIO) Design Pattern

etc., or a language, e.g. DE, EN, etc., the latter for the case of textual multime-
dia information); the ‘interpretedBy’ property, which is used to represent any
segmentation or classification tool or multimedia algorithm that can be used for
processing the MMIO. A schematic description of a MMIO is depicted in Fig. 3.

The Multimedia Ontology was also enriched with the ‘hasMMAnalysisCon-
textProperty’ property, which was defined in order to provide the appropri-
ate information for reinforcing the semantically driven video analysis process.
More specifically, this property associates individual domain ontology concepts
in terms of multimedia evidence. Thus, it covers the analysis context of a par-
ticular concept in terms of its relationship with other concepts defined in the
domain ontology. According to its usage, it covers every modality that multime-
dia includes (image, text, sound), while it can be further analyzed in a list of
properties in order to represent more specific contextual information. For exam-
ple, the ‘hasMMAnalysisContextProperty’ property can be particularized to the
property ‘isLocalConceptOf’ for denoting the relation of concept debris to the
concept earthquake in a possible domain ontology, i.e. for denoting the relation
of a local to a global concept defined in the domain ontology, as already men-
tioned. Another example is the ‘hasFrequencyOfAppearance’ property, which is
introduced for indicating the degree of association of a specific local concept to
a particular global concept of the domain ontology, i.e. a quantitative interpre-
tation of the aforementioned ‘isLocalConceptOf’ property.

In the developed framework, the MMIO can be sub-divided into three sub-
classes, namely the Visual Information Object (VIO), the Linguistic Information
Object (LIO) and the Audio Information Object (AIO), that each bears all
the information about the corresponding distinct modality (Visual, Textual and
Audio). In the presented work, only the visual medium is considered, i.e. only the
VIO notion is utilized in the semantic video analysis process. A VIO, as being
sub-class of the MMIO, uses the same model of object relations that connect it
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to other concepts and data-type relations, which add to the visual information
it carries.

4 Low-Level Visual Information Processing

As already described in Section 2, the video processing procedure, that is nec-
essary for associating the developed ontology infrastructure with the visual do-
main, is initiated with the application of a temporal segmentation algorithm for
segmenting the video sequence into shots and followed by a keyframe extraction
step, as denoted by the ‘hasDecomposition’ property of the Multimedia ontology.
The segmentation algorithm proposed in [16] is adopted for that purpose, due to
its low computational complexity. Additionally, for every shot a single keyframe
is extracted and specifically the median frame is selected.

The association of every extracted keyframe with global concepts of the do-
main ontology based on global-level information, as will be described in detail in
the sequel, requires that appropriate low-level descriptions are extracted at the
frame level and form a frame feature vector. The frame feature vector employed in
this work comprises three different descriptors of the MPEG-7 standard, namely
the Scalable Color, Homogeneous Texture and Edge Histogram descriptors. Fol-
lowing their extraction, the frame feature vector is produced by stacking all
extracted descriptors in a single vector. This vector constitutes the input to the
SVMs structure which realizes the association of every keyframe with global
concepts of the domain ontology using global-level information, as described in
Section 5.1.

Moreover, in order to perform the association of frame regions with local con-
cepts of the domain ontology, every keyframe has to be spatially segmented into
regions, as denoted again by the ‘hasDecomposition’ property of the Multime-
dia ontology, and suitable low-level descriptions have to be extracted for every
resulting segment. In the current implementation, a modified K-Means-with-
connectivity-constraint pixel classification algorithm has been used for segment-
ing the keyframes [17]. Output of this segmentation algorithm is a segmentation
mask S, S = {si , i = 1, ..., N}, where si, i = 1, ...N are the created spatial
regions. For every generated frame segment, the following MPEG-7 descriptors
are extracted: Scalable Color, Homogeneous Texture, Region Shape and Edge His-
togram. The above descriptors are then combined to form a single region feature
vector. This vector constitutes the input to the SVMs structure which computes
the hypothesis sets regarding the association of every frame region with the local
concepts of the domain ontology (Section 5.2).

5 Keyframe-Concept Association

5.1 Keyframe-Concept Association Using Global Features

In order to perform the association of every extracted keyframe with the global
concepts defined in the domain ontology using global level descriptions, a frame
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feature vector is initially formed, as described in Section 4. Then, a SVMs struc-
ture is utilized to associate each keyframe with the appropriate global concept.
This comprises R SVMs, one for every defined global concept CG

r , each trained
under the ‘one-against-all’ approach. For the purpose of training the SVMs, a set
of keyframes belonging to the domain of interest is assembled, Qtr, as described
in Section 7, and is used as training set. The aforementioned frame feature vec-
tor constitutes the input to each SVM, which at the evaluation stage returns for
each keyframe of unknown global concept association a numerical value in the
range [0, 1] denoting the degree of confidence to which the corresponding frame
is assigned to the global concept associated with the particular SVM. The metric
adopted is defined as follows: For every input feature vector the distance zr from
the corresponding SVM’s separating hyperplane is initially calculated. This dis-
tance is positive in case of correct classification and negative otherwise. Then,
a sigmoid function is employed to compute the respective degree of confidence,
hG

r , as follows:

hG
r =

1
1 + e−t·zr

, (1)

where the slope parameter t is experimentally set. For each keyframe, the max-
imum of the R calculated degrees of association indicates its global concept
assignment based on global-level information, whereas all degrees of confidence,
hG

r , constitute its respective global concept hypotheses set HG, where HG =
{hG

r , r = 1, ...R}.

5.2 Keyframe-Concept Association Using Local Features

As already described in Section 2, the SVMs structure, used in the previous
section for global concept assignment using global features, is also utilized to
compute the association of every keyframe region with local concepts of the
domain ontology. Similarly to the global case, an individual SVM is introduced
for every local concept CL

j , to detect the corresponding association.
For that purpose, a training process similar to the one performed for the global

concepts is followed. The differences are that now the region feature vector, as
defined in Section 4, is utilized and that each SVM returns a numerical value
in the range [0, 1] which in this case denotes the degree of confidence to which
the corresponding segment is assigned to the local concept associated with the
particular SVM. The respective metric adopted for expressing this degree is
defined as follows: Let hL

ij = IM (gij) denote the degree to which the visual
descriptors extracted for segment si match the ones of local concept CL

j , where
gij represents the particular assignment of CL

j to si. Then, IM (gij) is defined as

IM (gij) =
1

1 + e−t·zij
, (2)

where zij is the distance from the corresponding SVM’s separating hyperplane
for the input feature vector used for evaluating the gij assignment. The pairs of
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all supported local concepts of the domain ontology and their respective degree
of confidence hL

ij computed for segment si comprise the segment’s local concept
hypotheses set HL

i , where HL
i = {hL

ij , j = 1, ...J}.
After the local concept hypotheses sets, HL

i , are generated for every keyframe
region si, a decision function, which is defined in the multimedia ontology, is
introduced for realizing the global concept association based on local features,
i.e. estimating the global concept assignment for every keyframe on the basis of
the local concept hypotheses sets of its constituent regions:

d(CG
r ) =

∑

si, where CL
j ⊂CG

r

IM (gij) · (ar · freq(CL
j , CG

r ) + (1 − ar) · area(si))(3)

where ⊂ denotes the ‘isLocalConceptOf’ property (already defined in the mul-
timedia ontology), area(si) is the percentage of the frame area captured by
region si and freq(CL

j , CG
r ) is the frequency of appearance of local concept CL

j

with respect to the global concept CG
r of the domain ontology. The latter is de-

noted by the ‘hasFrequencyOfAppearance’ property of the Multimedia ontology,
as already described in Section 3. Regarding the computation of its value, the
keyframe set, Qtr, assembled as described in Section 7, is utilized. The reported
frequency of appearance of each local concept CL

j with respect to the global con-
cept CG

r , freq(CL
j , CG

r ), is defined as the percentage of the keyframes associated
with the global concept CG

r where the local concept CL
j appears. The computed

values are stored in the multimedia ontology. Parameters ar are introduced for
adjusting the importance of the aforementioned frequencies against the regions’
areas for every defined global concept. Their values are estimated according to
the procedure described in Section 6.

5.3 Information Fusion for Final Keyframe-Concept Association

After global concept association has been performed using global-, hG
r , and local-

level, d(CG
r ), information, a fusion mechanism is introduced for deciding upon

the final global concept association for every keyframe. This has the form of a
weighted summation, based on the following equation:

D(CG
r ) = μr · d(CG

r ) + (1 − μr) · hG
r (4)

where μr, r = 1, ..., R are global-concept-specific normalization parameters,
which adjust the magnitude of the global features against the local ones upon
the final outcome and their values are estimated according to the procedure
described in Section 6. The global concept with the highest D(CG

r ) value consti-
tutes the final global concept association for every keyframe and consequently
the semantic annotation of the respective video shot.

6 Optimizing Information Fusion

In Sections 5.2 and 5.3, variables ar and μr are introduced for adjusting the im-
portance of the frequency of appearance against the frame region’s area and the
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global- against the local-level information on the final global concept association
decision, respectively. A GA is employed for estimating their values (Section 2).

Initially, the keyframe set Qtr, that was assembled as described in Section 7,
is divided into two equal in terms of amount subsets, namely a sub-training Q2

tr

and a validation Q2
v set. Q2

tr is used for training the employed SVMs framework
and Q2

v for validating the overall system global concept association performance
during the optimization process.

Subject to the problem of concern is to compute the values of parameters
ar and μr that lead to the highest correct global concept association rate. For
that purpose, Global Concept Association Accuracy, GCAA, is used as a quan-
titative performance measure and is defined as the fraction of the number of
the keyframes that are associated with the correct global concept to the total
number of keyframes to be examined.

Under the proposed approach, each chromosome F represents a possible so-
lution, i.e. a candidate set of values for parameters ar and μr. In the current
implementation, the number of genes of each chromosome is predefined and set
equal to 2 · r · 2 = 4 · r. The genes represent the decimal coded values of parame-
ters ar and μr assigned to the respective chromosome, according to the following
equation:

F ≡ [ f1 f2 ...f4·r ] = [μ1
1 μ2

1...μ
1
r μ2

ra
1
1 a2

1...a
1
r a2

r ] (5)

where fk ε {0, 1, ...9} represents the value of gene k and μq
p, aq

p represent the
qth decimal digit of variable μp, ap, respectively. The genetic algorithm is pro-
vided with an appropriate fitness function, which denotes the suitability of each
solution. More specifically, the fitness function W (F ) is defined as equal to the
GCAA metric already defined, W (F ) ≡ GCAA(F ), where GCAA(F ) is calcu-
lated over all keyframes that comprise the validation set Q2

v, after applying the
fusion mechanism (Section 5.3) with parameter values for ar and μr denoted by
the genes of chromosome F .

Regarding the GA’s implementation details, an initial population of 50 ran-
domly generated chromosomes is employed. New generations are iteratively pro-
duced until the optimal solution is reached. Each generation results from the
current one through the application of the following operators:

– Selection: a pair of chromosomes from the current generation are selected
to serve as parents for the next generation. In the proposed framework, the
Tournament Selection Operator [10], with replacement, is used.

– Crossover: two selected chromosomes serve as parents for the computation
of two new offsprings. Uniform crossover with probability of 0.2 is used.

– Mutation: every gene of the processed offspring chromosome is likely to be
mutated with probability of 0.4.

To ensure that chromosomes with high fitness will contribute to the next gen-
eration, the overlapping populations approach was adopted. More specifically,
assuming a population of m chromosomes, ms chromosomes are selected ac-
cording to the employed selection method, and by application of the crossover
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and mutation operators, ms new chromosomes are produced. Upon the resulting
m + ms chromosomes, the selection operator is applied once again in order to
select the m chromosomes that will comprise the new generation. After exper-
imentation, it was shown that choosing ms = 0.4m resulted in higher perfor-
mance and faster convergence. The above iterative procedure continues until the
diversity of the current generation is equal to/less than 0.001 or the number of
generations exceeds 30. The final outcome of this optimization procedure are
the optimal values of parameters ar and μr, used in Eq. 3 and 4, and which are
stored in the Multimedia ontology.

7 Experimental Results

In this section, experimental results of the application of the proposed approach
to videos belonging to the disaster news domain are presented. The first step
to the application of the presented approach for semantic video analysis is the
development of the appropriate knowledge infrastructure for representing the
knowledge components that need to be explicitly defined, as described in detail
in Section 3. Regarding the particular domain of experimentation, an individual
domain ontology was developed. This defines the domain concepts of concern,
their separation into global and local ones, and the relations among them. The
taxonomy of these concepts for the selected domain is depicted in Fig. 4.

Regarding the tasks of SVMs training, parameter optimization and evaluation
of the proposed system performance, a number of keyframe sets needs to be
formed. More specifically, a set of 400 keyframes, Q, that were extracted from
respective disaster news videos according to the procedure described in Section
4 and include global concepts of the developed domain ontology, was assembled.
Each keyframe was manually annotated (i.e. assigned to a global concept and,
after segmentation is applied, each of the resulting frame regions associated with
a local concept of the domain ontology). This set was divided into two equal in
terms of amount sub-sets, Qtr and Qte. Qtr was used for training purposes, while
Qte served as a test set for the evaluation of the proposed system performance.

According to the SVMs training process (Section 5), a polynomial function
was used as a kernel function by each SVM for both global and local concept
association cases. The respective low-level frame and region feature vector are
composed of 405 and 445 values respectively, normalized in the interval [−1, 1].

Local
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Fig. 4. Taxonomy of Domain Concepts: The arcs denote the ‘isGlobalConceptOf’ prop-
erty, which connects the domain concepts in terms of multimedia evidence
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The disaster news videos to be analyzed, were initially temporally segmented
and corresponding keyframes were extracted, following the procedure described
in Section 4. Then, based on the trained SVMs structure, keyframe-concept as-
sociation based on global level features is performed, as described in Section 5.1.
In parallel, after spatial segmentation is applied to the extracted keyframes, local
concept hypotheses are generated for each frame segment and a decision func-
tion realizes keyframe-concept association based on local features (Section 5.2).
Afterwards, the approach described in Section 5.3 is employed for implementing
the fusion of the global and the local features based keyframe-concept associa-
tion information and computing the final keyframe-concept assignment for every
keyframe, which in turn constitutes the semantic interpretation of the respec-
tive video shot. The values of the fusion mechanism parameters are estimated
according to a GA-based optimizer (Section 6).

In Fig. 5 indicative keyframe-concept association results are presented, show-
ing the extracted keyframe, the keyframe-concept association using only global
(row 2) and only local (row 3) information and the final keyframe-concept as-
signment after the implementation of the fusion mechanism. Additionally, in
Fig. 6 exemplary region-concept association results are presented, showing the
extracted keyframe (row 1) and, after spatial segmentation is applied, the as-
sociation of the local concepts of the domain ontology (row 2). Furthermore, in
Table 1, the respective quantitative performance measures for every individual
algorithm are given in terms of accuracy for each global concept and overall. Ac-
curacy is defined as the percentage of the keyframes that are associated with the
correct global concept. From the results presented in Table 1, it can be verified

Table 1. Keyframe-Concept Association Accuracy

Accuracy

Method Earthquake Fire Flood Overall
Keyframe-Concept Association
Using Global-Level Information 93.75% 98.08% 72.13% 86.96%

Keyframe-Concept Association
Using Local-Level Information 83.33% 75.00% 59.02% 71.43%

Keyframe-Concept Association
Using Information Fusion 93.75% 94.23% 91.80% 93.17%
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Extracted
Keyframe

Region-Concept
Association

Fig. 6. Indicative Region-Concept Association Results

that the keyframe-concept association based only on global information generally
outperforms the respective association based only on local information. Further-
more, it must be noted that the proposed global and local features information
fusion approach leads to a significant performance improvement, compared to
the keyframe-concept association based solely on global or local features.

8 Conclusions

In this paper, an ontology-driven approach to semantic video analysis that is
based on the notion of the Visual Information Object was presented. The pro-
posed framework can easily be extended or applied to additional domains, pro-
vided that the employed knowledge infrastructure is appropriately modified and
that the utilized training set is enriched with suitable training samples. Future
plans include the introduction of audio signal processing tools and text analysis
algorithms, so that the entire capabilities of the developed framework can be
fully exploited and multi-modal semantic multimedia analysis is realized.
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