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Abstract. During minibatch gradient-based optimization, the contribu-
tion of observations to the updating of the deep neural network’s (DNN’s)
weights for enhancing the discrimination of certain classes can be small,
despite the fact that these classes may still have a large generalization
error. This happens, for instance, due to overfitting, i.e. to classes whose
error in the training set is negligible, or simply when the contributions of
the misclassified observations to the updating of the weights associated
with these classes cancel out. To alleviate this problem, a new crite-
rion for identifying the so-called “neglected” classes during the training
of DNNs, i.e. the classes which stop to optimize early in the training
procedure, is proposed. Moreover, based on this criterion a novel cost
function is proposed, that extends the cross-entropy loss using subclass
partitions for boosting the generalization performance of the neglected
classes. In this way, the network is guided to emphasize the extraction of
features that are discriminant for the classes that are prone to being ne-
glected during the optimization procedure. The proposed framework can
be easily applied to improve the performance of various DNN architec-
tures. Experiments on several publicly available benchmarks including,
the large-scale YouTube-8M (YT8M) video dataset, show the efficacy of
the proposed method1.

Keywords: DNN · neglected classes · subclasses · cross-entropy loss.

1 Introduction and related work

Deep neural networks (DNNs) have shown a breakthrough performance in many
machine learning problems and are currently witnessing a significant commercial
deployment in several application domains such as multimedia understanding,
self-driving cars, IoT and other. The state-of-the-art DNNs for classification tasks
consist of a series of weight layers, nonlinear activation functions and downsam-
pling operators and on top of them an output layer typically equipped with a

1 Source code is made publicly available at: https://github.com/bmezaris/

subclass_deep_neural_networks
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2 N. Gkalelis and V. Mezaris

sigmoid or softmax activation function modeling c categorical probability distri-
butions [16,21]. An important aspect on the design of a DNN is the choice of
the cost function and the optimization algorithm. The cross-entropy (CE) loss
and the stochastic gradient descent (SGD) combined with the back-propagation
(BP) algorithm for updating the DNN parameters are almost always the sole
choice in practice [12]. The great success of those DNNs is based on their ex-
traordinary ability to extract nonlinear features at different layers guided by the
SGD-BP algorithm in order to transform a set of c (possibly) nonlinear classifi-
cation tasks in the input space of the DNN to c linear ones in the input space of
the output layer. More specifically, for the ith output node a gradient update to
the correct direction is generated, whose length is proportional to the training
error of the ith class, guiding the overall network to extract the desired features
and producing a linearly separable subspace for the ith classification task. In
[19], it is shown that the application of the CE loss with gradient descent on
separable data convergences to the max-margin solution with a logarithmic con-
vergence rate. Moreover, it is shown that the above analysis is also valid in deep
networks if after a certain number of iterations the weight vectors of the last
weight layer are assumed fixed and the class distributions at its output are con-
sidered linearly separable (or piecewise linearly separable). However, as we show
in this paper not all weight vectors in the last layers yield a linearly separable
problem simultaneously and thus not all class separating hyperplanes converge
to the max-margin solution with the same rate. Instead, there is an antagonism,
where the extraction of discriminant features for certain classes is emphasized
during the optimization of the DNN, while other classes are partially neglected
yielding a “less” linearly separable problem in the input space of the output
layer for these classes, and thus a separating margin that is suboptimal.

The limitation of DNNs to treat all classes fairly during the training proce-
dure has been mostly studied in the context of class imbalanced learning [15].
Moreover, the identification of classes receiving little attention during training
as described above is a relatively unexplored topic. To this end, a new crite-
rion for identifying such neglected classes is proposed. This criterion computes
the contribution of positive and negative observations in the gradient update
of the weight vectors in the output layer and combines the computed quan-
tities to form a stable measure for the likelihood that the underlying class is
going to be neglected. Moreover, in order to turn the attention of the DNN
on the identified neglected classes, we resort to a subclass partitioning strat-
egy. Subclass-based classification techniques have been successfully used in the
shallow learning paradigm. In [10], learning vector quantization (LVQ) is used
to find a set of cluster centers for each class and classification is performed by
finding the closest class center. In [7], mixture discriminant analysis (MDA) fits
a Gaussian mixture density to each class, extending the linear discriminant anal-
ysis (LDA) to the non-normal setting. In [5], nonlinear classification problems
are solved by splitting the original set of classes to subclasses and embedding
the binary problems in a problem-dependent subclass error-correcting output
codes (SECOC) design. In [20,6], a set of kernel subclass discriminant analysis
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techniques are proposed in order to deal with nonlinearly separable subclasses,
and it is shown that the identification of the optimum kernel parameters can be
performed more easily exploiting the subclass partitions.

Motivated by the above works, a subclass DNN (SDNN) framework is pro-
posed, where the neglected classes are augmented and partitioned to subclasses,
and subsequently a novel subclass CE (SCE) loss, which emphasizes the separa-
tion of subclasses belonging to different classes, is applied to train the network. In
this way, the network is trained to derive a piecewise linear subspace for the ne-
glected classes, imposing a less strict requirement for the extraction of nonlinear
features for these classes. Thus, the DNN is trained more effectively with respect
to the neglected classes, increasing its overall generalization performance. The
novel SDNN framework is compared with state-of-the-art approaches in 3 popu-
lar benchmarks (CIFAR10, CIFAR100 [11] and SVHN [14]) and in the large-scale
YT8M video dataset [1] for the task of multiclass and multilabel classification,
respectively. The results show that in most cases the proposed SDNNs obtain
significant performance improvements.

The rest of the paper is structured as follows: Section 2 presents the proposed
method and Section 3 describes the experimental evaluation. Conclusions are
drawn in Section 4.

2 Proposed method

2.1 Identification of neglected classes

Suppose a DNN with a sigmoid output layer (SG)

hκ = WTxκ + b, (1)

qi,κ =
1

1 + exp(−hi,κ)
, (2)

where W = [w1, . . . ,wc] ∈ Rf×c, b = [b1, . . . , bc]
T are the weight matrix and

bias vector of the SG layer, and c is the number of classes. Moreover, assuming
a batch of n training observations, the vectors xκ = [x1,κ, . . . , xf,κ]T , hκ =
[h1,κ, . . . , hc,κ]T , qκ = [q1,κ, . . . , qc,κ]T , yκ = [y1,κ, . . . , yc,κ]T , are associated with
the κth training observation in the batch, and are the input and output vector of
the linear part of the SG layer, the output vector of the SG layer, and the class
indicator vector, respectively. The ith component of yκ is the label of the κth
observation with respect to the ith class, i.e. yi,κ equals one if xκ ∈ ωi and zero
otherwise, and ωi denotes the ith class. For training the DNN, the minibatch
stochastic gradient descent (SGD) and the CE loss are used

L = − 1

n

n∑
κ=1

c∑
i=1

(yi,κ ln(qi,κ) + (1− yi,κ) ln(1− qi,κ)). (3)

Under this framework, the weight vector associated with the ith class is updated
at each iteration as below

wi = wi − ηgi, (4)
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where, gi = 1
n

∑n
κ=1 ζi,κxκ is the gradient of L with respect to wi, η is the

learning rate and ζi,κ = qi,κ − yi,κ. Noting that qi,κ ∈ [0, 1] we observe that
ζi,κ ∈ [−1, 1], with ζi,κ ≈ 0 when the right answer for xκ’s label is provided
by SG layer’s unit i, and ζi,κ moving towards |1| as the likelihood of unit i to
provide a wrong answer increases

ζi,κ =

 1 if qi,κ = 1, yi,κ = 0,
−1 if qi,κ = 0, yi,κ = 1,

0 if qi,κ == yi,κ.
(5)

These properties of ζi,κ can aid the correct operation of the gradient-based learn-
ing approach, i.e., shrinking the gradient in (4) when the right answer is obtained,
and providing a strong gradient otherwise, forcing the overall network to act
quickly in order to correct the mislabeled observations. However, this is not al-
ways the case. For instance, considering that the contribution to the summand
in (4) of different observations may cancel out, the gradient may shrink despite
the fact that many observations are misclassified. To see this, we rewrite the
gradient as

gi =
1

n
(δ̃i − δ̂i) =

1

n
δi, (6)

δ̂i =
∑

xκ∈ωi

−ζi,κxκ, (7)

δ̃i =
∑

xκ /∈ωi

ζi,κxκ, (8)

where δ̂i, δ̃i equal zero when the positive and negative observations, respec-
tively, are classified correctly. Note that −ζi,κ,xκ ∈ ωi and ζi,κ,xκ /∈ ωi are less

than one and always positive, and thus δ̂i, δ̃i are the weighted means of the
target and non-target class, respectively, weighted with the likelihood derived
from the DNN that this observation belongs to the respective category or not.
When δ̂i, δ̃i are close to each other, the overall gradient δi approaches zero and
wi remains relatively unchanged, despite the fact that many observations are
still not classified correctly by unit i. When this undesired effect appears, the
network gradually stops to optimize the weights of the different layers below for
extracting discriminant features associated with such “neglected” classes, paying
more attention on improving the training classification rates of classes which still
produce a strong gradient at each iteration. A unit i with large ‖δ̂i‖, ‖δ̃i‖ and
at the same time small difference between these two quantities reflects a high
likelihood that the associated class is not getting the required attention and is
going to be neglected in subsequent iterations. Based on the analysis above, ev-
ery τ minibatch iterations we compute the following measure for estimating how
likely a class is to be neglected

θi =
1

nτ

τ∑
l=p−τ+1

‖δ̂i,l‖+ ‖δ̃i,l‖
‖δi,l‖

, (9)
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where δ̂i,l, δ̃i,l are the gradient terms (7), (8) at the lth minibatch iteration, ‖‖
is the vector norm operator and p is the current iteration. The identification of
the most neglected class ı is then performed by using a simple argmax rule

ı = argmax
i

(θi). (10)

2.2 SDNNs

The major consequence of neglecting a class during the optimization procedure
is that the trained DNN will fail to learn an appropriate feature mapping where
the neglected classes are linearly separable. To alleviate this unwanted behavior
we propose the use a clustering algorithm to derive a subclass partition for those
classes that are prone to be neglected. By exploiting this partition it is expected
that it will be generally easier for the DNN to learn a nonlinear mapping where
the subclasses are linearly separable. Under this framework, the easiest way to
extend the CE criterion would be to treat each subclass as a class. However, this
loss will treat equivalently the costs associated with misclassifying an observation
to the non-target subclasses without examining which non-target subclasses are
associated with the target class of the observation and which not. To this end, we
propose the following loss in order to favor the separability of those subclasses
that correspond to different classes

L = − 1

n

n∑
κ=1

c∑
i=1

Hi∑
j=1

(yi,j,κ ln(qi,j,κ) + (1− yi,κ) ln(1− qi,j,κ)), (11)

where, yi,j,κ is the label of the κth training observation in the batch associated
with jth subclass of class i, i.e., yi,j,κ equals one if xκ ∈ ωi,j and zero otherwise,
and hi,j,κ, qi,j,κ are the input and output to the activation function of the (i, j)
unit associated with xκ. Note, that in the second summand of (11) the class
label yi,κ is utilized instead of the subclass label yi,j,κ in order to emphasize the
separation of subclasses belonging to different classes, as explained above.

2.3 Subclass partitioning and augmentation

Any clustering algorithm and augmentation approach can be applied to derive
a subclass division of the neglected classes. However, for large-scale datasets
such as the YT8M [1], it may be infeasible to use computationally demanding
clustering approaches such as k-means. To this end, the lightweight approach
described in Algorithm 1 for partitioning the observations of the ith class into
two subclasses is proposed. It is based on the computation of the distance of each
class observation to m, which is the mean along all observations in the training
set and used as a representation of the rest-of-world class. Moreover, data aug-
mentation can be performed to the neglected classes by applying extrapolation
in the feature space for each observation as proposed in [3]

x́i,j,κ = λ(xi,j,κ − x̌i,j) + xi,j,κ, (12)
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6 N. Gkalelis and V. Mezaris

Algorithm 1 Subclass partitioning algorithm

Input: {xi,1, . . . ,xi,ni}, m
Output: xi,j,κ, x̌i,j , κ = 1, . . . , ni,j , j = 1, 2
1: Compute dj = ‖xi,j −m‖ ∀j
2: Sort xi,j ’s in descending order according to the dj ’s: {x̃i,1, . . . , x̃i,ni}
3: Compute ni,1 = bni/2c, ni,2 = ni − ni,1
4: Set {xi,1,1, . . . ,xi,1,ni,1} = {x̃i,1, . . . , x̃i,ni,1} (i.e., we assign the observations with

the highest dj ’s to the 1st subclass; the remaining observations go to the 2nd
subclass as shown in step 5)

5: Set {xi,2,1, . . . ,xi,2,ni,2} = {x̃i,ni,1+1, . . . , x̃i,ni}
6: Set x̌i,1 = x̃i,1, x̌i,2 = x̃i,ni (these quantities are used in (12) for the augmentation)

where, λ ∈ [0, 1] and x̌i,1, x̌i,2 are the observations of class i with the largest
and smallest distance from m, respectively. Using the approach described in
this section, both class partitioning and augmentation can be performed very
efficiently on-line without the need to load the whole dataset or large parts of it
in memory.

3 Experiments

3.1 Validation of the neglection criterion

In order to verify the validity of the proposed criterion we train and evaluate a
VGG16 network for 420 epochs in the CIFAR10 dataset and record the testing
CCRi, the neglection measure θi, and the gradient vectors δi, δ̂i and δ̃i for each
epoch and class i, i = 0, . . . , 9. The exact details of the network architecture
and the training procedure are provided in Section 3.2. The recorded values
for θi and CCRi are shown in Figure 1, while the length of the three gradients
plotted between the epochs 100 and 200 are depicted in Figure 2. We observe the
following: i) There is a clear correlation between the generalization error rate and
the neglection criterion. More specifically, as shown in Figure 1 the neglection
values can be used to rank the classes in terms of their expected generalization

Fig. 1. Testing CCRi and neglection measure θi for the CIFAR10 dataset.
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Fig. 2. Length of gradient vectors δi, δ̂i and δ̃i for the CIFAR10 dataset.

performance. ii) From the CCR rates, the classes can be roughly categorized
into two groups, i.e., one group with classes 3 and 5 that attain a rather low
CCR and another group with the rest of the classes having better CCR rates.
Looking at the 0 to 30 epoch temporal segment we observe that the classes of
the first group clearly exhibit a smaller rate of CCR increase, while the majority
of the ones in the second group almost attain their steady-state condition during
this period. Moreover, after the 10th epoch a CCR gap between the first and
second group of more than 10% in absolute values is observed, which stabilizes
after the 230th epoch. Exactly the same conclusions can be drawn from the
evolution of the θi values, where in this case a gap of 1 unit between the two
groups is observed after the 30th epoch. iii) The norm of the gradient update

‖δi‖ alone, or its contributing parts ‖δ̂i‖, ‖δ̃i‖, exhibit high fluctuations and a
rather noisy behavior, and their direct observation does not provide any valuable
information concerning the generalization performance of the classes during the
training procedure.

From the above analysis we can see that a group of classes is neglected
during the optimization procedure and that the proposed criterion can be used
to identify these classes, verifying the theoretical analysis in Section 2.1.

3.2 Multiclass classification using SDNNs

Datasets For the experimental evaluation of the proposed approach in the
problem of multiclass classification the following 3 datasets are used: i) The
CIFAR-10 and CIFAR-100 datasets [11] consist of 60000 32 × 32 color images
each, drawn from 10 and 100 classes, respectively. Both datasets are divided to
a training and test partition with 50000 and 10000 images respectively. ii) The
street view house numbers (SVHN) dataset [14] contains 630420 color images
of 32 × 32 pixel resolution, similar to the CIFAR datasets. They depict house
numbers extracted from Google Street View images, i.e., each image belongs
to one of ten classes. The dataset is split to a training, testing and an extra
partition of 73257, 26032 and 531131 images, respectively. Following the standard
procedure for this dataset, the training and extra partitions are combined in our
experiments to form a new training partition.
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Experimental setup Two modern DNN architectures are used for the eval-
uation of the proposed approach, namely, the VGG16 [16] with batch normal-
ization after every convolutional layer, and two variants of the wide residual
networks (WRN) [21] depending on the dataset. Specifically, a WRN with depth
28, widening factor 10 (WRN-28-10) and dropout rate of 0.4 is used for the
CIFAR datasets, and the WRN-16-8 with 0.3 dropout rate is employed for the
SVHN dataset. The reason that these two WRN architectures are employed is
because they have exhibited state-of-the-art performance in the above datasets
[4]. All networks are trained for 200 epochs using the CE loss (3), minibatch
SGD with Nesterov momentum of 0.9, batch size of 128, weight decay of 0.0005,
and an exponential learning rate schedule set to decrease at the 60th, 120th and
160th epoch. For the CIFAR datasets, the initial learning rate is set to 0.1 and
reduced by a factor of 0.1 according to the learning rate schedule above, while
for the SVHN dataset an initial learning rate and reduction factor of 0.01 and
0.2 are used, respectively. The images are normalized per-channel to zero mean
and unit variance, and data augmentation is performed during training following
[4], i.e., 4 pixels zero-padding and random cropping, horizontal mirroring with
50% probability, and cutout 16 × 16 and 8 × 8 for the CIFAR-10, CIFAR-100
datasets, respectively. The SVHN undergoes the same normalization, however,
only 20× 20 cutout is used to augment this dataset.

The subclass VGG16 (SVGG16) and WRN (SWRN) are created as explained
in the following. The original VGG16 and WRN are executed for 30 epochs in
order to compute a reliable neglection score θi for each class. In this way, 2
classes from the CIFAR10 and SVHN (20% of the total classes) and 10 classes
from the CIFAR100 (10% of the total classes) with the highest θi’s are selected,
i.e., the classes with labels 3, 5 from CIFAR10, 1, 3 from SVHN and 0, 11, 18, 35,
53, 55, 62, 69, 72, 88 from CIFAR100. In order to alleviate any class imbalance
problems resulting from the partitioning to subclasses, the selected classes are
first doubled in size using the augmentation method described in [9], and then
the k-means algorithm is applied to create two new subclasses from each class.
The augmented datasets are then used to train SVGG and SWRN using the
SCE loss (11) and the training procedure described above for the conventional
networks. Learning is performed using the training partition of the datasets and
the performance of each method is measured using the correct classification rate
(CCR) along all classes achieved by the trained network in the test set.

All networks are implemented in PyTorch, extending the code provided in
[4,21], and the experimental evaluation is performed in an Intel i7 3770K@3.5Ghz
PC with 32 GB RAM, Windows 10, and Nvidia GeForce GPU (GTX 1080 Ti).

Results The evaluation results in terms of CCR and training times in hours
are shown in Table 1. The testing times are only a few seconds in all cases
(spanning the range of 5 secs for VGG16 in CIFAR10 to 12 secs for SWRN in
SVHN). From the obtained results we can see that the proposed SVGG16 and
SWRN outperform the conventional networks in all datasets, with differences
in performance from 0.21% (SWRN over WRN in SVHN) to ≈ 2.5% (SVGG16
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Table 1. Accuracy rates and training times (hours) in 3 datasets

VGG16 [16] SVGG16 WRN [4] SWRN

CIFAR10 93.5% (2.6 h) 94.8% (2.7 h) 96.92% (7.1 h) 97.14% (8.1 h)
CIFAR100 71.24% (2.6 h) 73.67% (2.6 h) 81.59% (7.1 h) 82.17% (7.5 h)
SVHN 98.16% (29.1 h) 98.35% (34.1 h) 98.70% (33.1 h) 98.81% (42.7 h)

over VGG16 in CIFAR100). Considering that the CCR rates obtained with the
WRN combined with cutout regularization [4] are currently among the state-of-
the-art performances, even the small improvements obtained with the proposed
approach are considered significant. Moreover, we observe that the training time
overhead caused by the application of the subclass approach is negligible for the
medium size CIFAR datasets, and relatively small for the much larger SVHN
dataset.

3.3 Multilabel classification using SDNNs

Dataset The YT8M [1] is utilized to evaluate the proposed approach for the
task of multilabel classification. This is the largest publicly available multilabel
video dataset consisting of 6134598 videos annotated with one or more labels
from 3862 classes (3.4 labels per video on average). For facilitating the com-
parison of different classification techniques the dataset is already divided to
a training, evaluation and testing partition, consisting of 3888919, 1112356 and
1133323 videos, respectively. Visual and audio feature vectors in R1024 and R128,
respectively, are already provided at video-level as well as at frame-level gran-
ularity. The data is stored in Tensorflow’s tfrecord file format (3844 shards for
each data partition and granularity level), which offers very efficient import and
preprocessing functionalities for large-scale datasets.

Experimental setup For the evaluation, a rather simple convolutional neural
network (CNN) is utilized with a convolutional, a max-pooling, a dropout and
a SG layer of c outputs. The convolutional layer consists of 64 one-dimensional
(1D) filters and is equipped with a rectification (ReLU) nonlinearity. Each filter
has a receptive field of size 3 and stride 1, and zero padding is applied in order to
preserve the spatial size of the input signals. The max-pooling layer employs a
filter of size 2 and stride 2, while a keep-rate of 0.7 is used for the dropout layer.
The CE loss (3) combined with the minibatch SGD-BP algorithm and weight
decay of 0.0005 is used for training the CNN. The training is performed over 5
epochs with an exponential learning rate schedule, initial learning rate of 0.001,
learning rate decay 0.95 in every epoch, and batch size of 512.

For the construction of the subclass CNN (SCNN), the CNN above is initially
applied in the training set for 1

3 of an epoch in order to obtain a neglection value
θi (9) for each YT8M class and the 386 classes with the highest θi are selected,
i.e., 10% of the total number of classes. The selected classes are then partitioned
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10 N. Gkalelis and V. Mezaris

to Hi = 2 subclasses using the efficient on-line algorithm described in Algorithm
1, avoiding the loading of the whole dataset or large parts of it in memory,
which would be infeasible for the YT8M dataset. Moreover, data augmentation
is performed to the neglected classes using the extrapolation technique described
in Section 2.3, setting λ = 0.5. In this way the number of observations in each
subclass partition is doubled. The resulting SCNN is trained using the proposed
SCE loss (11) and the training procedure described for the conventional CNN.
For completeness, a standard logistic regression (LR) classifier is also evaluated
using the same training procedure with initial learning rate of 0.001.

We performed experiments with the video-level visual features, as well as
with audio-visual features produced by concatenating the video-level visual and
audio feature vectors. In all cases L2-normalization was applied. The models are
trained and evaluated using the YT8M training and validation set respectively.
The labeling information for the testing set is not provided and for this reason
it is excluded from the evaluation. Nevertheless, as reported in relevant works
[8] the performance difference on the validation and test set is negligible. The
evaluation metrics of the YT8M Video Understanding Challenge [1] are used
to report our results, namely, Hit@1, precision at equal recall rate (PERR),
mean average precision (mAP), and global average precision at 20 (GAP@20),
with the latter being the official metric of the YT8M challenge for ranking the
different participating teams. The models are implemented in Tensorflow and
the evaluation is performed in the same PC used in Section 3.2.

Table 2. Evaluation results in YT8M

Visual Visual + Audio
LR CNN SCNN LR CNN SCNN

Hit@1 82.4% 82.5% 83.2% 82.3% 85.2% 85.7%
PERR 71.9% 72.2% 72.9% 71.8% 75.4% 75.9%
mAP 41.2% 42.3% 45.2% 40.1% 45.6% 47.9%
GAP@20 77.1% 77.6% 78.6% 77% 80.7% 82.2%
Ttr (min) 18.7 59.2 66.2 18.9 60.3 67.1

Table 3. Comparison with the best single-model approaches in YT8M

[8] [13] [2] [18] SCNN

GAP@20 82.15% 80.9% 82.5% 82.25% 82.2%

Results The evaluation results in terms of Hit@1, PERR, mAP, GAP@20 and
training time (Ttr) in minutes for each method are shown in Table 2. Moreover, in
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Table 3 we show state-of-the-art results achieved from single-model approaches
in YT8M. From the analysis of the obtained results we observe the following: i)
The SCNN attains the best results, outperforming the conventional CNN by 1%
and 1.5% GAP using the visual and audio-visual features, respectively. Both net-
works outperform the standard LR. ii) By exploiting the audio information both
CNN and SCNN attain a significant performance gain of more than 3%. On the
other hand, a degradation in performance is observed for the LR model, which
most likely does not have the capacity to exploit the additional discriminant
information provided by the audio modality. iii) As shown in Table 3, our SCNN
method achieving a GAP of 82.2% performs in par with the best single-model
approaches reported in [8,13,2,18]. This is an excellent performance consider-
ing that our SCNN exploits only the video-level feature vectors provided by
the YT8M dataset in contrast to the top-performers in the competition, which
additionally exploit the frame-level visual features and build upon stronger and
much more computationally-demanding feature vector descriptors such as Fisher
Vectors, VLAD, BoW, and other [2,18]. We should also note that the best per-
forming approach [17] in the YT8M competition achieved a GAP score of 88.9%.
However, this is achieved using an ensemble of classifiers and a variety of feature
descriptors (e.g. NetVLAD, FVNet, DBoF), whose extraction and use would in-
crease the computation requirements by at least an order of magnitude; thus this
approach cannot be fairly compared with our proposed approach that creates
a single model using the video-level descriptors already provided in the YT8M
dataset.

4 Conclusions

In this paper, a novel SDNN framework was proposed and evaluated in two
different multimedia classification tasks. Firstly, a new criterion is used for the
identification of neglected classes during the initial stages of the DNN training.
Subsequently, the identified classes are partitioned to subclasses and augmented
in order to formulate an easier, piecewise linear classification problem for the
DNN, and a new cross-entropy loss function emphasizing the discrimination of
subclasses belonging to different classes is utilized. In this way, SDNNs are forced
to pay more attention to the neglected classes, increasing effectively the overall
classification performance. The experimental evaluation in two different prob-
lem domains, specifically, multiclass classification in three popular benchmarks
(CIFAR10, CIFAR100 and SVHN) and multilabel classification using the YT8M
dataset, which is the largest publicly available dataset for this task, demonstrated
the efficacy of the proposed approach.
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