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Abstract

This survey considers the vision of TV broadcasting where content is
personalised and personalisation is data-driven, looks at the AI and data
technologies making this possible and surveys the current uptake and
usage of those technologies. We examine the current state-of-the-art in
standards and best practices for data-driven technologies and identify
remaining limitations and gaps for research and innovation. Our hope
is that this survey provides an overview of the current state of AI and
data-driven technologies for use within broadcasters and media organisa-
tions. It also provides a pathway to the needed research and innovation
activities to fulfil the vision of data-driven personalisation of TV content.

Keywords: Broadcasting, Data-driven TV, Deep Learning, Media Analysis,
Media Annotation, Personalisation, Recommendation

1 Introduction

The world of television broadcasting has changed fundamentally in the past
decades. The Web introduced the most significant change for TV content dis-
tribution since the introduction of colour. As soon as broadband connections
were available, audiovisual content could be streamed to Internet-connected
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devices and TV gradually shifted online. The combination with Web technolo-
gies, especially unicast IP, meant “broadcast” did not have to be “multicast”,
and individual viewers could choose what they want to watch when they want
to watch it. We are now entering the next phase of the future of television where
not only the choice of program can be personalised to the individual viewer
but the content of that program can be adapted to each one. In the broad-
casting industry, data-driven personalisation will be critical to compete with
the ever-growing number of amateur and semi-professional content producers
online.

Data-driven personalisation refers to the adaptation and delivery of TV
content to viewers according to their interests and preferences as well as con-
nected to trending and emerging topics of interest among the target audience.
It presents the opportunity to both gain and retain an audience in the light
of persistent online competition due to the increased relevance and usefulness
of the content to the viewer. It is made possible by the digitisation of media
resources and the growing production and use of data in describing, under-
standing, processing and re-using those resources along the whole media value
chain (from content creation through to delivery). Despite the presence of this
data being created by various software tools as content moves along the media
value chain, the full value that is possible in the re-use of this data for later
steps in the value chain is not being exploited. Typically data produced at one
step is meant only for that same step, or maybe the output from one step acts
as the input for the next step. However, e.g. data from the content production
process is not readily available for exploitation in the content delivery step.
Furthermore, effective personalisation of content needs data beyond the “low
level” technical metadata of content processing tools. It needs annotation in
terms of higher-level “semantic” concepts which can be understood by com-
puter systems due to their descriptions within knowledge representations (such
as ontologies or graphs). The presence of semantic descriptions of resources
supports improved resource management, discovery, combination and re-use,
especially when combined with state-of-the-art Artificial Intelligence (AI) tech-
niques, such as deep neural networks. In short, data-driven personalisation of
TV content can only be a reality when the latest innovations in AI and data-
centric technologies can be taken up by broadcasters, applied to their media
collections and supported by a new set of software applications that can exploit
data (aided by shared standards and specifications) to re-purpose and per-
sonalise their audiovisual content according to their audience. In this survey
paper, we look at the state-of-the-art in the technological innovations needed
for data-driven personalisation of TV content, the software applications that
support the uptake of these technologies within media organisations, standards
and best practices around these applications and technologies, and identify
remaining limitations and gaps for research and innovation. Our hope is that
this survey can encourage both more uptake of current solutions within the
media industry as well as point to the research and innovation activities still
needed to fulfil the vision of data-driven personalisation of TV content.
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Fig. 1 Illustration of technologies in an example data-driven TV personalisation framework

The rest of the paper is structured as follows: In Section 2 we review vari-
ous classes of technologies from the scientific literature that can contribute to
data-driven TV personalisation. Moving from the purely scientific literature
to more applied science, Section 3 surveys on deployable applications which
contribute to the vision of data-driven personalised TV experience, i.e. rele-
vant tools and Web services, including such tools and services that integrate
technologies discussed in Section 2. Section 4 presents the use of standards
defined to support activities in the media trading and value chain, which can
be utilised in enabling data-driven personalised TV. Section 5 discusses the
current open problems for all technologies and standards, proposing future
research and innovation directions. Finally, concluding remarks are given in
Section 6.

2 Technologies

In this section, we look at the state-of-the-art in various classes of technologies
that are needed for data-driven personalisation of TV content, as illustrated
in Fig. 1:

• TV content decomposition: temporal video fragmentation; object detec-
tion.

• TV content annotation: classification of media assets; annotation with
classes or instances.

• TV content re-purposing: finding the right content (incl. cross-modal rep-
resentation and retrieval); transforming the content (incl. video summa-
rization, highlight-detection, super-resolution, aspect-ratio adaptation).

• TV content personalisation: in-stream personalisation, incl. changing
content, insertion of content inside streams.
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Fig. 2 An example video fragmentation to various levels of granularity

2.1 TV content decomposition

Fine-grained access to video materials is the key to their subsequent person-
alisation. Similarly to text documents, that can be decomposed into chapters,
paragraphs, sentences and words, videos can be decomposed into hierarchi-
cally structured temporal segments (Section 2.1.1), as well as be spatially
segmented to objects (Section 2.1.2). By discovering the structure of the video,
its subsequent understanding and re-purposing is facilitated.

2.1.1 Temporal video fragmentation

Temporal video fragmentation deals with the identification of the underlying
temporal structure of the video. It can consider various levels of granularity,
but most often starts by detecting the elementary building blocks of an edited
video, called shots, which are defined as sequences of frames captured uninter-
ruptedly with the use of a single camera [1]. Temporal video fragmentation is
usually the first necessary step in a video analysis pipeline.

Early shot-detection methods used hand-crafted features and rules based
on colour characteristics [2–4] and/or local image descriptors [1, 5, 6]. Due to
the success of deep learning in various fields of computer vision, more recent
efforts are based on the use of deep Convolutional Neural Networks (CNNs).
One of the first learning-based approaches is SBD [7], which employs spatio-
temporal CNNs. As shot boundary detection training datasets at that time
were not adequately large to optimally train a deep CNN, taking into consid-
eration the data-hungry nature [8] of most deep-learning-based methods, [7]
aimed to alleviate this by introducing a new dataset containing more than 3.5
million frames of videos that included abrupt and gradual transitions. Another
notable work is [9], which introduces two novelties: i) the use of a 3D con-
volutional architecture, and ii) a technique to artificially create training data
which essentially involves taking a raw video, shortening it, and combining the
detected video shots with some type of transition. [9] achieves impressive effi-
ciency even to this day, with a reported speed of over 120x real-time (real-time
referring to the duration of the video being processed). Finally, one of the most
recent shot-boundary detection methods is TransNetV2 [10], which is based on
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Fig. 3 A taxonomy of object detection methods

the TransNet [11] and enhances it by introducing a pre-processing step where
a resized input sequence of frames is initially processed with dilated deep CNN
cells [12]. TransNetV2 achieves state-of-the-art results on standard benchmark
datasets, i.e. ClipShots [13], BBC Planet Earth [14] and RaiSceneDetection 1.

Apart from shot-boundary detection, a coarser level of fragmentation (see
Fig. 2) is the identification of scenes [15]. These are semantically coherent
time segments that are formed by grouping consecutive shots. The literature
on scene-boundary detection is relatively limited compared to shot-boundary
detection. Indicative works include: [15, 16], which utilise multi-modal fea-
tures to better group shots into scenes; [17, 18], which employ parameter-free
deep neural networks eliminating the need for fine-tuning for different types
of content. Finally, on the finer side of fragmentation, shots with dynamic and
gradually changing visual content can be decomposed into smaller and visu-
ally coherent parts, to produce an even more detailed segmentation of the
video. These parts are commonly referred to as sub-shots [19]. Shot-boundary
detection methods most commonly suffice for the temporal segmentation of a
TV program. Contrarily, sub-shot-boundary detection is more appropriate for
one-shot user-generated content, while scene-boundary detection results are
rather coarse to optimally support fine-grained content annotation and re-use.
Additionally, shot segmentation is practically a solved problem, with numerous
very well-performing CNN-based methods having been developed, as discussed
above. For these reasons, shot detection is both an ideal technology and a
typical first step in the analysis of a TV program.

2.1.2 Object detection

Object detection deals with identifying objects in an image. The object detec-
tion task can be further broken down to two individual sub-tasks, specifically:
i) localising an arbitrary number of candidate objects (detection task), ii) clas-
sifying each candidate object, i.e. assigning a label to it (classification task).
Object detection can also support the higher-level task of class-based annota-
tion, such as recognising brand logos in a TV program (and thus annotating
assets with the identified TV channel), cf. Subsection 2.2.2.

Older iconic works that ignited the development of traditional object detec-
tion methods include the Viola–Jones object detection framework based on

1https://aimagelab.ing.unimore.it/imagelab/researchActivity.asp?idActivity=19

https://aimagelab.ing.unimore.it/imagelab/researchActivity.asp?idActivity=19
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Haar features [20], the object detection scheme using the Scale Invariant Fea-
ture Transform (SIFT) proposed in [21] that inspired multiple works on object
detection using local descriptors, and DPM [22] that first introduced bound-
ing box regression. In the last few years, the rapid advances of deep learning
techniques have greatly accelerated advances in object detection. Employing
deep networks and harnessing the computing power of modern GPUs, the per-
formance and accuracy of object detector frameworks have greatly improved.
The deep-learning-based methods can be categorised into two main types (see
Fig. 3): i) one-stage, and ii) two-stage. Two-stage algorithms follow a more tra-
ditional object detection pipeline, generating region proposals at first and then
classifying each proposal into different object categories. In general, methods
of this category achieve the highest detection accuracy while one-stage object
detectors prioritise inference speed.

Considering the two-stage object detection framework, early methods
adopt a region-proposal-based approach; such methods include R-CNN [23]
and improved variants of it, e.g. Fast R-CNN [24] and Faster R-CNN [25]. The
most recent evolution of the region proposal family of methods is G-RCNN [26],
which achieves more accurate extraction of object regions by incorporating the
concept of granulation [27] in a deep CNN.

Regarding one-stage methods, their main difference to the two-stage ones
is that the region proposal stage is skipped and the detection is carried out
directly over a dense sampling of possible locations. An iconic technique in
this area is YOLO [28], which only predicts over a limited number of bound-
ing boxes. The whole detection pipeline is designed as a unified single network
and is optimised in an end-to-end fashion. Several performance upgrades
resulted in enhanced versions, namely the YOLOv2, a.k.a. YOLO9000 [29],
and YOLOv3 [30]. SSD [31] is another one-stage detector and one of the
first attempts at using CNN’s pyramidal feature hierarchy for the efficient
detection of objects of various sizes. While YOLO and SSD are amongst the
fastest methods [32], there are other works that focus on improving accuracy.
In RetinaNet [33] it is argued that the main problem of one-stage detection
frameworks, regarding their accuracy, is that many negative examples (i.e.
the background class, where no object is detected) are used in the training
process. They introduce “focal loss”, where the contribution of these easy neg-
ative samples to the learning procedure of the model is weighed down so as
not to dominate the loss, thus leading the learning to concentrate on the few
interesting cases.

Recently, both categories of object detection methods (i.e. one-stage and
two-stage) have leveraged deep learning models derived from neural architec-
ture search, a technique that lets machines optimise not only the weights but
also the structure of the deep network. Early results of neural architecture
search efforts on the task of image annotation, including EfficientNets [34], were
found to achieve state-of-the-art accuracy with an order of magnitude fewer
parameters. Inspired by the success of EfficientNets, such design approaches
were also employed for object detection, proposing several key optimizations
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that resulted in EfficientDets [35]. EfficientDets achieve a step-up of 1.5 points
from the prior state-of-the-art on the standard object detection benchmark
dataset Microsoft COCO [36], while being 4x-9x smaller and 2x-4x faster.
Along with EfficientDets, among the most recent and top-performing works are
YOLOv4 [37], employing numerous improvements and optimizations over the
previous version of the same family, and the most recent YOLOR [38], which
proposes a unified network to encode implicit and explicit knowledge together,
in an attempt to mimic the human brain. Analysing the related literature,
one can observe that the performance gap between one-stage and two-stage
methods is closing, therefore the faster one-stage methods are now very promis-
ing for use in a computational resource-conscious pipeline for data-driven TV
content personalisation.

A sub-domain of object detection that goes one step further in the direc-
tion of finer-grained spatial localization of objects is semantic segmentation.
Such methods detect for each pixel the object category that it belongs to;
thus, instead of generating a bounding box for a detected object, the input
video frame is segmented to arbitrary regions, each denoting an object. Image
semantic segmentation was first introduced by [39] which employed a fully
convolutional network (i.e. not containing any dense layers as in traditional
CNNs), with other early works in the field being [40] which adopted the use
of deconvolution layers so as to obtain instance-wise segmentation, and [41]
which used the pyramid image decomposition method to improve the perfor-
mance. Another work with widespread usage is Mask R-CNN [42] that extends
Faster R-CNN to pixel-level image segmentation by adding a third branch for
predicting an object mask, in parallel to Faster R-CNN’s existing branches
for classification and localization. Among the most recent and top-performing
semantic segmentation methods are [43–45]), according to the online available
leaderboard2). The interested reader is directed to the recent survey of [46] for
more details on semantic segmentation.

2.2 TV content annotation

For the purposes of data-driven TV personalisation, new requirements which
emerge for TV content annotation are:

1. Describing the decomposed content (as referred to in the previous sub-
section 2.1.1) in terms of the classes and instances of concepts that occur
within that decomposition (text, audio or video segment);

2. Describing the classes and instances which are the targets of the content
annotation (previous item) in terms of relationships with each other (e.g.
class-instance, subclass, equivalence);

3. Describing the characteristics or properties of those classes and instances
such that relationships between them can be construed (e.g. having the
same creator, existing at the same time, coming from the same location,
etc.).

2https://paperswithcode.com/task/semantic-segmentation

https://paperswithcode.com/task/semantic-segmentation
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Fig. 4 A taxonomy of TV content annotation methods (orange lines illustrate examples
for each type of annotation)

To provide relevant definitions in the domain of annotation: concepts are
generally anything that might be the subject of discourse, classes are the
different categories into which concepts may be grouped, and instances are
the individuals that make up each class. For example, for a general concept
such as human beings, a class might be Footballers and an instance of that
class would be Lionel Messi.

Research into TV content annotation is not only about how to represent
these content descriptions through well-defined metadata models (for more
on how current standards align to the above requirements and approaches,
see the later chapter 4) but also how to derive them in a (semi-)automated
fashion to support organisations with large and growing collections of TV con-
tent. Manual annotation suffers from a lack of agreement across annotators
as well as a difficulty to scale up, especially as the granularity of the required
annotation gets finer (as is needed for later content processing steps like
re-purposing and personalisation). Computer systems can automate the anno-
tation task, including determining the right (entity) target of an annotation
(a.k.a. disambiguation), at different levels of granularity:

• Asset level: classification (e.g. into genres)
• Spatio-temporal segments: transcription (e.g. speech to text), class-level

annotation (e.g. concepts, events, emotions), instance-level annotation
(i.e. individuals)

Figure 4 shows the different forms of annotation typically used with media
assets such as TV programs along with examples of each type.
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2.2.1 Classification of media assets

Looking at the different types of annotation (see Fig. 4), we begin with the
classification of multimedia assets. A typical task in the media domain would
be labelling a media asset with the genre(s) it belongs to. However, the fun-
damental approach to classification is not different in the case of media asset
classification - a set of example videos labelled with one or more classes from
a list is provided to a network for training such that it learns the discrim-
inative features of each class. In [47] beyond state-of-the-art performance is
reported; it is achieved by combining two common approaches into one classi-
fication model - early fusion combines features before classification while late
fusion combines the outputs of classifiers from different features - which they
call double fusion. Features such as colour and shot segmentation are the basis
for the visual feature-based classification, e.g. [48].

Different machine learning algorithms have proven to be state-of-the-art
for classification in general, e.g. deep CNNs such as Subclass Wide ResNet
[49], but given the need to process entire (large) media collections, an issue for
media classification with deep learning is the computational efficiency. Residual
Learning [50] has become a commonly used approach in combination with
neural networks to make media classification more efficient for deeper networks,
e.g. [51, 52]. Other approaches use pruning, i.e. removing network connections
and/or nodes to reduce the complexity, e.g. [53, 54]. Classification in the media
domain is almost assuredly multi-label, i.e. each asset may belong to multiple
classes, and the classes may differ across the timeline of the audiovisual asset
(e.g. a news program probably also has a sports segment and then the weather),
both of which are particular challenges that are not tackled in traditional
classification frameworks. In the domain of genre classification, where there
is a limited list of reasonably well-defined genres, there remain further issues
for classification such as the subjectivity of some classifications (e.g. labelling
“comedy” might rely on cues like audience laughter whereas some people find
quite serious-seeming content as humorous) and the difficulty in training when
classes are less clearly distinctive (e.g. “horror comedy”). RAI, the national
public broadcasting company of Italy, has presented a novel approach to genre
classification [55] in a tool called DENOTER, which can both suggest genres
for media assets and reclassify existing assets with new genres, however, based
on analysis of the textual metadata. [56] uses a combination of audio and
text features to classify 200 hours of BBC content by genre, with a reported
accuracy of 98.6%. A combination of genre classification approaches with deep
learning-based visual feature analysis would be a subject of future research.
Works such as [57] suggest this would be a promising approach.

2.2.2 Class-level annotation

Class-level annotation is the labelling of the spatio-temporal segments of the
media asset with concepts drawn from a set of classes. Concepts are a very
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general term and annotation tools are trained for a specific set of concepts,
which may be, for example, classes (of things), events or emotions.

Class-based annotation methods may be based on the low-level analysis of
visual features and/or associated textual metadata (existing titles and descrip-
tions, transcripts, or subtitles) to derive the annotations. Whereas text-based
annotation has a longer research history (e.g. [58]) supported by NLP (Natural
Language Processing) and NER/NEL (Named Entity Recognition and Link-
ing), basing an annotation on a title/description clearly misses more granular
details within the TV programming whereas a transcript only captures the
concepts which are spoken about, not those which are visible.

Annotation with classes is closely related to object detection, discussed in
2.1.2. After all, the objects that can be detected are usually classes rather than
individuals (e.g. “cat” or “dog” rather than identifying the specific cat or dog
individual). While object detection methods as previously discussed may also
provide for bounding box detection or even segmentation for specifying the
location of the object in a video frame, which also means additional metadata
for an annotation, video concept detection methods may focus on accurately
labelling video fragments with classes without the detection of object posi-
tion, for example, are trained for more abstract concepts that do not directly
relate to tangible objects such as “Sunny” or “Outdoor”. This has been a
common task in the TRECVID workshops where different concept detection
methods have been benchmarked against a manually labelled video collection
[59]. While top-performing methods at that time (the 2000s) were typically
machine learning, e.g. support vector machines (SVMs), more recent work in
the past decade (2010s) has focused on deep learning with neural networks
such as CNNs, e.g. vitrivr [60]. In the last few years, published research on
video concept detection has dropped as accuracy scores stabilised for well-
known concept sets (e.g. TRECVID) and researchers have focused on more
challenging tasks such as scene graphs (describing the content of visual media
in terms of both objects and the relations between them [61]), video event
detection and video summarization (meaning here the production of natural
language descriptions of video content [62]).

The significant advances in the accuracy of annotation methods based
on visual features are largely attributable to advances in AI/Machine Learn-
ing, i.e. deep neural networks combined with sufficient training data (a.k.a.
deep learning for computer vision). The breakthrough is generally seen as the
moment AlexNet [63], a CNN, won the ImageNet Large Scale Visual Recog-
nition challenge in 2012 with a significantly better result than the runner-up.
The key improvement was seen in the depth of the model and the use of GPUs
to handle the computational complexity. [64] review deep learning approaches
to computer vision. A state-of-the-art model for visual classification is Fix-
EfficientNet [65]. It demonstrated top-performing results on the ImageNet
dataset [66] (a standard benchmark for computer vision research) with 480M
parameters, a top-1 accuracy of 88.5%, and top-5 accuracy of 98.7%, although
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of course new models are repeatedly announced with incremental improve-
ments on state-of-the-art accuracy (a list of the latest benchmarking results for
deep learning networks on computer vision using ImageNet can be found at 3).
However, it should be noted that since these benchmarks are measured against
a general set of 1000 visual concepts defined by ImageNet, for annotation tasks
beyond the most generic cases it is always necessary for organisations to train
a chosen network specifically for their content (and the visual features relevant
to it). Pre-trained models (usually trained with the generic ImageNet data)
can be downloaded (e.g. in the Python library Keras) and then integrated with
further network layers which are then trained for the more specific annotation
task, an approach known as Transfer Learning.

Event annotation, as in e.g. [67], goes beyond the identification of concepts
in the video and detects relevant actions between them that signify certain
events - either at the literal description level (e.g. a boy kicks a ball between
two sticks) or a higher interpretative level (e.g. a football player scores a
goal). The TRECVID series of workshops have also provided a benchmark for
event detection methods in the Multimedia Event Detection (MED) task. Deep
learning has also become the de facto state-of-the-art here. As each model is
typically tuned to a specific task, it has been recognized that ensemble mod-
els - a combination of different models whose outputs are combined - can be
a solution to broader tasks. For example, in Semantic Event Detection, an
ensemble model outperforms state-of-the-art single models in classifying scenes
to natural disaster events [68].

Finally, annotation can go beyond the identification of objectively present
objects or events in the content to more subjective concepts such as emotions
[69], where both the textual [70] or the audio-visual components [71, 72] may
be used as input. However, there is still quite some debate in the research
community if AI-based approaches can truly detect correctly emotions through
visual cues (e.g. facial expressions) and if such results should be relied upon 4.

2.2.3 Instance-level annotation

Instance-level annotation is identifying the specific instance of any class of
objects that appears in a video, e.g. a specific person or organisation or
museum. The needed semantic annotations might include entities derived from
textual metadata created by other algorithms or the (audio) transcript, how-
ever, here computer vision techniques are also being increasingly applied to
semi-automatically identify relevant details within the visual component of
the assets. In the most advanced case, multi-modal annotation uses the com-
bination of different modal inputs, e.g. text, audio, video (such methods are
discussed in Sec. 2.3.1) to produce a more accurate or precise annotation, e.g.
a visual detector detecting “person” combined with a transcript mentioning
the person’s name may be combined to annotate the video fragment with that

3https://paperswithcode.com/sota/image-classification-on-imagenet, last accessed 1 Feb 2022
4https://www.theatlantic.com/technology/archive/2021/04/artificial-intelligence-misreading-

human-emotion/618696/

https://paperswithcode.com/sota/image-classification-on-imagenet
https://www.theatlantic.com/technology/archive/2021/04/artificial-intelligence-misreading-human-emotion/618696/
https://www.theatlantic.com/technology/archive/2021/04/artificial-intelligence-misreading-human-emotion/618696/
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specific person. For example, VRT, the national public-service broadcaster for
the Flemish Community of Belgium, combined the transcript-based annota-
tion with visual features extracted by a deep learning framework to refine the
entity identification for news videos [73].

With the need for subtitles in production systems for issues of accessibility,
transcription of media has been an annotation task done by media organisa-
tions since a long time, first manually but now automatically. Speech-to-text
methods have become very effective to automatically create transcripts from
audio (and can be built from open-source tools such as done by the BBC [74]),
but language support is variable (YLE responded to the lack of Finnish sup-
port by collecting speech samples from Finnish speakers to train its own model)
and modern frameworks do not immediately address issues like use of dialects
or background noise [75]. Broadcasters need to be aware of the challenges in
automatic transcription for their content, e.g. even the news - which is usu-
ally read out by a presenter in a very clear manner - might involve interviews
with non-native speakers. Research in addressing such limitations (e.g. [76])
will gradually flow into the latest version of transcription tools.

Such transcripts can contain an association with a time point in the media
for display purposes but the same association could be used to support tem-
poral annotation, i.e. we assume that the speaking of some sentence is relevant
for the time point in the media when it is spoken; we can use NER to identify
references to relevant concepts in the text and annotate the time fragment of
the media with those concepts. Such an approach was used in the LinkedTV
project5 to automatically create semantic annotations of TV programming
from their timed transcripts [77]. Transcripts and transcript-based annotations
can be very useful for search and discovery within media collections but are
not as useful for downstream personalisation tasks because (i) they may result
in being too fine-grained (we do not need to know every single time a person
is mentioned) and (ii) they are limited to the concepts being explicitly talked
about (often when things are visible, their presence is not actually explicitly
mentioned as it is assumed the viewer is aware of them).

Other annotation tasks can be applied to the asset as a whole but are best
used with a spatio-temporal fragmentation of the asset as the relevance of a
given concept in a media annotation will usually be restricted to certain parts
of the media item, e.g. a news programme is made up of various different news
stories, each concerning a distinct set of entities. An asset-level annotation
of the news video would not allow the selection of the relevant news item
as a search result, but a video fragmentation combined with fragment-level
annotations would. The main annotation task arising in this case from the need
to enable data-driven personalisation is semantic descriptions of the content
of the media asset which could cover everything perceivable and relevant to a
viewer, associated with the respective fragment (spatial, temporal or other).

In conclusion, we can say that the classification of TV content can be
performed in an accurate manner, especially if the classes to be applied are well

5https://www.iti.gr/iti/projects/LinkedTV.html

https://www.iti.gr/iti/projects/LinkedTV.html
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understood and classification models either have been trained specifically on
that set of classes (e.g. high-level genres of TV programming) or can be trained
by the user with sufficient labelled audiovisual content (e.g. a broadcaster
who has previously manually labelled their content). Instance-level annotation
on the other hand is a more challenging area of research since the correct
annotation of any decomposition of TV content with an instance of relevance
will depend on the explicit occurrence of that instance (in the text, a mention in
the audio, or an object visible in the video) and the training of the annotation
method to identify occurrences of the instance, where the set of instances
is significantly larger than any classification scheme. Here, gaps will have to
be accepted by any user (e.g. if detecting persons, there will always be new
faces appearing on TV who do not previously exist with a label in the data
used for training). Advances in unsupervised learning (approaches that learn
from data that is not previously labelled) combined with the use of the Web
as a knowledge source will allow future annotation models to best-guess new
instances and overcome the limitation of needing to pre-define the finite set of
instances to train a model on.

2.3 TV content re-purposing

2.3.1 Finding the right content

Annotations as the ones discussed in the previous section can be used in text-
based video retrieval where the textual query is matched to the labels or tags
annotated to (segments of) candidate video (where a knowledge model is used
behind the interpretation of the textual query, e.g. to expand queries into
synonyms or related entities, a technique referred to as “semantic search”).
However, video retrieval can also be made possible according to queries of dif-
ferent modalities (visual, audio or audiovisual). In a personalisation scenario,
which requires implicitly inferring which media item would be ideal according
to the user’s interests and preferences, it is beneficial to take into considera-
tion information from sources of different modalities (i.e. while a user may be
interested in a particular entity, e.g. a celebrity, personalisation requires that
the media items which are annotated with that celebrity also demonstrate the
preferred style and substance of the user). Recent advances in representation
learning have demonstrated the ability to represent information from different
modalities such as video, text, and audio in a joint feature space [78], as can
be seen in Fig. 5. The interested reader is directed to [79] and [80] for a survey
on cross-modal representation learning.

From the vast field of cross-modal representation methods, of particu-
lar interest for TV applications are text-to-video techniques where ad-hoc
queries described in natural language can be used to retrieve unlabeled videos.
Text-to-video retrieval, differently from the video retrieval task, requires an
understanding of both video and language together. A common solution is to
utilise Recurrent Neural Networks (RNNs) to learn a dense vector representa-
tion for the natural language sentence and CNNs to extract video-segment-level
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Fig. 5 An example of cross-modal video shot retrieval. V is a video shot and S is a text
string. Both V and S are translated into a common embedding space Φ(·), resulting in two
new representations Φ(V ) and Φ(S) that are directly comparable.

features, then treat the resulting vectors (both video and text) as global rep-
resentations that are consequently mapped into a joint embedding space [81].
[82] proposed Video2vec, introducing an embedding method to learn the entire
representation from freely-available Web videos and their descriptions using
an embedding between video features and term vectors. In [83], an exten-
sion of Word2VisualVectors [84] is proposed, resulting in W2VV++, a deep
learning method for query representation learning which requires no explicit
concept modelling, matching and selection. In [85] the problem of unlabeled
video retrieval using textual queries is addressed by extending a dual encod-
ing network, introduced in [86], which makes use of more than one encodings
of the visual and textual content, as well as two different attention mecha-
nisms. A recent trend is the application of transformers to video processing
for cross-modal representation learning (introduced in [87]), inspired by the
success of transformer-based models on natural language processing tasks.
Transformer-based models can be roughly organised into two categories [88]: i)
single-stream transformers (e.g. VideoBERT [87], HERO [89], ClipBERT [90]),
where embeddings of different modalities are input into a single transformer
to capture their intra- and inter-modality information, and ii) multi-stream
transformers (e.g. CBT [91], ActBERT [92], Univl [93]), where each modality
is fed into independent transformers to capture information within modalities
and then build cross-modal relationships via for example another transformer.
Such a multi-stream transformer-based method, Clip2TV [94], which explores
where the critical elements lie in transformer-based methods, is one of the best-
performing in this domain, achieving state-of-the-art accuracy on the standard
benchmark dataset, MSR-VTT [95].

2.3.2 Transforming the content

Content transformation is the process of making existing content more versatile
and thus reusable in a different context. When it comes to media items, there
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Fig. 6 Overview of technologies and their taxonomy for content transformation

exists a number of different techniques under the umbrella term “content trans-
formation” (see Fig. 6), offering the ability to produce re-purposed versions of
an original content item, which are compatible with the constraints of differ-
ent publishing vectors. Video summarization and highlight detection consider
transforming media content in a way that shorter versions are produced, which
apart from complying with a vector’s constraints, can also optimise a media
item for consumption under different conditions or scenarios. For example, we
can reduce a 10’ news footage to a brief 30” summary, ideal for consumption
by a specific target group within an online social platform. A different set of
methods aims at improving the quality of the content, to enable for example
the conversion of user-generated or old archival content (videos recorded using
a less-than-ideal camera) to high-definition television standards. Finally, video
aspect-ratio adaptation methods enable transforming the video to facilitate its
consumption in different platforms or in devices with different screen sizes.

Video summarization methods aim to provide a short visual summary
that encapsulates the flow of the story and the essential parts of the full-
length video, by adapting the video content and generating shorter versions
of it. A rough categorization of the relevant literature approaches (Fig. 6)
includes: i) older methods that utilised hand-crafted low-level visual fea-
tures, ii) supervised deep-learning-based methods, and finally iii) unsupervised
deep-learning-based methods. Regarding older methods, these relied on the
extraction and analysis of low-level visual features from the video frames,
e.g. [96, 97]; clustering-based techniques that group frames according to their
visual similarity and extract key-frames from the clusters’ centres, e.g. [98–
101]; dictionary learning approaches aiming to approximate the gap between
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low-level visual features and high-level visual semantics, e.g. [102–104]; and
visual attention modelling that imitates the human attention mechanism that
is used to spot the most important parts of the video for generating the sum-
mary, e.g. [105–107]. It is commonly accepted that learned features which are
extracted automatically to solve a specific task, are more effective at it than
handcrafted features. This gave rise to machine learning-based methods, with
the early supervised ones aiming to capture the underlying frame selection cri-
terion from human-created summaries to produce video summaries that meet
human expectations. Most notable examples include [108–110] which directly
optimise multiple objectives for video summarization, such as representative-
ness, relevance, importance, diversity, uniformity, storyness, and actioness.
In order to overcome the need for handpicking of desired characteristics in
the final summary, deep-learning video summarization approaches that are
trained in a supervised manner have emerged. These are trained using pairs
of videos and user-created ground-truth summaries; early examples of such
methods include [111–114]. A more recent set of supervised techniques utilises
advanced variations of Recurrent Neural Networks (RNN) to capture the tem-
poral dependency over sequential data (Long Short-Term Memory (LSTM)
units [115] and Gated Recurrent Units (GRU) [116]); such methods include
[117–119]. [120] goes one step further by introducing an architecture with mem-
ory augmented networks, which utilises an external memory to record visual
information of the whole video, thus tackling video summarization in a more
global manner that involves the extraction of knowledge about the tempo-
ral inter-dependency across the entire video. [121] proposes a 2-layer LSTM
architecture where the first layer extracts and encodes data about the video
structure and the second layer uses this data to define the key-fragments of
the video. This work is extended in [122] to exploit the shot-level temporal
structure of the video and compute shot-level confidence scores for producing
a key-shot-based summary of the video. [123] describes a Dilated Temporal
Relational (DTR) Generative Adversarial Network (GAN) to exploit long-
range dependencies at different temporal windows, with the discriminator
being trained via a 3-player loss to distinguish between the learned summary
and a summary consisting of randomly selected frames.

Due to the lack of large-scale annotated training data, researchers also
began to explore unsupervised training schemes for video summarization. The
use of GANs for learning in a fully-unsupervised manner is a current trend,
as several well-performing methods ([124–128]) rely on this framework. For
example, [124], proposes an architecture that embeds an Actor-Critic model
into a GAN and formulates the selection of important video fragments to form
the summary as a sequence generation task. On the other hand, the best-
performing supervised approaches utilise memory networks [129] or tailored
attention mechanisms ([130–133]) to capture variable- and long-range tempo-
ral dependencies. One of the recent approaches in the latter direction [134]
combines global and local multi-head attention mechanisms to discover differ-
ent modellings of the frames’ dependencies at different levels of granularity,
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and also integrates a component that encodes the temporal position of video
frames. For a recent and more comprehensive review of the deep-learning-based
video summarization literature, the interested reader is directed to [62].

Video highlight detection aims to reduce a video to highlight moments.
Video highlights can be defined as the most memorable parts of a video with
high emotion intensity [135]. Highlight detectors are typically domain-specific,
i.e. they are tailored to a category of video since the definition of what con-
stitutes a highlight often depends on the domain. It is worth noting the core
difference between highlight detection and video summarization: whereas sum-
marization aims to provide a complete synopsis of the whole video, highlight
detection aims to score individual video segments for their worthiness as high-
lights [136]. Video highlight detection can provide users with generated media
items that aim to quickly revisit important events of a longer TV program,
e.g. a sports game or a talk show.

Since the definition of highlight is both subjective and context-dependent,
most early approaches focus on highlight detection on specific domains, e.g.
sports [137–140], social media videos [141], Formula 1 TV content [142] and
first-person camera shooting [143]. In general, literature works on this topic can
be generally categorised into two classes: i) supervised learning methods [141,
143–145], which are trained using human-annotated training corpora, and ii)
weakly-supervised approaches [136, 146–149], where various weak supervisory
signals are exploited to define highlights, including the frequent occurrence of
specific segments within a video [146–148], the duration of a video [136] and
the information from segment bags [149]. Supervised methods might detect
highlights with greater accuracy, yet it is noteworthy that in many tasks it is
difficult to get strong supervision information, i.e. ground-truth labels, due to
the high cost of the data-labelling process. Thus, there are scenarios where it is
more feasible for machine-learning techniques to work with weak supervision.

For training their models, most of the weakly-supervised methods [136, 141,
143–145, 149] followed the principle of pair-based learning, comparing a high-
light video segment with a non-highlight one, with the former being expected
to rank higher than the latter. An iconic method that follows this paradigm
is [144], which proposed a Robust Deep RankNet that, given a video, gener-
ates a ranked list of its segments according to their suitability as a highlight.
Most importantly, they introduced the Video2GIF dataset, which contains
over 100,000 pairs of GIFs, collected from popular GIF websites, and their
source videos, collected from YouTube, thus creating a large dataset for train-
ing supervised highlight detection methods. In contrast, [136] does not use
manually labelled highlights but offers a new way to take advantage of freely
available videos from the Internet, based on the insight that video segments
from shorter user-generated videos are more likely to be the selected high-
lights than those from longer videos. Of particular interest are the methods
that aim to address multiple domains. [141] proposes a method that, given
a search query (domain) such as “surfing”, mines the YouTube database to
find pairs of raw and corresponding edited videos. Then, they obtain pair-wise
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ranking constraints to train their model, based on the assumption that edited
videos are more likely to contain highlights than the trimmed parts of the
raw video. Similarly, [150] proposes a framework that learns to adapt high-
light detection to a user by exploiting the user’s history. In an attempt for
true domain-agnostic highlight detection, [135] proposes a hierarchical struc-
ture for emotion categories and analyses emotion intensity and type by using
arousal- and valence-related features hierarchically.

Most recent works in this domain include [151–153]. In [151] a user-item
interaction graph is formulated and TransGRec is proposed; the latter is
an inductive graph-based transfer learning framework for personalised video
highlight recommendation. [152] explores the cross-category video highlight
detection problem through learning two types of knowledge about high-
light moments and applying it to the target video category, while [153]
utilises multi-modal information by including content-agnostic audio-visual
synchrony representations and mel-frequency cepstral coefficients to capture
other intrinsic properties of audio.

Super-resolution’s objective is to produce an up-scaled and enhanced
image or video, either by combining a sequence of low resolution images/frames
of a scene or by attempting to reconstruct a high-resolution image from a
single low resolution observation. Super-resolution can be used to enhance user-
generated content or archival material (i.e. video captured with older cameras)
in order to create high-definition content.

Traditionally, the first super-resolution approaches were devised to be
applied to still images. More conventional methods can be categorised in two
classes: i) multi-frame, e.g. [154–156], where reconstruction produces one high-
resolution image from a set of low-resolution images, ii) single-image, e.g.
[157, 158] and iii) methods dedicated for video super resolution. The first deep
learning methods aimed to create a mapping between low and high-resolution
images, e.g. SRCNN [159]. [160] was the first to claim that mean square error
is not the ideal way to express the human perception of image fidelity and
proposes the use of alternative metrics, such as the structural similarity index
[161]. In contrast, the intuition that we do not need to penalize a deep-learning-
based model for pixel differences that do not bother a human viewer, gave rise
to methods that compute the difference between feature maps of a pre-trained
network instead of directly comparing the input images [162]. Additionally, the
same principle brought about methods that employ GANs, e.g. SRGAN [163]
and Enhance-SRGAN [164]. There are also different ways of addressing the
problem of super-resolution besides comparing high-resolution and downscaled
images, like methods that employ variational auto-encoders, e.g. [165, 166].
Most recently, the super-resolution problem is being tackled using diffusion
models [167]. A very recent method, [168], demonstrated that their diffusion
model outperforms GANs on high-fidelity image generation on the ImageNet
dataset utilising auxiliary image classifiers to boost sample quality. In [169],
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cascaded diffusion models are employed to generate high fidelity images, with-
out any assistance from auxiliary image classifiers. Finally, in [170], SR3 is
proposed as an approach to image super-resolution using repeated refinement.

Regarding super-resolution for video, it should be highlighted that apply-
ing single-image methods successively to each video frame is feasible but leads
to a lack of temporal coherency [171]. Only recently, the focus has shifted to
techniques dedicated to video, i.e. video super-resolution (VSR), where addi-
tional temporal information from neighbouring frames is exploited for further
improving the quality of the result for a given frame [172]. The most recent and
among the top-performing VSR methods are: [173], which integrates spatial
and temporal contexts from continuous video frames using a recurrent encoder-
decoder module; [171], which is a GAN-based spatio-temporal approach to
VSR, renders temporally-consistent super-resolution videos; [172], which pro-
poses a Recurrent Residual Network (RRN) network architecture for efficient
VSR; and [174], which focuses on properly rendering fast-moving objects. For
a recent and more comprehensive review of the deep-learning-based video
super-resolution literature, the interested reader is directed to [175].

Aspect-ratio adaptation tackles the problem of transforming a video,
originally captured in one aspect ratio, to a different (target) aspect ratio, so
that it can be optimally consumed through various devices, e.g. video originally
captured for the TV, to be optimally viewed in a mobile phone; or, inversely,
video captured in portrait format using a mobile phone, to be used as part of
a traditional TV broadcast.

The video aspect-ratio transformation algorithms of the literature can be
divided in three main categories: i) warping [176, 177], ii) cropping [178–181],
and i) seam carving [182, 183]. Warping methods, instead of resizing the entire
video frame uniformly, determine scaling factors in a content-adaptive way: the
frame is divided using a grid and important regions are left untouched, while
scale factors are applied to other less-important areas. Cropping techniques
select a rectangular area in the image/frame and discard visual content out-
side of it. Seam carving algorithms remove seams of uninteresting pixels, i.e.
connected paths of pixels inside the frame are discarded. There are also multi-
operation techniques that combine two or more operations, e.g. cropping and
warping [184], or seam carving and cropping [185]. It is worth noting that when
applying warping or seam carving to the frames of a video, apart from unde-
sirable artefacts introduced [186], the original video’s semantic content might
be distorted significantly [187]. In [188] it is argued that cropping methods are
more suitable for video aspect ratio transformation when the minimization of
semantic distortions is a prerequisite, as they select a region of interest in the
video frames but do so without introducing any distortion to the visual con-
tent. Cropping methods typically extract some kind of feature for assessing
the importance of different regions in a frame [188]. Then a crop window is
fitted in the frame so as to contain the most important regions. Additional
effort is taken to ensure the smooth motion of this crop window throughout
the video (e.g. in [178] camera operations are derived by optimising the path of
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Fig. 7 TV content personalisation approaches

this window, seeking to adhere to the principles of cinematography). In [189]
a Structural Similarity feature is proposed based on blur detection to identify
whether an image contains a blurred background. In [180] low-level features are
employed while in [178, 179] eye-gaze information is utilised. In Google’s Aut-
oFlip6, a solution to smart video reframing (i.e. video aspect-ratio adaptation),
face and object detection results are employed.

The most recent methods in this domain include [188, 190]. In [188], apart
from proposing a fast smart-cropping technique, a benchmark dataset for video
retargeting, RetargetVid, is introduced. Both [190] and [188] find candidate
subjects to follow (the first employing object detection, the second utilising
saliency detection) and both aim to select the main focus in each sequence of
frames (e.g. in [188] by clustering the detected salient blobs and selecting the
most appropriate cluster according to the introduced criteria).

2.4 TV content personalisation

Personalisation refers to a degree of identification of the interests of the user,
such that content may be offered according to those interests. This typically
requires user profiling, whether explicit (asking the user for their interests) or
implicit (learning from data, e.g. viewing history), as well as a personalisation
platform to derive and manage the user profiles. Finally, a recommendation
engine matches a set of content items to the interest profile of a user to
produce a ranked list where the top items are considered those of most interest
to the viewer (see Fig. 7).

In reaction to the growing choice of TV programs across channels and the
ability to watch online non-linearly (i.e. catch up on TV programs that were
previously broadcast, thus increasing further the choice available), TV con-
tent personalisation has been researched extensively, whether for personalised
EPGs [191], broadcast (IP)TV [192] or on-demand viewing [193]. Recommen-
dations can be done by comparing the closeness of the user profile with an
annotation of each media asset using the same categories (or with a mapping

6https://google.github.io/mediapipe/solutions/autoflip

https://google.github.io/mediapipe/solutions/autoflip
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between user and media categories), i.e. content-based recommendation.
This produces a score that is an indicator of the closeness of the match. Typ-
ically, this leads to the problem that users who like certain types of content
are recommended more content of the same type (e.g. watching lots of West-
erns leads to more recommendations for Westerns). To address this problem,
collaborative filtering can be used which follows the rule “The user would
like to watch the content other users with similar profiles have watched”. State
of the art methods are typically hybrid combinations of both approaches, e.g.
[194, 195].

The NoTube project proposed a Beancounter which analysed the content
of a user’s social media feeds to build up an interest profile for them and a
recommendation engine based on Linked Data so that the profile could be
matched to content that is not directly related yet relevant (through semantic
links between content, our Western fan might be recommended another film
genre because a favourite actor is present or the same period of history is
covered) [196].

In [197], the profiling of TV viewers is addressed in a different way mak-
ing use implicitly of user feedback to online content. The paper proposes a
personalised viewer profiling technique that creates individual viewer models
dynamically using an incremental learning algorithm to learn from viewer com-
ments, likes and shares on streamed content. The suggested approach reduces
prediction errors of previous algorithms and so increases the accuracy of the
recommendations.

The need in the TV context to avoid sending viewers into a “filter bubble”
where they only see more TV that lies within their modelled interests has led
to work on diversity and serendipity in recommendations [198, 199].

Such personalisation approaches are typically used in the recommendation
of whole media assets to the viewer. As a last step in data-driven TV per-
sonalisation, we are interested in their application to the appropriate delivery
of decomposed, annotated, and re-purposed media content to the viewer in
newly and dynamically authored scenes in an individualised manner. Unlike
recommendation engines (which are out of the scope for the remainder of this
article), we are not considering interfaces where the user can access a set of rec-
ommended items (possibly with some explanation of the choice) and choose for
themselves which item they want to consume. We consider an alternative future
of TV content delivery where the media stream can be automatically adapted
to the viewer without their active participation but based on their derived
interests and preferences (we assume that explicit consent for personalisation
has been given, e.g. at the beginning of access to that media stream).

Based on the previous technologies enabling the media decomposition,
annotation and re-purposing, the re-purposed contents can now be repackaged
in different ways for individual (IP) delivery to media consumers (per-
sonalisation). The key objective of this technology area is to support the
media organisation in the (semi-)automatic packaging of different, possibly
re-purposed content assets for the delivery to the consumer. It, therefore,
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Fig. 8 Example of an Object Based Media application

encompasses search and selection across media collections based on their meta-
data (annotation) and the packaging of those selected assets into a multi-modal
content scene that can be delivered across an IP network to an end device.

A leading example of a possible complete solution of TV content personali-
sation is the Object Based Media (OBM - see Fig. 8) activity pioneered by the
BBC [200]. This is the representation of a media asset as a set of individual
assets together with metadata describing their relationships and associations.
At the moment of consumption, different individual assets can be packaged
together in different ways to provide a personalised content experience to the
consumer. OBM has been demonstrated in different ways, e.g. a personalised
cookery program [201], interactive storytelling in film [202] or personalised
radio broadcasts [203].

In the broadcast industry, this type of technology is only being applied in
the case of advertisements (Dynamic Ad Insertion or DAI), where an adver-
tisement break may have multiple slots and different ads are played out in
each slot to different viewers based on their profiles. Whereas DAI is part of
the current “programmatic television” offer, research work remains on other
areas such as insertion of ads as overlays inside the TV program itself, where
it is important to choose an appropriate on-screen area [204] or insertion of
ads independent of the broadcasters ad slots [205]. The ReTV project looked
at the selection and insertion of a choice of program trailers (automatically
summarised videos) based on viewer profiles under the name Content sWitch
(cf. ReTV project deliverable D6.2 in 7). Fig. 9 shows four different viewers
watching the same media stream but receiving four different content items in
parallel such as two different ads, a program trailer or a summarised weather

7https://retv-project.eu/wp-content/uploads/2020/01/ReTV D6.2 final.pdf

https://retv-project.eu/wp-content/uploads/2020/01/ReTV_D6.2_final.pdf
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Fig. 9 Demo of the Content sWitch

report. This is presented as part of a future technological approach the project
termed “Dynamic Content Insertion” 8.

The brevity of this section reflects that this technology area is the least
matured for enabling true personalised TV at the level of the video content.
Both Object based Media as well as Dynamic Content Insertion, are firmly in
the area of research rather than (TV) production at the time of writing. Besides
the further research, common standards and specifications for the scene graph
that can represent the recomposed media content are needed so that toolkits
can emerge with interoperable software to enable TV content personalisation.
The future promise is that TV becomes this composition of contents, dynam-
ically performed for each individual viewer based on the previously described
steps of content decomposition, annotation, and re-purposing.

3 Applications

3.1 Applications for TV content decomposition

As already discussed in Section 2.1.1, video fragmentation is most commonly
the first step of a video analysis pipeline. In a content-based retrieval scheme
video fragmentation enables the specific segment retrieval, i.e. retrieving not
only whole media items but multiple video segments from different items that
match the search criteria. Additionally, most frameworks that perform some
kind of high-level video analysis task, have a video fragmentation technique
embedded. For example, Google’s MediaPipe is a collection of customizable
machine-learning solutions for live and streaming media. The set of solutions
offered varies from object detection and face detection to finger tracking and
even hair segmentation. MediaPipe is a free and open-source product, so it is

8https://retv-project.eu/portfolio-item/dynamiccontentinsertion/

https://retv-project.eu/portfolio-item/dynamiccontentinsertion/
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quite easy to ascertain that for most of the offered solutions a shot-boundary-
detection technique is applied at an early stage. IBM Video Analytics is a
content-indexing platform that uses cognitive analytics to quickly and easily
extract key insights, patterns in streaming and archived video. Another exam-
ple is the free online services for video fragmentation and reverse image search
of 9 and the video analysis service of 10 where it is explicitly mentioned that
a “shot and scene segmentation” method is employed.

Object detection in videos can produce object-based metadata for each
detected video fragment enabling richer indexing capabilities, which in turn
allows the more accurate browsing of content thanks to the larger amount of
parameters available. Products like Playment11, an all-in-one data labelling
platform, or the object detection solution included in Google’s MediaPipe can
provide accurate metadata annotation on videos for TV applications. Fur-
thermore, the additional spatial information of the annotations resulting from
object detection frameworks, can be exploited to enable various TV person-
alisation scenarios, such as: i) allow a new media object in an OBM-enabled
system (see Section 2.4) to be positioned on a broadcast video sequence accord-
ing to user’s preferences, without occluding any key action (e.g. a personalised
object media to be overlayed on a soccer match without occluding any player
or the ball), ii) detecting the presence of a channel logo, a technique com-
monly used in advertisement detection systems [206], which in turn. is a crucial
step towards advertisement replacement, or iii) more elaborate systems which
would allow a user to receive a personalised notification when a favourite actor
or product appears in a broadcast content [207].

3.2 Applications for TV content annotation

The first metadata models for TV content were limited in their descriptive
ability - e.g. title, abstract, tags - and not aligned with regard to the vocabulary
used, i.e. one annotator might refer differently from another annotator to the
same thing. To better support search and discovery, there has been gradually
an uptake of semantic technologies (structured metadata based on a schema
or ontology) for content annotation [208]. However, as the use case for content
metadata expanded from content discovery to supporting new types of content
analysis techniques which required content re-purposing, personalisation or
recommendation, also the recently-adopted semantic metadata models and
tools prove insufficient. For example, they were often used to describe the
media asset as a whole, and could not support the use case of finding a fragment
of the asset which matches a search request. Another case was descriptive
properties still taking natural language for their values which can not be as
easily parsed by software as concepts expressed as part of a knowledge model.

Current approaches still vary based on the tools used and often rely on
internal representations which work with the legacy IT infrastructure but

9http://multimedia3.iti.gr/video fragmentation/service/start.html
10http://multimedia2.iti.gr/onlinevideoanalysis v5/service/start.html
11https://www.playment.io/

http://multimedia3.iti.gr/video_fragmentation/service/start.html
http://multimedia2.iti.gr/onlinevideoanalysis_v5/service/start.html
https://www.playment.io/
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would prove limited if any data interchange would take place between organisa-
tions. Since external, public knowledge graphs (which could be used as targets
for concept annotations) are found to be noisy in cases and incomplete in other
cases, organisations that have already started to consider annotation in terms
of entities and relationships have tended to build their own internal knowledge
graphs and annotate with those as targets. For example, Finnish broadcaster
YLE reports that it has developed its own concept vocabulary [209] with a
focus on entities missing in public knowledge bases such as Finnish persons
and the vocabulary currently encompasses circa 200.000 unique concepts with
20-30 new concepts being added each day. This process can bear fruit for inter-
nal data-driven activities but will encounter limitations if ever the annotations
are to be re-used in other contexts where access to the knowledge graph is
restricted (e.g. by external organisations). An option is to ensure where possi-
ble links between internal entities and their equivalents (or similar) in public
graphs like DBPedia and WikiData. YLE uses Wikidata12 both as a source of
entities as well as adding new entities to Wikidata when they are found to be
missing and are first created internally.

Besides the issue of specifications to support the semantic descriptions of
TV content items, applications are needed to extract the descriptions from the
existing data. Previously, software applications were installed in the intranets
of organisations to process the audiovisual content and provide tags (classes
or instances) for each content item. Interestingly, another approach that has
emerged as the scale of video has increased has been crowdsourcing, i.e. involv-
ing a larger group of human annotators in watching and labelling video. In
terms of machine automated applications, off the shelf NLP/NER/NEL tools
such as DBPedia Spotlight13 or AIDA [210] can be used to annotate assets
with entities based on textual metadata such as transcripts. It should also be
noted that detection of references to creative works in text can be particularly
difficult in NER (i.e. titles of books, films, music albums, etc.) and specific
training of NER/NEL systems is needed for this case. In the ReTV project,
a customisation of the Recogynze tool performed significantly better than the
previously mentioned “off the shelf” systems [211]. These annotation tools are
generically focused on the identification of the occurrence of entities in text,
rather than the specific use case of describing the content of TV programming
for personalisation services.

Under the name “Linked Media” [212] a proposal was put forward for
semantic annotations which covered the requirements of data-driven TV
personalisation by promoting the use of the W3C Media Fragments URI spec-
ification and entity references from the Linked Open Data (LOD) cloud. The
EBU (European Broadcasting Union) also reported on the use of Semantic
Web technologies for annotation of broadcaster assets [209] where the BBC
has been a leading advocate of the use of Linked Data, for example publish-
ing the 2010 FIFA World Cup website with the support of an RDF Triple

12https://wikidata.org
13https://www.dbpedia-spotlight.org/

https://wikidata.org
https://www.dbpedia-spotlight.org/
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Store where each World Cup entity (players, coaches, teams, venues, etc.) was
described and linked, and each piece of World Cup content tagged with the
relevant entities so that entity-centred views could be dynamically created for
Website visitors (e.g. see all stats and news around a player or a team). This
was expanded into the entire Sports section14 and now the BBC bases various
data-driven content services around its own Linked Data Platform15. However,
it should be noted that such approaches were based on textual analysis for
annotation rather than audiovisual assets.

Many modern annotation solutions are available as SaaS (Software as a
Service) i.e. via APIs where the content to be annotated is POSTed to the
service and after the analysis process to produce the annotation it is possible
to GET the semantic description created for the content. Off-the-shelf ser-
vices for video annotation are emerging later than the equivalent services for
images, with Google claiming to be the first to launch such a service in 2017
(Cloud Video Intelligence16). Google’s service can label video by segment very
generally with concepts and objects that are present; in comparison, Microsoft
Azure’s Video Analyzer17 is specialised for particular tasks like recognising
persons or object detection (classes of object). AWS launched Amazon Rekog-
nition18 which similarly focuses on objects, people, text, scenes, and activities
in video.

Such services are trained to generically annotate video with objectively
identifiable objects visible in the frames, together with time information (gen-
erally making their own decomposition of the video and labelling each fragment
with the sum of objects identified within that fragment). As with any spe-
cific annotation task, media organisations have realised that best results are
only possible when they train their own video annotation systems with their
content and for the classes and entities they are interested in. In 2019, Ama-
zon Rekognition launched Custom Labels which allows businesses to train the
system to detect objects or scenes unique to their business needs. Google sim-
ilarly enables customised training of their service via the Vertex AI platform
which uses AutoML technology19.

3.3 Applications for TV content re-purposing

Video summarization can automatically generate previews of full-length
videos, “teasers” of a program for sharing on social platforms or be used when-
ever a trimmed-down version of the original video is needed. As discussed in
Section 2.3.2, video summarization is an active research area, and a plethora of
scientific papers on summarization exist, some of them providing source code.
However, these methods are far from what TV broadcasters need, i.e. a sta-
ble and customizable solution. A notable example of the few commercial video

14https://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports dynamic semantic.html
15https://www.infoq.com/presentations/bbc-data-platform-api/
16https://cloud.google.com/video-intelligence
17https://vi.microsoft.com/
18https://aws.amazon.com/rekognition/
19https://cloud.google.com/vertex-ai/docs/start/automl-model-types#video

https://www.bbc.co.uk/blogs/bbcinternet/2012/04/sports_dynamic_semantic.html
https://www.infoq.com/presentations/bbc-data-platform-api/
https://cloud.google.com/video-intelligence
https://vi.microsoft.com/
https://aws.amazon.com/rekognition/
https://cloud.google.com/vertex-ai/docs/start/automl-model-types#video
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summarization tools available is the Content Wizard20, a professional-grade
Web-based tool that specialises in trans-vector publishing of video content in
one seamless, semi-automated workflow which supports video summarization
capabilities. On the free side of products, there is the online video summa-
rization service of 21 [213] in which users can submit videos and generate
summaries for use in various social media channels. Similarly, video highlight
detection technologies are usually embedded in editing tools such as Wedit22,
which can generate video clips from an automatic video highlights search and
unify them in a single clip ready for broadcast.

Many super resolution and video aspect ratio transformation methods
have been proposed over the years, mostly from the scientific community and
academia, as discussed in Section 2.3.2. Examples of commercial applications
for super-resolution are PixOp23, a Web-based application with video denoising
and super resolution capabilities which follows a Pay-as-you-use scheme, and
COGNITUS24, a media AI software platform for crowdsourcing and enhancing
video for broadcast. Concerning free video aspect ratio transformation tools,
there is the online video smart-cropping service of 25, a service that lets you
submit videos and transform them to a different aspect ratio.

3.4 Applications for TV content personalisation

One of the current major developments is the use of OBM [214–216] which
allows individual media assets, for example, sound clips, video clips, specific
video objects to be composed and rendered into the playout viewed by the end-
user. It also allows these individual clips to be exchanged between complete
works. This may offer advanced services (some are described below) which are
directed towards end-viewers or may allow flexible media production practices.
The BBC is working on a set of tools and workflows for OBM that eventu-
ally can support scalable use in production settings [217, 218]. [219] presents a
demo of how OBM could be made universally accessible across devices using a
cross-platform approach, a games engine-like runtime and cloud-based render-
ing. As reported on the BBC’s OBM webpage26, possible scenarios for both
audiences and production studios are listed yet also marked as purely illustra-
tive. There has been one episode of BBC Click in 2019 which was interactive in
nature27. Netflix had actually already provided an interactive episode (“Ban-
dersnatch” as part of the series “Black Mirror”) at the end of 2018. However,
such programs were manually composed (in terms of the alternative paths
through the story). The ReTV project also demonstrated an interactive TV
program using the RBB children’s show Sandmännchen which functions via a
smart speaker application [220]. Children can speak out loud which characters

20https://retv-project.eu/content-adaptation-publication-online/
21http://multimedia2.iti.gr/videosummarization/service/start.html
22https://www.vsn-tv.com/en/products/vsn-wedit/
23https://www.pixop.com/blog/super-resolution-in-broadcasting
24http://cognitus-h2020.eu/
25http://multimedia2.iti.gr/videosmartcropping/service/start.html
26https://www.bbc.co.uk/rd/object-based-media, accessed 24 January 2022
27https://www.bbc.co.uk/rd/blog/2019-04-object-based-media-click-interactivity-tv

https://retv-project.eu/content-adaptation-publication-online/
http://multimedia2.iti.gr/videosummarization/service/start.html
https://www.vsn-tv.com/en/products/vsn-wedit/
https://www.pixop.com/blog/super-resolution-in-broadcasting
http://cognitus-h2020.eu/
http://multimedia2.iti.gr/videosmartcropping/service/start.html
https://www.bbc.co.uk/rd/object-based-media
https://www.bbc.co.uk/rd/blog/2019-04-object-based-media-click-interactivity-tv
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or objects they want to see in an episode played out just for them. The inter-
activity is enabled by the video fragmentation and concept detection analyses
applied to an archive of Sandmännchen episodes. We consider further appli-
cations for TV content personalisation under different headings (application
categories):

TV personalisation and interaction: One of the biggest service sectors
enabled by object-based media is for personalisation of and interaction with
TV [221, 222]. In these scenarios, a user may have content personalised for
them on the basis of a number of factors, for example, a user profile, previous
interactions with the media, etc. The use cases include personalised train-
ing and learning, documentaries, advertising, entertainment, etc. In each case
objects of still-image, video segments or audio segments may be inserted into
the video playout at specific positions in time and space in the content.

For example, a car may be introduced as an advertising placement. This
needs to be inserted in a relevant scene, see Fig. 10. This will require the object
to satisfy a number of technical matches: The car needs to fit the scale of the
frame; it needs to match the lighting; it needs to match the editorial aspects
of the production. For example, it needs to be a specific colour to fit the plot
of the film, it may need to be a certain model and date, etc. Consequently,
any placement opportunity in the production needs to be able to identify a
candidate placement object, and to match this with the integrity of the source
(original) video production. This should be able to occur in near-real-time.
Objects may be acquired from external libraries (e.g. advertising agencies, etc)
and allow the placements to occur on the fly. For this reason, a lightweight
trading platform is required to support the near real-time demands of trading
objects into the content.

The use of media objects facilitates interactions. For example, the author
of a video object allows a user to interact with the object to cause on-screen
actions and this brings the concept of gamification into broadcast media [223].
It may allow users to manipulate three-dimensional objects to allow inspection,
for example, adding additional interaction to documentaries.

Story telling: The BBC have maturing developments in the area of per-
sonalised story-telling and documentaries. The content can be tailored in terms
of individual constituent topics, length of program required and fitting to the
viewers’ preferences. BBC have developed the StoryKit [224] to allow creation
of content utilising object-based media.

Convergence of the broadcast and film market with gaming and
virtual reality: The gaming market has grown to surpass the film and TV
markets [225–227]. The markets will become increasingly integrated and media
assets (image, audio and video clips) from video content will be utilised in
gaming content, and vice versa. Moreover, this will occur with a requirement
for immediate transfer of assets into recipient content. This will also require the
management of these assets; their ownership; usage allowances and restrictions;
payment schedules for assets; service level agreements, etc. There have also
been a number of initiatives to converge Virtual Reality (VR) into TV services.
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Fig. 10 User Interaction with on-screen objects

[228] which would allow TV content to be played in VR environments with
enhancements from additional objects authored for the purpose, or to utilise
VR objects from other content.

Media re-use: An increasing requirement of broadcasters is to capitalise
on their growing archive stock, or to keep program content topical. This is
achievable by swapping out existing content objects and replacing them with
new or updated content audio and/or video objects.

One of the key requirements in these scenarios is the likelihood of media
being constructed and authored from multiple input sources. An example is
a background scene with additional video objects imported to create a per-
sonalised scene, as discussed above. The background and the objects need
alignment in space and time and need scene management to integrate and
coordinate into the scene. The associated objects need methods to inter-relate
them and to dictate to a receiver (client device) how these need to be rendered
into the final video for viewing.

All of these use cases demonstrate the requirement for metadata to provide
extremely tight descriptions of media content, down to the level of an object
with a scene. All of these media elements are likely to be individually traded
media assets requiring contractual support within the media value chain as
they are sought, located, acquired and rendered into a composite scene for a
specific video or audio feature for the end-user, which in turn raises the need
for appropriate standards as we will see in the next chapter.
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4 Metadata standards for the media value chain

Over the last two decades, a range of standards have aimed to define descrip-
tive formats, including ontologies to support activities in the media trading
and value chain. However, the standards that exist are still not fully support-
ive of the range of advanced features and services. The standards aim to cover
the details of how media is traded in terms of i) media instantiation and for-
mat, ii) media ownership, iii) media transactions to new owners, iv) allowances
and restrictions of media usage and re-use, and other features. MPEG have
already defined ontologies to support semantics in traditional text readable
contracts in the media value chain. The use of ontologies adds value to trading
activities. In the move to the use of Smart Contracts on Distributed Ledgers
Technology platforms (i.e. Blockchain) a method is required to support the
facilities of current contract types and translate them into required smart con-
tract languages. This is the focus of Part 23 of the MPEG-21 standard suite
[229]. In general, the use of metadata in broadcasting (for a number of appli-
cations) has been sparse until around ten years ago. Descriptive metadata was
limited mainly to the type of detail required for a brief entry in an Electronic
Programming Guide (EPG). The rapid increase in services (especially those
requiring semantic processing, for example for cross-platform services) has seen
large growth over recent years. Unfortunately, many of these new services have
been rolled out partly experimentally before maturing to full service. They
were also rolled out at great haste without much planning and not always
managed in an integrated way. As a result, many broadcasters have upwards
of 50 different metadata applications and formats. Proprietary data formats
are a major problem when evolving services further in a clean manner. There
is also a problem when integrating with services in external organisations.

4.1 Interworking between media asset platforms

Applications for trading of media assets were identified in Section 3.4 above.
Media assets may be full-length programs or component media objects. It is
likely that there will be a range of independent media asset trading platforms
emerging in the current traditional media trading market. For example, plat-
forms that are likely to be blockchain-based and trading media assets via smart
contracts [230]. They need to interwork with each other in the current mar-
ket, and also with other media trading platforms. Standards need to cover the
areas of:

• Description of content
– Full programs items
– Program elements

• Description of value chain operations
– Parties involved (e.g. creator, vendor, purchaser, etc)
– Content formats / instantiations
– Contractual (Service level agreements, obligations, etc)
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4.2 Ontologies in content description and media asset
trading

To facilitate the depth of detail required for services described in Section 3.4,
it is necessary for scene and object description to be defined to a tight level of
detail, including permitted activities on any object sought, traded and utilised
in a derivative production, for example for scene decomposition in Sections 2.3
and 3.2; or for the re-purposing of content as described in Section 3.3. Within
MPEG standards a number of ontologies have been developed [231, 232], to
allow semantic operations and processing on media for search, retrieval, rea-
soning for personalisation and interaction, and other services in media value
chains as previously discussed. The issue arises here that ontologies repre-
senting media require conversion to smart contracts supported on blockchain
platforms. This gives the platforms the additional features and benefits of the
MPEG ontologies. The details of these conversions between traditional nar-
rative contracts and smart contracts and the use of MPEG ontologies are
discussed below.

4.3 Metadata Candidates

4.3.1 Introduction to descriptive metadata for broadcast

Metadata in film and broadcast media has traditionally focused on the neces-
sary structural aspects required by receiving equipment to decode and playback
the media. Structural aspects include resolution(s), frame rate, coding, audio
aspects (stereo, 5.1, etc) and other parameters. For descriptive metadata the
standards have traditionally been very simplistic and have been limited to
the basics of the content, typically sufficient for an EPG: title, length, simple
plot-line, leading performers, etc. Initial descriptive metadata formats have
been built on the DublinCore standard [233], and evolved into DVB-SI [234],
TV-Anytime [235], BMF [236] and, by the late 1990s, MPEG-7 [237–239].

As discussed below, MPEG-7 is a complex standard and has gained little
support in the industry, largely due to the lack of immediate requirement for
a solution without the initial problem. In the years since the publication of
MPEG-7, there have been a number of advances in media features (some are
discussed in Section 2 above), and technologies to achieve immersive media
have required a revised approach to content description. This has resulted in
the development of MPEG-I Part 14 [240, 241] “Scene Description for Immer-
sive Media”. This standard is one of many parts which make up the suite of
standards for Immersive Media [242], including emerging media coding for-
mats, for example, part 3 [243] is the part that describes the requirements to
support Versatile Video Coding (VVC) [244].

4.3.2 EBU Core

EBU Core is introduced at [245] and the ontologies to define the Core oper-
ations is given in [246]. The standard defines concepts, relationships, and
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properties that apply to broadcast media to describe program content. It is
based on the Dublin Core metadata model [247]. EBU Core was first published
in 2000 as a set of definitions for audio archives. At the time of its introduc-
tion XML was an emerging standard but its use has increased since, requiring
a more structured approach to audio-visual content description. A range of
more semantic languages has been developed which have influenced the way
of modelling audio-visual objects. EBU Core has followed this development.
The first representation of EBU Core comprised the 15 ontological elements
of Dublin Core.

Following the development of semantic representation on the Web, Web
Ontology Language (OWL) [248] is used as the semantic basis. This facilitates
machine-operable queries for items based on semantic understanding.

The suite of standards includes the related EBU specifications:
• Tech 3293 - EBU Core [249]
• Tech 3293 - RDF/OWL [250]
• Tech 3332 - Music [251]
• Tech 3336 - Classification Schemes [252]
• Tech 3349 - Acquisition Metadata [253]
• Tech 3351 - CCDM [254]
• Tech 3352 - Identifiers in BWF [255]
The purpose of the scheme is to classify content at a comparatively high

level, like EPG applications, etc. However, it is not considered that the scheme
is sufficiently fine-grained to support the ranges of next generation services
envisaged.

4.3.3 MPEG-I and content description

An implementation of personalised video is likely to be based on the composit-
ing of audio, video, and data objects into an integrated scene as described
in subsection 2.4. Tools to support these processes include support for scene
description, object description and scene graphing. MPEG-7 had been the
only standard offering this level of detail, but to date, such detail has not
been required in traditional media, and MPEG-7 remained largely dormant
as a standard. The standard was initiated in the 1990s for the range of multi-
media presentations envisaged in MPEG-4. As such MPEG-7 gave extremely
fine-grained content description down to objects within a frame-level of detail.
However, in the context of the next generation services envisaged, MPEG-7 is
now superfluous along with other scene description standards LASeR (MPEG-
4 Part 20, Lightweight Application Scene Representation) and BIFS (Binary
Interchange Format for Scenes, MPEG-4 Part 11). Developments in immer-
sive media require support for 3D scenes, games, and other next generation
features. Recent MPEG activity has been in an ad-hoc group developing pro-
posals and standards to support these requirements, and these are emerging as
the evolving standard MPEG-I Part 14 [256, 257] - scene description. This part
defines extensions to existing metadata scene description schemes to support
these new features.
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The MPEG strategy has been to extend an existing technology rather than
redefining new standards from scratch. The most suitable candidate identified
is Graphics Language Transmission Format, glTF [258]. The glTF specifica-
tion is royalty-free and intended for the transmission and loading of 3D scenes
and models used by graphics engines and applications. The format minimises
the size of 3D assets, and the runtime processing needed to unpack and use
them. An extensible, format for publishing is defined that streamlines author-
ing workflows and interactive services by enabling the interoperable use of
3D content. The application and specifications are aimed across the industry.
However, there are issues that needed to be addressed to extend to format
to be suitable for scene description required in MPEG-I. These included sup-
port for audio; timed media, including dynamic meshes, point clouds and
video textures; scene updating; decoupling of media access from rendering.
MPEG has formulated extensions to address these gaps in the original stan-
dard. MPEG has also defined a Media Access Function (MAF) API which
decouples rendering from media acquisition (fetching). MAF also provides the
API to the Presentation Engine to request media, and the associated meta-
data. MPEG-I also specifies a node hierarchy as a model to relate spatial media
in terms of meshing, light, material, shaders, texture, etc. An example is the
MPEG Media Extension to allow timed and non-timed media (compressed
and non-compressed), and to support a range of delivery formats including
DASH/CMAF, HLS/CMAF, WebRTC and also for local storage in ISO Base
Media File Format (ISO BMFF). Other MPEG extensions to glTF define cir-
cular buffers for read/write media access, allow materials in scenes to use
textures and allow spatial audio. The specification also details the management
of media pipelines for the timed delivery of media to the Presentation Engine.

4.3.4 MPEG-21 part 23: smart contracts for media

The MPEG standards addressing the usage and management of media assets
are mainly part of the MPEG-21 standards. The MPEG-21 suite of stan-
dards is defined as the “Multimedia Framework,” and addresses digital asset
management from two main considerations:

• The definition of a Digital Item (i.e. as a fundamental unit of distribution
and transaction)

• Users interactions with Digital Items; viz. their roles, allowances, restric-
tions of usage, etc.

The standard is a suite of parts that were originally defined in the 1990s as a
framework for digital works authored and described from the evolving MPEG-
4 multimedia standard. In recent years the methods envisaged for support of
digital media assets have been revised. A key technology to the automated
contractual trading of media is part 23 of MPEG-21, “Smart Contracts for
Media”. This is described below with reference to associated parts of the
MPEG-21 standard suite. The approach envisaged is that media contracts are
initially constructed using XML schema and RDF from parts 19, 20 and 21 of
the standard (ISO/IEC 21000-19, 21000-19/AMD1, 21000-20, and 21000-21).
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These form the basis for smart contracts. Part 23 refers to a set of ontologies
for the coding of media asset Intellectual Property Rights (IPR), and lists the
object hierarchies which are to be utilised to construct a smart contract.

Two semantic formats have been developed in the MPEG-21 suite:
• The Contract Expression Language (CEL) [259] - a language for repre-

senting media contracts with XML
• The Media Contract Ontology (MCO) [232] - a language for representing

media contracts as ontologies with RDF (OWL).
The IPR ontologies also includes:

• The Media Value Chain Ontology (MVCO) [260]. This facilitates rights
tracking for transparent payment of royalties

• The Audio Value Chain (AVCO) [261] - extends MVCO functionality -
IP entities in the audio domain.

The principles of these ontologies can manage the execution of rights-
related processes in platforms that support the contractual activities, specifi-
cally Distributed Ledger Technologies (DLTs), i.e. blockchain platforms.

The aim of MPEG’s work is to develop the protocols and APIs for convert-
ing between ontologies and contract languages to smart contracts. Translation
of MPEG-21 contracts to smart contracts will ensure a clean correlation
between human-readable MPEG-21 contracts and smart contracts.

Maintaining a standard for conversion of contracts (in both directions
between MPEG-21 ontologies and smart contracts) will ensure MPEG-21
ontologies and languages prevail as the interlingua for transferring verified
contractual data from one DLT to another.

The main parts of MPEG-21 which support the smart contract work in
Part 23 are:

• ISO/IEC 21000-3, Information technology - Multimedia framework
(MPEG-21) - Digital Item Identifier

• ISO/IEC 21000-19, Information technology - Multimedia framework
(MPEG-21) - Media Value Chain Ontology

• ISO/IEC 21000-19/AMD1, Information Technology – Multimedia Frame-
work (MPEG-21) – Part 19: Media Value Chain Ontology / AMD 1
Extensions on Time-Segments and Multi-Track Audio’, June 2018.

• ISO/IEC 21000-20 (2nd Ed), Information technology - Multimedia frame-
work (MPEG-21) - Contract Expression Language

• ISO/IEC 21000-21 (2nd Ed), Information technology - Multimedia frame-
work (MPEG-21) - Media Contract Ontology

MPEG-21 Part 23 provides methods to allow conversion from MPEG-
21 semantic descriptions to a smart contract, and also the conversion in the
reverse direction.

4.3.5 MPAI standards

The MPAI Community [262] are addressing a number of advanced technologies
for next generation media. For scene description their initiative is MPAI-
OSD - Visual Object and Scene Description [263]. They see visual object and
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scene description as a collection of Use Cases sharing the goal of describ-
ing visual objects and locate them in a space. Scene description includes the
usual description of objects and their attributes in a scene and the semantic
description of the objects.

They have derived application notes to consider the use cases. The “object
and scene description” component of several use cases is used to indicate
a description (language) of objects and their attributes, and the semantic
description of the individual objects in a scene. Proprietary solutions can
address the needs of the example use cases, as follows:

• Vision-to-sound transformation
• Integrative genomic/video experiments
• Audio Recording Preservation
• Person movement description, specifically Multiplayer online gaming,

Posture analysis
• Scene description, specifically AI-assisted driving, Integrative

genomic/video experiments
• Generic object description for gaming and automotive applications
• Person identification, Person matching
• Conversation with emotion
• Multi-modal Question Answering
• Movement description; Human, animal; Integrative genomic and video

experiments
In conclusion, MPEG is not the only approach to standardising media

assets for the next generation of personalised, interactive and immersive
media. However, it is a well-known family of standards with a proven and
well-understood ecosystem. The standards are maintained and continually
developed by academics and practitioners across the globe and across the
media industry and span the breadth and depth of all media activities. The
standards addressing immersive media description and smart contract deploy-
ment and management are already well developed. The industry would be
hindered by a disparate range of approaches and so it is recommended that
standards such as MPEG continue to be adopted to enable efficient glob-
ally deployed media services for interaction and personalisation, especially for
commercial use.

5 Open problems & future directions

5.1 TV content decomposition

Future directions in temporal video fragmentation include the support for
more abstract yet semantically-coherent notions of video segments. Cognitive
science has shown that humans consistently segment videos into mean-
ingful temporal chunks, without strongly-defined types of segments [264].
Computer-based methods replicating this human behaviour could result in
video segments that encapsulate more generic “events” - even combining tem-
poral video segmentation with notions from the event detection domain [265] -
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instead of detecting more strictly-defined domain-specific segments (e.g. movie
segmentation based on cinematography editing rules [266, 267], play-break seg-
mentation of soccer [268]). One way this could be achieved is by automatically
adjusting the level of granularity, e.g. to produce coarser-than-shot segments
when dealing with visually and semantically similar shots, or finer-than-shot
segments when needed to account for quick changes in the visual content, e.g.
a fast-moving foreground object. Given that temporal video fragmentation is
usually the first step of a video analysis pipeline, it is easily understood that
the subsequent stages in most video analysis pipelines could potentially benefit
from such a flexible temporal video fragmentation.

Regarding object detection (including semantic segmentation), the most
discussed open problem in the literature is implementing a well-performing
few-shot training scheme, i.e. incrementally learning to detect new classes,
with very few training examples. This can greatly reduce the effort required to
learn new object classes, especially if achieved in a weakly supervised way [269].
Additionally, using spatial and temporal relationships between the frames for
video object recognition, instead of processing each frame as a separate
still image, is an open problem [270]. A common solution is to employ object
tracking techniques in order to perform object detection in a sparse sampling
of frames and then propagate the results to nearby frames, estimating the new
positions of objects with object tracking techniques. Future research should
focus on deep-learning models that will unify object detection and tracking.
Finally, employing models resulting from neural architecture search
for object detection is already an actively growing area (as discussed in
Section 2.1.2) of great potential, yet still in its nascency.

5.2 TV content annotation

It is a commonly known fact that deep learning requires a large amount of,
most often labelled, training data. Such a large amount of data may not always
be accessible which can lead to a scarcity of publicly available data for training
neural networks. Indeed, in practice, researchers often fine-tune existing pre-
trained models, instead of training deep CNNs from scratch [271]. Therefore,
future research should focus on devising new data augmentation methods
for expanding limited available training data, or explore methods for
unsupervised learning, such as GANs, where a generator network works in
partnership with a discriminator network [271]. Unsupervised learning avoids
the need for manual data labelling by automatically discovering patterns in
the data, such that the network model can generate new outputs that could
have been drawn from the original real dataset. In this regard, it is rather
like generating augmented data. Impressive examples of the latter exist, where
GANs have been used to create very realistic, but completely artificial, fake
human faces [272].

Concerning cross-modal representation and retrieval, besides algorithmic
improvements, e.g. designing effective yet efficient methods, a major open con-
cern is the limited use of information from more than two modalities [273].
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Several existing benchmark datasets, such as ActivityNet [274], Vatex [275],
MSR-VTT [95], YouTube8M [276], are made of video, audio and textual (e.g.
caption) information. On the other hand, social networks such as YouTube,
Facebook, Instagram, and Twitter, accumulate large amounts of even richer
multi-modal data (i.e. text, video, audio, and related sentiment, popularity,
usage-related etc. information), data which could be exploited for training
cross-modal retrieval models. The key question is how to use restricted and/or
noisy data as multi-modal annotations and ultimately learn semantic relations
among different media modalities [277]. Cross-media retrieval method perfor-
mance is directly proportional to the nature of the dataset used for training,
as argued in [278], therefore future cross-media techniques should also
investigate the use of such less-structured data sources.

Research in the area of deep learning for classification and annotation tasks
will continue to bring forward ever more (marginally) accurate systems. Both
Vision Transformers [279] and CoAtNets [280] are currently the best perform-
ers, but this can change quickly. Research on video annotation still lags behind
image annotation, where features such as temporality or movement in the
video may also be an input to the network (as opposed to still images taken
from the video). The latest research has shifted towards multi-modal networks
as part of Multi-Task Learning (MTL), where the same network can classify
different inputs which are of different modalities such as text, image or video
equally (e.g. data2vec28). However, what we also want to see is networks opti-
mised to use a combination of modalities (i.e. text, audio and video as features
of the same input) which is needed for instance-level annotation. Combined
with unsupervised learning and the Web as a large-scale real-time knowledge
source, such networks could even come to annotate correctly previously unseen
instances in a video. The holy grail would be an annotation system able to gen-
eralise from the known classes to also classify accurately unknown
classes (where there is no training data) as, in the context of annotating of
TV content with broad topics, the lack of sufficient training examples is still a
bottle-neck for supervised approaches. Either synthetic data needs to be gen-
erated (e.g. [281]) to cover the missing classes or state-of-the-art approaches
to unsupervised learning - few-shot, one-shot and especially zero-shot - need
to be employed [282, 283].

5.3 TV content re-purposing

Starting with technologies to find the right content, i.e. text-to-video tech-
niques, an open problem concerns the detailed temporal alignment of
a diverse textual query to the visual semantic exploited from the given
video [284, 285]. A coarse matching between two modalities (e.g. matching a
short sentence to a video shot) is not most effective for real-world applica-
tions since it fails to localise the exact moment expressed by a detailed query.
An envisaged approach to alleviate this is combining ad-hoc video search

28https://ai.facebook.com/research/data2vec-a-general-framework-for-self-supervised-learni
ng-in-speech-vision-and-language
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with dense video captioning, a direction being explored in the literature very
recently ([286, 287]). A more fine-grained multi-modal analysis, i.e. the
ability to identify more concepts in the visual content as well as in the text
query, is also an important objective. This may be achieved by additionally
employing object detection models’ results as the features that describe visual
content ([288, 289]).

Moving on to content transformation and specifically regarding video sum-
marization, the research community seems to be lately putting effort towards
the development of deep learning architectures that can be trained in a fully-
unsupervised, or at least weakly-supervised, manner so as to completely
overcome the need for large collections of human-annotated training data [62].
Additionally, some recent summarization methods aim to meet additional cri-
teria about the content of the generated summary, e.g. its visual diversity [132]
and its uniformity [290]. Such efforts towards offering more control in
the process of summarization using easily understood human notions, are
promising future research directions.

In the field of highlight detection, there is a noticeable trend towards
embracing multi-modality (e.g. [291, 292]). Relying solely on visual features
is often insufficient for capturing the highlights of videos with complicated
semantics, e.g. a political debate video. Furthermore, utilising transfer learn-
ing approaches, i.e. deriving an effective highlight detector on a target video
category by transferring the highlight knowledge acquired from a source video
category with a large collection of training data available, seems a promis-
ing direction when devising domain-agnostic video highlight detection
systems.

Concerning super resolution techniques, a currently discussed open prob-
lem regards the excessive computational requirements [293]. While many
solutions have been proposed already for deployment on resource-limited
devices (e.g. [294, 295]), these are usually not optimised yet for common smart-
phones, not to mention more constrained smart TV platforms [296]. To address
this, [297] introduces the first Mobile AI challenge, where the target is to
develop end-to-end deep learning-based video super-resolution solutions that
can achieve real-time performance on less powerful hardware. The outcome
of such efforts might also benefit TV applications of AI techniques, enabling
the transfer of the computational load of super-resolution (as well other tasks,
such as aspect-ratio adaptation) to client devices, like smart TVs and tablets.
Finally, the short list of methods for video super resolution methods, discussed
in Section 2.3.2, highlights the need for approaches specifically designed
for videos, i.e. that take into consideration the temporal continuity of video
frames to offer gains in both speed of execution as well as the quality of the
final results.

5.4 In-stream personalisation

Traditional personalisation and recommendation systems are faced with two
long-standing obstacles, namely, data sparsity and cold-start problems [298].
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Increasing concern by consumers about data collection and tighter laws on
data privacy (e.g. GDPR) mean that future systems should be able to person-
alise media without needing to build individual user profiles which
touch on the area of personal data. Collaborative filtering is one working solu-
tion to this, i.e. viewers are categorised into groups that closely share viewing
patterns (or other signals for determining interest in particular media items).
Google has been exploring such an approach on the Web known as Federated
Learning of Cohorts29 (FLoC) for targeted advertising without personal data.
In the ReTV project, the audience was similarly clustered into groups that
shared similar viewing patterns. Models were evaluated for predictive abil-
ity, i.e. given the past viewing history, to predict which program they would
watch next. This prediction then acted as a recommendation. A baseline model
using Non-Negative Matrix Factorization (NNMF) was compared to Field-
aware Factorization Machines (FFM) where additional features learned from
content analysis was used (i.e. topics, genres and concepts in the program),
leading to an over 100% improvement on predictive ability (i.e. the prediction
of which program would be next watched matches the actual program that
was next watched) [299]. This work suggests that content feature extraction
(the classification of media discussed in Section 2.2.1) can be used in per-
sonalised systems to find relevant media for viewers separate from individual
profiling of their personal interests, an activity which increasingly concerns
viewers. Apart from avoiding the cold-start problem, it might also ensure a
broader range of media items than traditional classification-based approaches
which tend to develop a “filter bubble” (users watch a lot of x so they are
recommended more of x, at the expense of all other content). Future work on
TV personalisation must leverage information collected from other domains to
alleviate both problems (i.e. move towards an approach to cross-domain rec-
ommendation) and discover the link among media content, activities and user
interaction as well, e.g. formulating this as a relationship between triggered
emotions and user expectations [300].

Despite advances in recommendation systems through AI and deep learn-
ing, the focus has remained to date on the whole media item as the object of
recommendation. In the future, while the subject of recommendation is becom-
ing less granular (from the individual viewer to a viewing group), the object
of recommendation needs to become more granular - the recommended
content may be a dynamically composed media item from a set of
different decomposed media objects (e.g. video segments). While stan-
dalone research efforts have been performed to show some of the possibilities
of in-stream personalisation (e.g. putting together a news program made up
only of segments of interest to the viewer, such as [301]) truly personalised
TV will only emerge when these personalisation technologies are combined
with solutions for the other aforementioned technical requirements - the media
decomposition, annotation, and re-purposing - and deployed in a production
setting. A key prerequisite to this will be sufficient accuracy and relevance in

29https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/
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results to not only retain but to attract new viewers to what will emerge as a
radically new form of media consumption. One where no one viewer might
see exactly the same content stream as another. Where even the clothes
on the program characters, the cars they drive or the dialect they use when
speaking might be different according to the preference of the viewer.

5.5 Standards

This paper has considered the range of interactive and personalised media
services where scenes can be composed of media objects. Media trading has
also been described along with the technologies and standards required to
ensure the contracted commercial acquisition of objects on a future object mar-
ket. Section 3.4 described TV personalisation where objects are commercially
traded in near real-time.

The procedures and standards described in Section 4 can allow for this, but
to date have not specifically addressed the real-time object trading issue. An
issue to be addressed here is the dynamic derivation of scene graphing
to allow for objects to be “null” in the original production, and awaiting
import of objects for the personalised resulting playout to the end viewer. In
these cases, the metadata needs to describe content parameters to allow for
editorial control by the original producer. For example - allowing or disallowing
specific objects to be used in personalised selections, for example on the basis
of ethical or moral preferences by the content author or production team.

Another issue is the potential for tracking content versioning in a
process where there may be limitless versions derived. This may
affect industry standards such as Application Specification AS-02 of Material
eXchange Format, MXF [302] or the Interoperable Media Format, IMF [303].

In summary, standards activities need to address some new issues. These
include standards for support of external library content traded into a video (in
near real-time), tracking media component assets (e.g. audio and video objects)
throughout the media content value cycle and the application of production
versioning to personalised interactive media.

6 Conclusions

In this work, we provided a review of the AI and data technologies land-
scape that can aid the data-driven personalisation of television content. We
identified classes of relevant technologies and we discussed how these tech-
nologies have evolved over the last years, what is the current state-of-the-art
and what is the potential for the future. Additionally, we provided examples
of tools/services/products that are already in use to support advanced per-
sonalisation functionalities. Furthermore, we analysed the existing relevant
standards, again looking at open problems and future directions. We hope
that this survey can encourage further efforts, both by the research community
towards advancing the relevant technologies, and the content owners/media
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organisation/TV broadcasters in order to adopt and integrate such technolo-
gies, putting them to test under realistic conditions and using them in real-life
applications.
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