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Abstract. This paper demonstrates VERGE, an interactive video re-
trieval engine for browsing a collection of images or videos and search-
ing for specific content. The engine integrates a multitude of retrieval
methodologies that include visual and textual searches and further ca-
pabilities such as fusion and reranking. All search options and results
appear in a web application that aims at a friendly user experience.

1 Introduction

VERGE is an interactive video retrieval system that provides users with efficient
browsing and various search capabilities inside a set of video collections. For
more than ten years, VERGE has been participating in numerous video retrieval
related conferences and showcases, including TRECVID [1] and Video Browser
Showdown (VBS) [2], thus the system is adapted to support the Known Item
Search (KIS), Instance Search (INS) and Ad-Hoc Video Search (AVS) tasks.
Experience from previous participation drove this year’s selection of mature
solutions (Section 2.1), the improvement of old modalities (Sections 2.2, 2.6),
the integration of new (Sections 2.3, 2.4, 2.5) and also any advances regarding
the user experience.

2 Video Retrieval System

VERGE serves as a video search engine with user-friendly browsing and a vari-
ety of modules to retrieve an image or a video from a collection. Furthermore,
different search functionalities can be fused to create a combined query or they
can be used consecutively to rerank the top results. A detailed description of
the implemented indexing and retrieval modules follows in the next subsections,
while the general architecture of VERGE can be seen in Figure 1. It should
be noted here that all shot-based algorithms are based on the keyframes that
derived from the provided V3C1 segmentation.
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Fig. 1. VERGE System Architecture.

2.1 Visual Similarity Search

This module performs visual-based retrieval similarity of relevant content using
convolutional neural networks (CNNs) upon a deep hashing architecture. A deep
hashing approach will be followed in order to represent the visual information
into a few bits (12, 24, 32, 48)[3]. Then, the retrieval framework will retrieve
the relevant visual content by comparing the hamming distance of the generated
binary vectors between the gallery images and the query. The backbone convolu-
tional network will be an architecture similar to AlexNet or VGG16. Eventually,
an IVFADC index database vector will be created for fast binary indexing and
K-Nearest Neighbors will be computed for the query image [4].

2.2 Concept-Based Retrieval

This module annotates each keyframe with a pool of concepts, which comprises
1000 ImageNet concepts, 345 concepts of the TRECVID SIN task [5], 500 event-
related concepts, 80 action-related, 365 scene classification concepts, 580 ob-
ject labels and 30 style-related concepts. For performing the annotation, each
keyframe was split to 9 equally-sized regions by applying a 3 × 3 grid, and each
region, as well as the whole image, were processed separately so as to incorpo-
rate coarse localization information to the annotations. To obtain the annotation
scores for the 1000 ImageNet concepts, we used an ensemble method, averaging
the concept scores from four pre-trained models that employ different DCNN
architectures, namely the VGG16, InceptionV3, InceptionResNetV2, as well as
a hybrid model that combines the ImageNet and Places365 concept pools [6].
To obtain scores for the 345 TRECVID SIN concepts, we used the deep learning
framework of [7]. For the event-related concepts we used the pre-trained model
of EventNet [8] while for the action-related concepts we used a model trained on
the AVA dataset [9]. Regarding the extraction of the scene-related concepts, we
utilized the publicly available VGG16 model fine-tuned on the Places365 dataset.
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Object detection scores were extracted using models pre-trained on the estab-
lished MS COCO and Open Images V4 datasets, with 80 and 500 detectable
objects, respectively, and the bounding box information for each detected object
was used for assigning the detection to one of the 9 considered keyframe regions.
Finally, for the style-related concepts we employed the pre-trained models of [10].

2.3 Text to Video Matching module

This module compares a complex free-text query with a set of keyframes and
returns a ranked list with the most correlated keyframes. Following the method
proposed in [11], we use an architecture that learns to represent a textual instance
(e.g. a sentence) and a visual instance (i.e. a keyframe) into a common feature
space. Therefore, the correlation between a given text Si and an image Imj is
directly comparable in the common space. For this, a dual encoding deep neural
network that projects a natural language sentence and a shot keyframe into
the common feature space is used. The network performs multi-level encoding in
parallel, for both sentence and keyframes. A pre-trained Resnet-152 model is used
for the initial keyframe representation, whereas each word sentence is initially
encoded as a bag-of-words vector. Then, both the sentence and the keyframe
representations go through three different encoders (i.e. mean-pooling, bi-GRU-
based sequential model [12], and biGRU-CNN [13]). To train this module, we
followed the approach of [14], and in terms of training data we combined two
datasets, TGIF [15] and MSR-VTT [16]. The TGIF dataset contains approx.
100k short animated GIFs with one short description per each, while MSR-VTT
consists of 10k short video clips, each accompanied by 20 short descriptions.

2.4 Automatic Speech Recognition

Acoustic content from videos is also exploited, by extracting audio channels and
applying Automatic Speech Recognition (ASR) on them, in order to produce
speech transcriptions for the whole collection. The basis for ASR is the open
source framework CMU Sphinx-4 [17], a widely used, portable and flexible ASR
system. The main components of the CMU Sphinx-4 Transcriber are a) a pho-
netic dictionary, which contains a mapping from words to phones, which are the
basic units of speech, b) an acoustic model, which contains acoustic properties
for each unit of speech, and c) a language model, which provides word-level
language structure, by defining which word could follow previously recognized
words and significantly restricting the matching process by stripping words that
are not probable. Existing open source language and acoustic models are used in
the context of VERGE platform. A priori extracted transcriptions and provided
metadata are then fed into a text-based search module that uses Apache Lucene
and enables the identification of a video by using words from the plot.

2.5 Video Captioning - Caption-Based Search

This module describes each video by a sentence/caption that is constructed from
words included in a vocabulary, and thus the user can retrieve videos by simple
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text search. Video captioning approaches comprise two separate components: i)
a feature extractor that typically extracts the features of a video by sampling
among the frames using a fixed number as a step, and ii) an encoder-decoder
that encodes the content and subsequently assigns it to words. To address this,
an RNN-based neural network is used similar to [18]. The model is pre-trained
on MSR-VTT [16], a widely-known dataset in video captioning domain. Finally,
an approach based on [19] using reinforcement learning is implemented.

2.6 Multimodal Fusion and Temporal Search

This module fuses the results of two or more search modules, such as the visual
descriptors (Section 2.1), the concepts (Section 2.2) and the color features men-
tioned in Section 3. Similar shots are retrieved by performing center-to-center
comparisons among keyframes by using the selected modules. The query is de-
scribed with multiple features (e.g. a shot, a color and/or concepts) and one of
the features is considered by the user as dominant (i.e the most important one).
The system returns the top-N relevant shots by considering solely the domi-
nant feature (e.g. color), and then the other features are used for re-ranking
the initial list by using a non-linear graph-based fusion method [20]. In order to
perform temporal search, a query using multiple features of two adjacent shots
is received, the top-N relevant images for one of the query shots are retrieved
and finally this list is re-ranked by considering the features of the adjacent shot.

3 VERGE User Interface and Interaction Modes

The VERGE web application (Fig. 2) aims to provide end users with a friendly
and effective way to utilise the developed retrieval algorithms, in a modern envi-
ronment. Since this year we decided to incorporate a large number of modalities
to offer more search options, our main goal is to serve them to the user in a
non-complex way.

The VERGE user interface consists of three principal components: (i) a dash-
board menu on the left, (ii) a results panel that covers most of the screen, and
(iii) a filmstrip on the bottom. The menu contains a countdown timer that shows
the remaining time to submit during VBS, a slider that adjusts the size of results,
a back button that restores outcomes of previous queries and a switch button
that defines whether a retrieval module will bring new matching shots or rerank
existing results. Next, the various search modules are visualised as boxes that
can be expanded or collapsed for reasons of compactness. In detail, Concepts and
Filters present the entire list of visual concepts and filters respectively (Section
2.2), while both provide the option of auto-complete search. The selection of
multiple concepts is also supported. Colors is a color palette in order to retrieve
images of a specific shade. Text Search looks for the typed words in the video
metadata, in the speech-to-text transcriptions (Section 2.4), and/or in the sum-
maries described in Section 2.5, and it can also map the words to visual concepts
and return most relevant shots (Section 2.3). Furthermore, Combination allows
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Fig. 2. Screenshot of the VERGE web application.

the fusion of some of the aforementioned modalities and Temporal Search offers
the option to describe two consecutive shots (Section 2.6). The results of each
search module are displayed in the main component, either as single images or
groups of images (videos) in a grid view, sorted by highest relevance. Hovering
over an image reveals the options to run the Visual Similarity Search (Section
2.1) or submit it to the contest. Clicking on the image shows the complete video
in the bottom filmstrip, in the form of sequential shots.

To illustrate the capabilities of VERGE, a simple scenario is described, where
users try to find shots of a couple hugging in a black-and-white movie. Search can
be initiated by applying the “B/W” filter from the available list of filters and
then combining it with the concept “two people”. Once a relevant image appears
among the results, then visual similarity can be used in order to retrieve more
similar shots. An alternative strategy is to look for relevant keywords (e.g., “cou-
ple old movie”) inside the metadata, the transcripts and the video summaries.

4 Future Work

Since some of the aforementioned retrieval modalities are introduced to VERGE
for the first time, we will evaluate their performance during the VBS contest
and we will decide accordingly on their further enhancement or modification.
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