A Learning Approach to Semantic Image Analysis
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Abstract—In this paper, a learning approach coupling Support descriptor derivation and symbolic inference.
Vector Machines (SVMs) and a Genetic Algorithm (GA) is D di the adooted k led isiti d
presented for knowledge-assisted semantic image analysis in epending on the adopied knowledge acquisition and repre-

specific domains. Explicitly defined domain knowledge under the Sentation process, two types of approaches can be identified in
proposed approach includes objects of the domain of interest the relevant literature: implicit, realized by machine learning
and their spatial relations. SVMs are employed using low- methods, and explicit, realized by model-based approaches.
level features to extract implicit information for each object of e ygage of machine learning techniques has proven to be
interest via training in order to provide an initial annotation of bust thodol for di . | lati hi
the image regions based solely on visual features. To account® ro_us metho 0093’ or discovering (_:om_p €x relationships
for the inherent visual information ambiguity, fuzzy spatial and interdependencies between numerical image data and the
relations along with the previously computed initial annotations ~perceptually higher-level concepts. Moreover, these elegantly
are supplied to a genetic algorithm, which decides on the globally handle problems of high dimensionality. Among the most
most _plau5|ble annotation. Experiments with images of the beach commonly adopted machine learning techniques are Neural
vacation domain demonstrate the performance of the proposed . .
approach. Networks (NNs), Hidden Markov Models (HMMs), Bayesian
Networks (BNs), Support Vector Machines (SVMs) and Ge-
|. INTRODUCTION netic Algorithms (GAs) [4][5]. On the other hand, model-

) based image analysis approaches make use of prior knowledge
Recent advances in both hardware and software technqipine form of explicitly defined facts, models and rules, i.e.

gies have resulted in an enormous increase of the images m% provide a coherent semantic domain model to support
are available in multimedia databases or over the internet. ASsual” inference in the specified context [6][7]

their effective and efficient manipulation has emerged. To thisﬁ‘ this paper, a semantic image analysis approach is pro-
end, several approaches have been proposed in the literaRed that combines two types of learning algorithms, namely
regarding the tasks of indexing, searching and retrieval 8VMS and GAs, with explicitly defined knowledge in the
images [1][2]. form of an ontology that specifies domain objects and fuzzy
The very first attempts to address these issues concentratgtial relations. SVMs are employed for performing an initial
on visual similarity assessment via the definition of appropriald@PPing between low-level visual features and the domain
quantitative image descriptions, which could be automaticaPiects in the ontology (i.e. generating an initial hypothesis
extracted, and suitable metrics in the resulting feature spatgt fOr every image region) at the region level, whereas a
Coming one step closer to treating images the way humafé 1S subsequently used to optimize this mapping over the
do, these were later adapted to a finer granularity |evgqt|r9 image, while taking into accounF spatial relations. Ap
making use of the output of segmentation techniques applid¢fation of the proposed approach to images of the specified
to the image [1]. Whilst low-level descriptors, metrics angomain resglts in the generatlon'of fine grqnulanty sgmantlc
segmentation tools are fundamental building blocks of af§Presentations, i.e. a segmentation map with semantic labels
image manipulation technique, they evidently fail to fullfittached to each segment, by employing high level reasoning

capture by themselves the semantics of the visual mediutfchniques. These initial labels can be used to infer additional

achieving the latter is a prerequisite for reaching the desirkgowledge.

level of efficiency in image manipulation. To this end, research The paper is organized as follows: Section Il presents
efforts have concentrated on the semantic analysis of ithe overall system architecture. Sections Il and IV describe
ages, combining the aforementioned techniques witiriori the employed low- and high-level knowledge respectively.
domain specific knowledge, so as to result in a high-lev€lections V and VI detail individual system components. Ex-
representation of images [2]. Domain specific knowledge perimental results for the beach vacation domain are presented
utilized for guiding low-level feature extraction, higher-leveln Section VII and conclusion are drawn in Section VIII.
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Fig. 1. System Architecture to the guidelines provided by the MPEG-7 eXperimentation
Model (XM) [13]. The above descriptors are extracted for
every computed image segment and are combined in a single
feature vector. This vector constitutes the input to the SVMs

The overall architecture of the proposed system for semanfiigmework which computes the initial hypothesis set for every
image analysis is illustrated in Fig. 1. Initially, a segmentatioffgment, as will be described in Section V.
algorithm is applied in order to divide the given image into ] . ]
regions, which are likely to represent meaningful semantic oB- Fuzzy spatial relations extraction
jects. Then, for every resulting segment, low-level descriptionsgxploiting domain-specific spatial knowledge in image ana-
and spatial relations are estimated, the latter according to {&is tasks is a common practice among the object recognition
relations supported by the domain ontology. community. It is generally observed that objects tend to be
Estimated low-level descriptions for each region are emresent in a scene within a particular spatial context and
ployed for generating initial hypotheses regarding the regionisus spatial information can substantially assist in discrimina-
semantic label. This is realized by evaluating the compoufilg between objects exhibiting similar visual characteristics.
low-level descriptor vector by a set of SVMs, each trained f@mong the most commonly adopted spatial relations, direc-
identify instances of a single concept defined in the ontologional ones have received particular interest. They are used to
SVMs were selected for this task due to their generalizatieienote the order of objects in space. In the present analysis
ability and their efficiency in solving high-dimensionalityframework, eight fuzzy directional relations are supported,
pattern recognition problems [8][9]. namelyNorth (N), East (E), South(S), West(W), South-East
The generated hypothesis sets for each region with t{&5, South-WestSW, North-East(NE) andNorth-Wes{NW).
associated degrees of confidence for each hypothesis alonguzzy directional relations extraction in the proposed analy-
with the spatial relations computed for every image segmests approach builds on the principles of projection- and angle-
are subsequently employed for selecting a globally optimal $gised methodologies [14][15] and consists of the following
of semantic labels for the image regions by introducing them &eps. First, areduced boxis computed from theground
a genetic algorithm. The choice of a GA for this task is basefbject’s (the object used as reference and is pointed in dark
on its extensive use in a wide variety of global optimizatiogrey in Fig. 2) Minimum Bounding Rectangle (MBR) so
problems [10], where they have been shown to outperforsg to include the object in a more representative way. The
traditional methods, and is further endorsed by the auth@smputation of thiseduced boxs performed in terms of the
previous experience [11], which showed promising results. MBR compactness value, which is defined as the value of
the fraction of the objects’s area to the area of the respective
I1l. L OW-LEVEL VISUAL INFORMATION PROCESSING MBR: If the initially computedc is below a threshold, the
ground objects’s MBR is reduced repeatedly until the desired
threshold is satisfied. Then, eight cone-shaped regions are
In order to implement the initial hypothesis generatioformed on top of this reduced box, as illustrated in Fig. 2,
procedure, the examined image has to be segmented iaézh corresponding to one of the defined directional relations.
regions and suitable low-level descriptions have to be extractelde percentage of théigure object (whose relative position
for every resulting segment. In the current implementation, & to be estimated and is pointed in light grey in Fig. 2)
extension of the Recursive Shortest Spanning Tree (RS$Djints that are included in each of the cone-shaped regions
algorithm has been used for segmenting the image [12]. determines the degree to which the corresponding directional
Considering low-level descriptions, specific descriptors oélation is satisfied. After extensive experimentations, the value
the MPEG-7 standard have been selected, namelgt¢htable of thresholdT was set equal t6.85

Il. SYSTEM OVERVIEW

A. Segmentation and feature extraction



IV. KNOWLEDGE INFRASTRUCTURE the distanceD from the corresponding SVM’s separating

Among the possible domain knowledge representations, g}y_perplane is initially_ palgulated. This d_istance is .positive in
tologies [16] present a number of advantages, the most impﬁﬁse qf corrept cIassnjcatmn and negative otherwise. Then, a
tant being that they provide a formal framework for supportingdmoid function [17] is employed to compute the degree of
explicit, machine-processable semantics definition and thegnfidenceDOC, as follows:
enable the derivation of new knowledge through automated
inference. Thus, ontologies are suitable for expressing multi- DOC = 1 =, (3)
media content semantics so that automatic semantic analysis L4em
and further processing of the extracted semantic descriptiomgere the slope parameteris experimentally set. The pairs of
is allowed. Following these considerations, a domain ontolo@l domain concepts and their respective degree of confidence
was developed for representing the knowledge componeg@nprise each segment’s hypothesis set. The above SVM
that need to be explicitly defined under the proposed approagtiucture was realized using the SVM software libraries of
This contains the semantic concepts that are of interest in {A8].
examined domain (e.g. in the bgach yacation domain: Sea, VI
Sand, Person, etc.), as well as their spatial relations. The value . . . o
of the latter for the concepts of the given domain, as opposed t s outlined in Septlon Il, after the initial set O.f hypotheses
concepts themselves that are manually defined, are estimate enerated (Sect!on V), _based solely on visual feature_s,
according to the following ontology population procedure: anc the fuzzy spatial relat|0ns are compu_ted for every pair

LetS = {si, i = 1,.., N} denote the set of regions.Of image segments (Section 11I-B), a genetic algorithm (GA)

produced for an image by segmentatiéh= {o; , j =1, ...} '_? |ntéo:l_1ced tci decéu:e onl the ortgn]al |r?age Lpterpre:)e:uon.

denote the set of objects defined in the employed domaipl.e 'S employed o solve a global optimization probiem,
while exploiting the available domain spatial knowledge, and

ontology and ) . . . . T
thus overcoming the inherent visual information ambiguity.
Spatial knowledge is obtained as described in Section IV and

R={ry, k=1,..,.K} = (1) the resulting learnt fuzzy spatial relations serve as constraints
—{ N, NW, NE, S, SW, SE, W, E} @) denoting the “allowed” domain objects spatial topology.

. HYPOTHESIS REFINEMENT

denote the set of supported spatial relations. Then, theFuzzy spatial constraints verification factor.
degree to whichs; satisfies relation-;, with respect tos; Let
can be denoted a5, (s;, s;), where the values of function N N
I,, are estimated accordirjlg to the procedure of Section 1lI-B T (giy) = DOCiy )
and belong t0[0, 1]. To populate the ontology, this functiondenote the degree to which the visual descriptors extracted for
needs to be evaluated over a set of segmented images wigments; match the ones of object;, whereg;; represents
ground truth annotations, that serves as a training set. Méhe particular assignment of to s;. Thus,I(gi;) gives the
specifically, the mean values,, ..., of I, are estimated, for degree of confidencd)OC;;, associated with each hypothesis
every k over all region pairs of segments assigned to objecasd takes values in the intervl, 1].
(0i,04), 1 # 7, and are stored in the ontology. These constitute Then, the function/s (gi;, g,,) is defined as one that
the constraints input to the optimization problem which igeturns the degree to which the spatial constraint between the
solved by the genetic algorithm, as will be described in Sectig;, g, Object to segments mappings is satisfied(g;;, gpq)
VI. is set to receive values in the interJal 1], where 1’ denotes
an allowable relation and)* denotes an unacceptable one,
V. INITIAL HYPOTHESIS GENERATION based on the learnt spatial constraints. To calculate this value
As already described in Section II, a Support Vector Mahe following procedure is used:
chines (SVMs) structure is utilized to compute the initial L€t I, (su, s,) denote the degrees to which each spatial
hypothesis set for every image segment. Specifically, an inf@lation is verified for a certain pair of segments, s,
vidual SVM is introduced for every defined concept of the en®f the examined image and,, o; denote the domain de-
ployed domain ontology, to detect the corresponding instancBged concepts assigned to them respectively. A normalized
Each SVM is trained under theone-against-all’ approach. €uclidean distancé(g.s, g.+) is calculated, with respect to
For that purpose, the training set assembled in Section IVt¢ corresponding spatial constraint, as introduced in Section
employed and the combined region feature vector, as defirl& based on the following equation:
in Section llI-A, constitutes the input to each SVM. For the

purpose of initial hypothesis generation, every SVM returns a 8 (1 _r 9
numerical value in the rangj®, 1] which denotes the degreeq(g,,., g,) = \/Z’“ZI( rumean(9s: 0t) — I (Su, 50)) G
of confidence to which the corresponding segment is assigned V8

to the concept associated with the particular SVM. The metricwhich receives values in the intervfl, 1]. The function
adopted is defined as follows: For every input feature vectds (g.s, g.:) is then defined as:



« Crossover: two selected chromosomes serve as parents
for the computation of two new offsprings. Uniform

Is (Guss gor) = 1= d(us, gur) (6) crossover with probability 06.7 is used.
and takes values in the intenvial, 1] as well. . Mutati(.)n:.every gene of the progessed off§pring chromo-
some is likely to be mutated with probability 6f008.
Implementation of genetic algorithm. If mutation occurs for a particular gene, then its corre-

As has already been described, the proposed algorithm sponding valug is modified, while keeping unchanged the
uses as input the initial hypothesis sets (generated by the degree of confidence.
SVMs structure), the fuzzy spatial relations extracted betweenT0 ensure that chromosomes with high fitness will con-
the examined image segments, and the spatial-related doniélite to the next generation, the overlapping populations ap-
knowledge as produced by the particular training proceg§oach was adopted. More specifically, assuming a population
Under the proposed approach, each chromosome represéhte chromosomesi, chromosomes are selected according
a possible solution. Consequently, the number of the geriésthe employed selection method, and by application of the
comprising each chromosome equals the numienf the Crossover and mutation operators, new chromosomes are
segments; produced by the segmentation algorithm and eaéfioduced. Upon the resultings + m; chromosomes, the
gene assigns a defined domain concept to an image segmeglection operator is applied once again in order to select

A population of 200 chromosomes is employed, and ithe m chromosomes that will comprise the new generation.
is initialized with respect to the input set of hypotheseé\fter experimentation, it was shown that choosing = 0.4m
An appropriatefitness functionis introduced to provide a resulted in higher performance and faster convergence. The
quantitative measure of each solution fitness, i.e. to determifgove iterative procedure continues until the diversity of the

the degree to which each interpretation is plausible: current generation is equal to/less thaf01 or the number
of generations exceeds).
f(C) = AX FSnorm + (1 - A) X Sarw’rm 5 (7)
VII. EXPERIMENTAL RESULTS

where ' denotes a particular chromosontes,.., refers |, his section, we present experimental results from testing
to the degree of low-level descriptors matching, &@.o.m  the proposed approach in the domain of beach vacation
stands for_the degree of consistency W|th re.sp.ect to the pﬁch'ages. First, a domain ontology had to be developed to
vided spatial domain knowledge. The varialés introduced IrieEeresent the domain objects of interest and their relations.

to adjust the degree to which visual features matching apg concepts are currently supported, nan&#y Sea Sand
spatial relations consistency should affect the final outcomg,qperson

After thorough experimentation\ was set t00.35, which
points out the importance of spatial context.

The values ofSC,,.., and FS,
follows:

Then, a set off0 randomly selected images belonging to
the beach vacation domain were used to assemble a training
orm @re computed as get for the low-level implicit knowledge acquisition (SVMs

training) and computation of the fuzzy spatial constraints.
A corresponding set od00 images was similarly formed to
Zi\’zl Ini(9ij) = Imin serve as a test set for the evaluation of the proposed system
) (8) performance. Each image of the training/test set was manually
annotated according to the domain ontology definitions.
where Iy, = SN | min;1,,(gi;) is the sum of the mini-  According to the SVMs training process, a set of instances
mum degrees of confidence assigned to each region hypotheges selected for every defined domain concept from the

anorm =

Im(m? - InLin

set and I,uar = Soiv maz;l,(gi;) is the sum of the assembled training image set. The Gaussian radial basis fun-
maximum degrees of confidence values respectively. ction was used as a kernel function by each SVM, to allow
for nonlinear discrimination of the samples. The low-level

S I (951 9va) combi_ned feature vector, as described @n de_tail in_Section
SCrorm = ==L IZ/V CAKAG Ta (9) IlI-A, is composed of 433 values, normalized in the interval

[-1,1]. On the other hand, for the acquisition of the fuzzy
wherelV denotes the number of the constraints that had épatial constraints, the procedure described in Section IV was
be examined. followed for each possible combination of the defined domain
After the population initialization, new generations ar@pjects that were present in the employed image training set.
itel’atively produced until the Optlmal solution is reached. Each Based on the trained SVMs Structure' initial hypotheses are
generation results from the current one through the applicatigénerated for each image segment as described in Section V,
of the following operators. which are then passed in the genetic algorithm along with the
« Selection: a pair of chromosomes from the current gefuzzy spatial constraints in order to determine the globally
eration are selected to serve as parents for the nextimal interpretation. In Fig. 3 indicative results are given
generation. In the proposed framework, the Tournamesttowing the input image, the annotation resulting from the
Selection Operator [19], with replacement, is used. initial hypotheses set, considering for each image segment the



domain ontology is defined and the corresponding training sets
are formed.
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