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Abstract. Concept detection for semantic annotation of video frag-
ments (e.g. keyframes) is a popular and challenging problem. A vari-
ety of visual features is typically extracted and combined in order to
learn the relation between feature-based keyframe representations and
semantic concepts. In recent years the available pool of features has in-
creased rapidly, and features based on deep convolutional neural net-
works in combination with other visual descriptors have significantly
contributed to improved concept detection accuracy. This work proposes
an algorithm that dynamically selects, orders and combines many base
classifiers, trained independently with different feature-based keyframe
representations, in a cascade architecture for video concept detection.
The proposed cascade is more accurate and computationally more ef-
ficient, in terms of classifier evaluations, than state-of-the-art classifier
combination approaches.

Keywords: Concept detection; video analysis; cascade architecture;
classifier ordering.

1 Introduction

Video concept detection is a popular research topic that aims to annotate video
fragments (e.g. keyframes) with semantic concept labels (e.g. sky, people etc.).
Large-scale semantic concept detection systems mainly follow a process where a
video is initially segmented into meaningful fragments, called shots; each shot is
represented by e.g. one or more characteristic keyframes; and, several features
(e.g. different local visual descriptors) are extracted from the keyframes (or any
other chosen representation) of each shot. Given a ground-truth annotated video
training set, supervised machine learning algorithms are used for building mul-
tiple independent base classifiers (concept detectors), using different types of
features, for the same concept; the outputs of them are combined by means of
late fusion. This ensemble-based approach is more accurate than using a single
base classifier, trained on a single type of features (e.g. SIFT only). In this work
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we propose an improved way of ordering and combining independently trained
concept detectors using a cascade. The proposed cascade combines handcrafted
(e.g. SIFT) and deep convolutional neural network (DCNN) features, and is
computationally more efficient and more accurate than other combination ap-
proaches by adjusting the required processing (i.e. evaluate fewer classifiers)
based on the input video fragment.

The rest of this paper is organized as follows: Section 2 reviews related work
on learning and combining concept detectors. Section 3 introduces the proposed
cascade architecture. Section 4 presents the experimental results and, finally,
Section 5 presents conclusions.

2 Related Work

State of the art feature extraction methods are often based on local descriptors
(e.g. SIFT [7], SURF [2]) in combination with encoding approaches (e.g. VLAD
[5], FV [12]) in order to extract global, feature-based keyframe representations.
In the last few years, features extracted with the use of pre-trained deep convo-
lutional neural networks (DCNN) have also shown excellent results [15]. Using
any of the above features, concept detection is typically treated as multiple in-
dependent binary classification problems (one per concept). That is, given the
feature-based keyframe representations and also the ground-truth concept anno-
tations for each keyframe, any supervised machine learning algorithm that solves
classification problems, such as Support Vector Machine (SVM), can be trained
in order to learn the relations between the low-level keyframe representations
and the high-level semantic concepts.

It has been shown that combining many different keyframe representations
(e.g. SIFT, RGB-SIFT, DCNN) for the same concept, instead of using a single
feature (e.g. only SIFT), improves the concept detection accuracy [8]. The typical
way of combining multiple features is to train several supervised classifiers for
the same concept, each trained separately on a different feature. When all the
classifiers give their decisions, a fusion step computes the final confidence score
(e.g. by averaging); this process is known as late fusion. Hierarchical late fusion
[16] is a more elaborate approach; classifiers that have been trained on more
similar features (e.g. SIFT and RGB-SIFT) are firstly fused together and then,
more dissimilar classifiers (e.g. DCNN-based) are sequentially fused with the
previous groups. A second category of classifier combination approaches performs
ensemble pruning to select a subset of the classifiers prior to their fusion. For
example, [14] uses a genetic algorithm to automatically select an optimal subset
of classifiers separately for each concept. Finally, there is a third group of popular
ensemble-based algorithms, namely cascade architectures, that have been used
in various visual classification tasks for training and combining detectors [18],
[3], [10], [9], [4]. In a cascade architecture the classifiers are arranged in stages,
from the less computationally demanding to the most demanding ones (or may
be arranged according to other criteria such as their accuracy). A keyframe is
classified sequentially by each stage and the next stage is triggered only if the
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previous one returns a positive prediction (i.e. that the concept or object appears
in the keyframe). The rationale behind this is to rapidly reject keyframes that
clearly do not match the classification criteria and focus on those keyframes
that are more difficult and more likely to depict the sought concept or object.
Cascades of classifiers have been mainly used in object detection tasks [18],
however they have also been briefly examined for video/image concept detection
[10], [9].

Cascades developed for object and face detection are mainly boosting-based
[18], [3], [10], [4], [1]. Each stage of the cascade is build using a boosting algorithm
such as AdaBoost. Such approaches require the presence of a big pool of weak
features (e.g. Haar-like features) in order to combine them and build a strong
classifier. In contrast, video concept detection systems utilize a different kind of
features, visual local descriptors encoded into global image representations or
DCNN-based features that alone can build strong classifiers without boosting.
For example, [9] presents a cascade with fixed ordering of the stages in terms
of classifier accuracy and a simple threshold selection strategy that selects one
rejection threshold per stage on the probability output of a classifier. The authors
of [9] use the above cascade to combine binary, non-binary and DCNN-based
features. In the present work, the proposed cascade is also developed so as to
combine similar types of features, however in contrast to [9] which is based on a
fixed ordering of the cascade stages, the proposed algorithm dynamically selects,
orders, and combines a larger number of pre-trained base classifiers. This leads
to both concept detection effectiveness and computational efficiency gains.

3 Cascade Construction with Re-trained Classifiers

3.1 Cascade Architecture Overview

Figure 1 shows a cascade architecture suitable for combining many base classifiers
that have been trained for the same concept [9]. Each stage j of the cascade
encapsulates a stage classifier Dj that either combines many base classifiers
(B1, B2, ..., Bfj ) that have been trained on different types of features or contains
only one base classifier (B1) that has been trained on a single type of features.
In the first case, the output of fj base classifiers is combined in order to return a

single stage output score Dj(I) =
1

fj

∑fj
i=1 Bi(I), fj ≥ 1 in the [0,1] range. The

second case is a special case where fj = 1. Let I indicate an input keyframe;
the classifier Dj+1 of the cascade will be triggered for it only if the previous
classifier does not reject the input keyframe I. Each stage j of the cascade is
associated with a rejection threshold, while a stage classifier is said to reject an
input keyframe if Dj(I) < θj . A rejection indicates the classifier’s belief that the
concept does not appear in the keyframe. Given a set of pre-trained classifiers,
we will present an algorithm that sets the ordering of cascade stages (i.e. the
ordering of stage classifiers) and assigns thresholds to each stage in order to
instantiate the above cascade.
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Fig. 1. Block diagram of a cascade architecture for one concept.

3.2 Problem Definition and Search Space

Let D = {D1, D2, ..., Dn} be a set of n independently trained classifiers for a
specific concept. Let S = [s1, s2, ..., sn]

⊤ denote a vector of integer numbers in
[−1, 0) ∪ [1, n]. Each number represents the index of a classifier from D and
appears at most once. The value -1 indicates that a classifier from D is omitted.
Consequently, S expresses the ordering of the pre-trained classifiers D1, ..., Dn.
For example, given a pre-trained set of 4 classifiers D = {D1, D2, D3, D4}, the
solution S = [2, 1, 3,−1]⊤ denotes the cascade D2,1,3,−1 : D2 → D1 → D3,
where stage classifier D4 is not used at all. In addition, let θ = [θ1, θ2, ..., θn]

⊤

denote a vector of rejection thresholds for the solution S and let T= {xi, yi}Mi=1,
where yi ∈{±1}, be a finite set of annotated training samples for the given
concept (xi being the feature vectors and yi the ground-truth annotations). The
problem we aim to solve is finding the pair of the index sequence S (that leads
to the cascade DS : Ds1 → Ds2 → ... → Dsn) and the vector of thresholds
θ = [θ⋆1 , θ

⋆
2 , ..., θ

⋆
n]

⊤ that maximizes the expected ranking gain on the finite set
T . The implied optimization problem is given by the following equation:

(S⋆,θ⋆) = argmax
(S,θ)

{F (DS, T,θ)}, (1)

where the ranking function F (DS, T,θ) can be defined as the expected ranking
gain of DS on T , that is

FAP (DS, T,θ) = AP@k(rank(y), rank(DS(T,θ)),

where, rank(y) is the actual ranking of the samples in T (i.e., samples with
yi = 1 are ranked higher than samples with yi = −1), and rank(DS(T,θ)) the
predicted ranking of the samples of cascade DS,θ on T . AP@k is the average
precision in the top k samples.
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Let l ≤ n refer to the number of variables sj ∈ S whose value is different
from −1 (i.e., l is the number of cascade stages that solution S implies). The
size of the search space related to the ordering of cascade stages is

∑n
l=1

(
n
l

)
l!

(i.e. all index sequences for l = 1, all permutations of index sequences for l = 2,
and similarly for all higher values of l, up to l = n). Furthermore, Θ ⊂ Rn is the
search space that consists of all the possible rejection thresholds for each stage of
the cascade. To collect candidate threshold values, we apply each stage classifier
on the finite set T . Each of the M returned probability output scores constitutes
a candidate threshold. The size of the search space equals to Mn. Considering
that this is a large search space, exhaustive search cannot be practically applied.
To solve the problem we propose the greedy search algorithm described below.

3.3 Problem Solution

Our algorithm finds the final solution by sequentially replacing at each iteration
a simple solution (consisting of a cascade with a certain number of stages) with a
more complex one (consisting of a cascade with one additional stage). Algorithm
1 presents the proposed greedy search algorithm that instantiates the proposed
cascade (Fig. 1). Let S = [s1, s2, ..., sn]

⊤, and θ = [θs1 , θs2 , ..., θsn ]
⊤, represent

a solution. Each variable s1, s2, ..., sn can take n possible values, from 1 to n or
the value -1 which indicates that a stage is omitted. Each variable θs1 , θs2 , ..., θsn
can take M possible values. Initially we set, sj = −1 for j = 1, ..., n and θ =
[0, 0, ..., 0]⊤ where |θ| = n. In the first step the algorithm optimizes S with
respect to sn (Alg. 1: States 1-3) in order to build the solution:

S0 = [−1,−1, ..., sn]
⊤,θ0 = [0, 0, ..., 0]⊤,

where according to (1),

s⋆n = argmax
sn

{FAP (DS0 , T,θ0)}. (2)

and θ⋆
0 = [0, 0, ..., θ⋆sn ], θ

⋆
sn = 0. This can be interpreted as the optimal solution

of l = 1, that maximizes (1). Then the algorithm, in iteration j (Alg. 1: States
4-7), assumes that it has solution with l = j, that is:

S⋆
j−1 = [s⋆1, s

⋆
2, ..., s

⋆
j−1,−1,−1, ..., s⋆n]

⊤,

θ⋆
j−1 = [θ⋆s1 , θ

⋆
s2 , ..., θ

⋆
sj−1

, 0, 0, ..., θ⋆sn ]
⊤,

and finds the pair of Sj and θj in one step as follows. It optimizes the pair
of S⋆

j−1 and θ⋆
j−1 with respect to sj and θj , respectively, in order to find the

solution:
Sj = [s⋆1, s

⋆
2, ..., s

⋆
j−1, sj ,−1,−1, ..., s⋆n]

⊤,

θj = [θ⋆s1 , θ
⋆
s2 , ..., θ

⋆
sj−1

, θsj , 0, 0..., θ
⋆
sn ]

⊤.

According to (1):

(s⋆j , θ
⋆
sj ) = argmax

(sj ,θsj )

{FAP (DSj , T,θj)}. (3)
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Algorithm 1 Cascade stage ordering and threshold search

Input: Training set T= {xi, yi}Mi=1, yi ∈{±1}; n trained classifiers D =
{D1, D2, ..., Dn}
Output: i) An index sequence S⋆, of the ordering of cascade stages: D⋆

S : D⋆
s1 →

D⋆
s2 → ... → D⋆

sn . ii) A vector of thresholds θ⋆ = [θ⋆s1 , θ
⋆
s2 , ..., θ

⋆
sn ]

⊤

Initialize: S = [s1, s2, ..., sn]
⊤, sj = −1, j = 1, ..., n, θ = [0, 0, ..., 0]⊤, |θ| = n,

1. s⋆n = argmaxsn
{FAP (DS0 , T,θ0)} (1),

S0 = [−1,−1, ..., sn]
⊤, θ0 = [0, 0, .., 0]⊤

2. maxCost = FAP (DS⋆
0
, T,θ⋆

0),

S⋆
0 = [−1,−1, ..., s⋆n]

⊤, θ⋆
0 = [0, 0, ..., θ⋆sn ]

⊤, θ⋆sn = 0
3. S⋆ = S⋆

0, θ
⋆ = θ⋆

0

for j = 1 to n− 1 do
4. (s⋆j , θ

⋆
sj ) = argmax(sj ,θsj )

{FAP (DSj , T,θj)} (1),

Sj = [..., sj ,−1, ..., s⋆n]
⊤, θj = [..., θsj , 0, ..., θ

⋆
sn ]

⊤

5. cost = FAP (DS⋆
j
, T,θ⋆

j ),

S⋆
j = [..., s⋆j ,−1, ..., s⋆n]

⊤, θ⋆
j = [..., θ⋆sj , 0, ..., θ

⋆
sn ]

⊤

if cost>maxCost then
6. maxCost = max(cost, maxCost)
7. S⋆ = S⋆

j , θ
⋆ = θ⋆

j

end if
end for

The algorithm finds the pair of (sj , θsj ) that optimizes (1). The complexity of
this calculation equals to (n− j)×M . This corresponds to n− j possible values
that variable sj can take in iteration j and M possible threshold rejection values
that variable θsj can take for every different instantiation of sj . Finally, the
optimal sequence S⋆ equals to

S⋆ = argmax
S∈{S⋆

0 ,S
⋆
1 ,...,S

⋆
n−1}

{FAP (DS, T,θ)}, (4)

which is the sequence that optimizes (1) within all the iterations of the algorithm
(Alg. 1: States 6-7). The optimal threshold vector θ⋆ is the vector connected
to the optimal sequence S⋆. Our algorithm focuses on the optimization of the
complete cascade and not the optimization of each stage separately from the
other stages. This is expected to give a better complete solution. Furthermore,
the algorithm can be slightly modified to make the search more efficient. For
example, at each iteration we can keep the p best solutions. However, this would
increase the computational cost.

4 Experiments

4.1 Dataset and Experimental Setup

Our experiments were performed on the TRECVID 2013 Semantic Indexing
(SIN) dataset [11], which consists of a development set and a test set (approx-
imately 800 and 200 hours of internet archive videos for training and testing,
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respectively). We evaluated our system on the test set using the 38 concepts that
were evaluated as part of the TRECVID 2013 SIN Task [11]. The video indexing
problem was examined; that is, given a concept, we measure how well the top
retrieved video shots for this concept truly relate to it. For experimenting with
all methods, one keyframe was extracted for each video shot. Regarding local
feature extraction, we followed the experimental setup of [8]. More specifically,
we extracted nine local descriptors, presented in Table 1. All the local descrip-
tors were compacted using PCA and were subsequently aggregated using the
VLAD encoding. The VLAD vectors were reduced to 4000 dimensions. In addi-
tion, we used features based on three different pre-trained convolutional neural
networks: i) The 16-layer deep ConvNet network provided by [15], ii) the 22-
layer GoogLeNet network provided by [17], and iii) the 8-layer CaffeNet network
described in [6]. We applied each of these networks on the TRECVID keyframes
and we used as a feature i) the output of the last hidden layer of ConvNet (fc7),
which resulted to a 4096-element vector, ii) the output of the last fully-connected
layer of CaffeNet (fc8), which resulted to a 1000-element, iii) the output of the
last fully-connected layer of GoogLeNet (loss3). We refer to these features as
CONV, CAFFE and GNET in the sequel, respectively.

To train our base classifiers, for each concept, a training set was assembled
that included all negative annotated training examples for the given concept
and three copies of each positive training sample (in order to account for the
most often limited number of the latter). Then the positive and negative ratio of
training examples was fixed by randomly rejecting any excess negative samples,
to achieve an 1:6 ratio. This is important for building a balanced classifier. Given
the twelve different types of feature vectors described above, for each concept
we trained twelve different base-classifiers, using linear SVMs. In all cases, the
final step of concept detection was to refine the calculated detection scores by
employing the re-ranking method proposed in [13].

We compared the proposed cascade (Section 3) with five different ensemble
combination approaches: i) Late-fusion with arithmetic mean [16]. ii) The en-
semble pruning method proposed by [14]. iii) The cascade proposed by [9]. In
this case we only applied the thresholding strategy of [9], that is, we did not
perform any retraining, which appeared to be less accurate and computationally
more expensive. We refer to this method as cascade-thresholding. iv) A cascade
with fixed ordering of the stages in terms of classifier accuracy, and the offline
dynamic programming algorithm for threshold assignment proposed by [3]. In
contrast to [3] that aims to improve the overall classification speed, we optimize
the overall detection performance of the cascade in terms of AP. We refer to this
method as cascade-dynamic in the sequel. v) A boosting-based approach (i.e.,
the multi-modal sequential SVM [1]). We refer to this method as AdaBoost. Both
for the proposed and also for the cascade-dynamic method we used quantization
to ensure that the optimized cascade generalizes well to unseen samples. In these
lines, instead of searching for candidate thresholds on all the M examples of a
validation set, we sorted the score values in descending order and split at every
M/Q example (Q was set to 32). For all the methods, except for the Late-fusion
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Table 1. Performance (MXinfAP, %) for each of the stage classifiers that we used in
the experiments. For stage classifiers that are made of more than one base classifiers,
we report in parenthesis the MXinfAP for each of these base classifiers.

Stage classifier MXinfAP Base classifiers

ORBx3 17.91 (12.18,13.81,14.12) ORB, RGB-ORB, OpponentORB

SURFx3 18.68 (14.71,15.49,15.89) SURF, OpponentSURF, RGB-SURF

SIFTx3 20.23 (16.55,16.73,16.75) SIFT, OpponentSIFT, RGB-SIFT

CAFFE 19.80 Last fully-connected layer of CaffeNet

GNET 24.36 Last fully-connected layer of GoogLeNet

CONV 25.26 Last hidden layer of ConvNet

Table 2. Performance (MXinfAP, %) for different classifier combination approaches.

M1 M2 M3 M4 M5 M6

RunID Stage classifiers
Late-
fusion
[16]

Ensemble
pruning
[14]

Cascade-
thresholding
[9]

Cascade-
dynamic
[3]

AdaBoost
[1]

Cascade-
proposed

R1
ORBx3;
SURFx3;CAFFE
SIFTx3

24.97 23.63 24.96 24.97 24.14 23.68

R2
ORBx3;
SURFx3;
SIFTx3;GNET

27.72 28.47 27.69 27.7 27.69 28.52

R3
ORBx3;
SURFx3;
SIFTx3;CONV

28.14 28.6 28.25 28.08 28.08 28.84

R4

ORBx3;
SURFx3;CAFFE;
SIFTx3;GNET;
CONV

29.84 29.74 29.79 29.84 29.70 29.96

that does not require this, the training set was also used as the validation set.
With respect to the proposed method we calculated the AP for each candidate
cascade at three different levels (i.e., for k=50,100 and equal to the number of
the training samples per concept) and we averaged the results.

4.2 Experimental Results

Tables 1 and 2 present the results of our experiments in terms of the Mean Ex-
tended Inferred Average Precision (MXinfAP) [19], which is an approximation of
the Mean Average Precision suitable for the partial ground-truth that accompa-
nies the TRECVID dataset [11]. Table 1 presents the MXinfAP for the different
types of features that were used by the algorithms of this study. Each line of
this table was used as a cascade stage for the cascade-based methods (Table
2: M3, M4, M6). Specifically, stages that correspond to SIFT, SURF and ORB
consist of three base classifiers (i.e. for the grayscale descriptor and its two color
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variants), while the stages of DCNN features (CAFFE, CONV, GNET) consist
of one base classifier each. For the late fusion methods (Table 2: M1, M2) and
the boosting-based method (Table 2: M5), the corresponding base classifiers per
line of Table 1 were firstly combined by averaging the classifier output scores and
then the combined outputs of all lines were further fused together. We adopted
this grouping of similar base classifiers as this was shown to improve the per-
formance for all the methods in our experiments, increasing the MXinfAP by
∼ 2%. For M2 we replaced the genetic algorithm with exhaustive search (i.e. to
evaluate all 26 − 1 possible classifier subsets) because this was more efficient for
the examined number of classifiers.

Table 2 presents the performance of the proposed cascade-based method and
compares it with other classifier combination methods. The second column shows
the stage classifiers that were considered in each run. Runs R1-R3 encapsulate
nine types of features from local descriptors and only one type of DCNN fea-
tures; ultimately, R4 refers to the systems that utilize six stage classifiers and
all twelve types of features. The best results were reached by the proposed cas-
cade in R4, where it outperforms all the other methods reaching a MXinfAP
of 29.96 %. Compared to the ensemble pruning method (M2) the results show
that exploring the best ordering of visual descriptors on a cascade architecture
(M6), instead of just combining subsets of them (M2), can improve the accuracy
of video concept detection. In comparison to the other cascade-based methods
(M3, M4) that utilize fixed stage orderings and different algorithms to assign the
stage thresholds, the proposed cascade (M6) also shows small improvements in
MXinfAP. These can be attributed to the fact that our method simultaneously
searches both for optimal stage ordering and threshold assignment. These MX-
infAP improvements, of the proposed cascade, although small, are accompanied
by considerable improvements in computational complexity, as discussed in the
following section.

4.3 Computational Complexity

We continue the analysis of our results with respect to the computational com-
plexity of the different methods compared in this study during the training and
classification phase. Table 3 summarizes the computational complexity during
the training phase. Let us assume that n stage classifiers need to be learned, M
training examples are available for training the different methods and Q is the
quantization value, where Q ≤ M . The late-fusion approach [16], which builds n
models (one for each set of features), is the simplest one. Cascade-thresholding
[9] follows, which evaluates n cascade stages in order to calculate the appropri-
ate thresholds per stage. Cascade-dynamic [3] works in a similar fashion as the
Cascade-thresholding, requiring a little higher number of evaluations. Cascade-
proposed is the next least complex algorithm, requiring Q(n(n+ 1)/2) classifier
evaluations. Ensemble pruning [14] follows, requiring the evaluation of 2n − 1
classifier combinations. Finally, only AdaBoost requires the retraining of differ-
ent classifiers, which depends on the complexity of the base classifier, in our case
the SVM, making this method the computationally most expensive.
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Table 3. Training complexity: (a) Required number of classifier combinations during
the training of different classifier combination approaches. (b) Required number of
classifiers to be retrained.

Required classifier
evaluations

Number of classifiers
to be retrained

M1 Late-fusion [16] - -

M2 Ensemble pruning [14] (2n − 1)M -

M3 Cascade-thresholding [9]
∑n

j=0 Mj , Mj ⊆ Mj − 1 -

M4 Cascade-dynamic [3] (n− 2)Q2 -

M5 AdaBoost [1] M(n(n+ 1)/2) n(n+ 1)/2

M6 Cascade-proposed Q(n(n+ 1)/2) -

Table 4. Relative amount of classifier evaluations (%) for different classifier combina-
tion approaches during the classification phase.

M1 M2 M3 M4 M5 M6

RunID Stage classifiers
Late-
fusion
[16]

Ensemble
pruning
[14]

Cascade-
thresholding
[9]

Cascade-
dynamic
[3]

AdaBoost
[1]

Cascade-
proposed

R1
ORBx3;
SURFx3;CAFFE
SIFTx3

83.33 55.92 66.17 77.69 83.33 53.50

R2
ORBx3;
SURFx3;
SIFTx3;GNET

83.33 55.70 66.98 77.95 83.33 52.74

R3
ORBx3;
SURFx3;
SIFTx3;CONV

83.33 57.68 66.98 78.54 83.33 54.32

R4

ORBx3;
SURFx3;CAFFE
SIFTx3;CONV;
GNET

100 66.67 74.94 92.38 100 62.24

Table 4 presents the computational complexity of the proposed cascade-based
method for the classification phase, and compares it with other classifier combi-
nation methods. We observe that the proposed algorithm reaches good accuracy
while at the same time is less computationally expensive than the other methods.
Specifically, the best overall accuracy reached in R4 achieved 37.8% and 32.6%
relative decrease in the amount of classifier evaluations compared to the late
fusion alternative (Table 4: R4-M1) and the cascade-dynamic alternative (Ta-
ble 4: R4-M4), respectively, which are the two most accurate methods after the
proposed-cascade. Figure 4 presents the computational complexity of the pro-
posed cascade-based method and compares it with other classifier combination
methods, separately for each target concept. We can observe that the proposed
method is computationally less expensive for 26 out of the 38 concepts.
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Fig. 2. Relative amount of classifier evaluations (%) per concept for R4 of Table 4.

To sum up, according to Tables 2 and 4, the three best-performing methods
are the proposed-cascade, the late fusion [16] and the cascade-dynamic [3]. With
respect to runs R2-R3 the proposed-cascade outperforms the two other methods,
while it is always computationally more efficient during classification. When the
number of features/stage classifiers increases (R4) the proposed-cascade per-
forms slightly better in terms of MXinfAP compared to the late fusion and
cascade-dynamic method, achieving 0.4% relative improvement, for both cases.
At the same time it is computationally less expensive during classification. Only
for R1, which uses a small number of stage classifiers, the proposed-cascade
presents lower accuracy than the other two best performing methods; however,
it remains computationally less expensive. Finally, we should note that the train-
ing of the proposed cascade is computationally more expensive than the training
of the late fusion and the cascade-dynamic methods. However, considering that
training is performed offline only once, but classification will be repeated many
times for any new input video, the latter is more important and this makes the
reduction in the amount of classifier evaluations that is observed in Table 4 for
the proposed cascade very important.

5 Conclusions

In this work we presented an improved way of ordering and combining indepen-
dently trained base concept detectors using a cascade. A search-based algorithm
that finds the optimal stage ordering and rejection thresholds was presented and
evaluated. The resulting cascade-based concept detection method is computa-
tionally more efficient, in terms of classifier evaluations, and more accurate than
other state-of-the-art approaches.
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