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Abstract. In this paper, we propose an algorithm that learns from un-
certain data and exploits related videos for the problem of event detec-
tion; related videos are those that are closely associated, though not fully
depicting the event of interest. In particular, two extensions of the linear
SVM with Gaussian Sample Uncertainty are presented, which a) lead to
non-linear decision boundaries and b) incorporate related class samples
in the optimization problem. The resulting learning methods are espe-
cially useful in problems where only a limited number of positive and
related training observations are provided, e.g., for the 10Ex subtask of
TRECVID MED, where only ten positive and five related samples are
provided for the training of a complex event detector. Experimental re-
sults on the TRECVID MED 2014 dataset verify the effectiveness of the
proposed methods.
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1 Introduction

High-level video event detection is concerned with determining whether a certain
video depicts a given event or not. Typically, a high-level (or complex) event is
defined as an interaction among humans, or between humans and physical ob-
jects [16]. Some typical examples of complex events are those provided in the
Multimedia Event Detection (MED) task of the TRECVID benchmarking ac-
tivity [22]. For instance, indicative complex events defined in MED 2014 include
“Attempting a bike trick”, “Cleaning an appliance”, or “Beekeeping”, to name
a few.

There are numerous challenges associated with building effective video event
detectors. One of them is that often there is only a limited number of positive
video examples available for training. Another challenge is that video repre-
sentation techniques usually introduce uncertainty in the input that is fed to
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the classifiers, and this also needs to be taken into consideration during clas-
sifier training. In this work we deal with the problem of learning video event
detectors when a limited number of positive and related (i.e., videos that are
closely related with the event, but do not meet the exact requirements for being
a positive event instance [22]) event videos are provided. For this, we exploit
the uncertainty of the training videos by extending the linear Support Vector
Machine with Gaussian Sample Uncertainty (LSVM-GSU), presented in [27],
in order to arrive at non-linear decision functions. Specifically, we extend this
version of LSVM-GSU that assumes isotropic uncertainty (hereafter denoted
LSVM-iGSU) into a new kernel-based algorithm, which we call KSVM-iGSU.
We also further extend KSVM-iGSU, drawing inspiration from the Relevance
Degree kernel SVM (RD-KSVM) proposed in [28], such that related samples
can be effectively exploited as positive or negative examples with automatic
weighting. We refer to this algorithm as RD-KSVM-iGSU. We show that the
RD-KSVM-iGSU algorithm results in more accurate event detectors than the
state of the art techniques used in related works, such as the standard kernel
SVM and RD-KSVM.

The paper is organized as follows. In Section 2 we review related work. In
Section 3 the two proposed SVM extensions are presented. Video event detection
results, by application of the proposed KSVM-iGSU and RD-KSVM-iGSU to the
TRECVID MED 2014 dataset, are provided in Section 4, while conclusions are
drawn and future work is discussed in Section 5.

2 Related Work

There are many works dealing with event detection in video (e.g. [5],[7],[9],[12],
[13],[14],[15],[19],[11],[21],[2]), several of them being in the context of the TREC-
VID MED task. Despite the attention that video event detection has received,
though, there is only a limited number of studies that have explicitly examined
the problem of learning event detectors from very few (e.g. 10) positive training
examples [13],[28], and developed methods for addressing this exact problem. In
[13], for instance, the authors present VideoStory, a video representation scheme
for learning event detectors from a few training examples by exploiting freely
available Web videos together with their textual descriptions. Several other works
(e.g. [2])) treat the few-example problem in the same way that they deal with
event detection when more examples are available (e.g. training standard kernel
SVMs). Learning video event detectors from a few examples is a problem that
is simulated in the TRECVID MED task [22] by the 10Ex subtask, where only
10 positive samples are available for training.

In the case of learning from very few positive samples, it is of high interest
to further exploit video samples that do not exactly meet the requirements for
being characterized as true positive examples of an event, but nevertheless are
closely related to an event class and can be seen as “related” examples of it. This
is simulated in the TRECVID MED task [22] by the “near-miss” video examples
provided for each target event class. Except for [28], none of the above works
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takes full advantage of these related videos for learning from few positive samples;
instead, the “related” samples are either excluded from the training procedure
[11],[2], or they are mistreated as true positive or true negative instances [7].
In contrast, in [28] the authors exploit related samples by handling them as
weighted positive or negative ones, applying an automatic weighting technique
during the training stage. To this end, a relevance degree in (0, 1] is automatically
assigned to all the related samples, indicating the degree of relevance of these
observations with the class they are related to. It was shown that this weighting
resulted in learning more accurate event detectors.

Regardless of whether the above works address the problem of learning from
a few positive examples or assume that an abundance of such examples is avail-
able, they all treat the training video representations as noise-free observations in
the SVM input space. Looking beyond the event detection applications, though,
assuming uncertainty in input under the SVM paradigm is not unusual and has
been shown to lead to better learning. Lanckriet et al. [18] considered a binary
classification problem where the mean and covariance matrix of each class are
assumed to be known. Xu et al. [29],[30] considered the robust classification
problem for a class of non-box-typed uncertainty sets, in contrast to [1],[25],[18],
who robustified regularized classification using box-type uncertainty. Finally, in
[27], Tzelepis et el. proposed a linear maximum-margin classifier, called SVM
with Gaussian Sample Uncertainty, dealing with uncertain input data. The un-
certainty in [27] can be modeled either isotropically or anisotropically, arriving at
a convex optimization problem that is solved using a gradient descent approach.

To the best of our knowledge, there has been no study dealing with uncer-
tainty in the video event detection problem, except for [27]. However, [27] intro-
duces linear classifiers, which in the event detection problem are not expected
to perform in par with traditional kernel SVMs that are typically used (e.g.
[31], [11]), despite the advantages of considering data uncertainty in the learning
process. In this work, we extend the above study and kernelize the LSVM-iGSU
of [27], under the assumption of isotropic sample uncertainty. We apply the re-
sulting KSVM-iGSU to the event detection problem when only a few positive
samples are available for training. Moreover, we propose a further extension of
KSVM-iGSU, namely Relevance Degree KSVM-iGSU (RD-KSVM-iGSU), in-
spired by [28], such that related samples can also be exploited as weighted pos-
itive or negative ones, based on an automatic weighting scheme.

3 Kernel SVM-iGSU

3.1 Overview of LSVM-iGSU

LSVM-iGSU [27] is a classifier that takes a input training data that are described
not solely by a set of feature representations, i.e. a set of vectors x; in some
n-dimensional space, but rather by a set of multivariate isotropic Gaussian dis-
tributions which model the uncertainty of each training example. That is, every
training datum is characterized by a mean vector x; € R™ and an isotropic co-
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variance matrix, i.e. a scalar multiple of the identity matrix, 3; = 021, € Si_f’.
LSVM-iGSU is obtained by minimizing, with respect to w, b, the objective func-
tion J:R™ x R — R given by

!
1
T(w,b) = SlIWl3+C Y L(w,b,xi,07 L, i), (1)

i=1

where [ is the number of training data, w - x + b = 0 denotes the separating
hyperplane, and the loss £: (R™ x R) x (R™ x S | x {£1}) — R is given by
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where x; and 021, denote the mean vector and the covariance matrix of the i-th
input entity (Gaussian distribution), respectively, y; denotes its ground-truth
label, and erf(x) = % fowe_tz dt denotes the error function.

As discussed in [27], (1) is convex and thus a (global) optimal solution (w, b)
can be obtained using a gradient descent algorithm. The resulting (linear) deci-
sion function f(x) = w-x+b is used in the testing phase for classifying an unseen
sample similarly to the standard linear SVM algorithm [4]; that is, according to
the distance between the testing sample and the separating hyperplane, without
taking into account any uncertainty estimates that could be made for the testing
sample representation.

3.2 Kernelizing LSVM-iGSU (KSVM-iGSU)

The optimization problem discussed in the previous section can be recasted
as a variational calculus problem of finding the function f that minimizes the
functional ®[f]:

min §[f], (3)
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where A = 1/C is a regularization parameter and f belongs to a Reproducing
Kernel Hilbert Space (RKHS), H, with associated kernel k. Using a generalized

where the functional ®[f] is given by

o[f] = 7A||f||H+Z

3 S% ; denotes the convex cone of all symmetric positive definite n x n matrices with
entries in R. [,, denotes the identity matrix of order n.
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semi-parametric version [24] of the representer theorem [17], it can be shown
that the minimizer of the above functional admits a solution of the form

l
F(x) = aik(x,x;) — b, (5)
i=1
where b € R, ; € R, Vi.
Using the reproducing property, we have

l l
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where K is the kernel matrix, i.e. the symmetric positive definite [ x [ matrix
defined as K = (k(Xi,Xj)),lL-j:17 and a = (ay,---,;)". Moreover, we observe
that f(x;) = Z§'=1 a;k(xi,x;) = K, - o, where K; denotes the i-th column of
the kernel matrix K. Then, the objective function J3:R! x R — R is given by
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where the above sum gives the total loss. We (jointly) minimize the above con-
vex? objective function with respect to c, b similarly to [27] using the Limited-
memory BFGS (L-BFGS) algorithm [20]. L-BFGS is a quasi-Newton optimiza-
tion algorithm that approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
[3] algorithm using a limited amount of computer memory. It requires the first
order derivatives of the objective function with respect to the optimization vari-
ables a, b. They are given®, respectively, as follows
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4 Convexity can be shown using Theorem 2 proved in [27].

5 Their derivation is omitted, as it is technical but straightforward.
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Since J is a convex function on R! x R, L-BFGS leads to a global optimal
solution; that is, at a pair (a,b) such that the decision function given in the
form of (5) minimizes the functional (4). We call this classifier kernel SVM-iGSU
(KSVM-iGSU).

3.3 Relevance Degree KSVM-iGSU

Motivated by [28], we reformulate the optimization problem in (3)-(4) such that
a different penalty parameter ¢; € (0,1] (hereafter called as relevance degree) is
introduced to each input datum. That is, the functional ®[f] of (4) is now given

by
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To solve min ey ®[f], following a similar path as in the section 3.2, we arrive at
the following convex objective function
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which we again minimize using L-BFGS. The (global) optimal solution (c,b)
determines the decision function given in the form of (5). The new extension of
KSVM-iGSU obtained in this way is hereafter referred to as a Relevance Degree
KSVM-iGSU (RD-KSVM-iGSU).

Furthermore, following the approach presented in [28], we solely assign a
single relevance degree ¢ € (0,1] only to related samples, keeping the relevance
degrees for the rest of the training set equal to 1. The above training parameter
needs to be optimized, using a cross-validation procedure.

4 Experiments and Results

4.1 Dataset and evaluation measures

The proposed algorithms are applied in the problem of video event detection
and are tested on a subset of the large-scale video dataset of the TRECVID
Multimedia Event Detection (MED) 2014 benchmarking activity [22]. Similarly
to [27], we use only the training portion of the TRECVID MED 2014 task
dataset, which provides ground-truth information for 30 complex event classes,
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since for the corresponding evaluation set of the original TRECVID task there
is no ground-truth data available. Hereafter, we refer to the aforementioned
ground-truth-annotated dataset as MED14 and we divide it into a training sub-
set, consisting of 50 positive and 25 related (near-miss) samples per event class,
together with 2496 background samples (i.e. videos that are negative examples
for all the event classes), and an evaluation subset consisting of approximately
50 positive and 25 related samples per event class, along with another 2496
background samples.

For assessing the detection performance of each trained event detector, the
average precision (AP) [23] measure is utilized, while for measuring the detection
performance of a classifier across all the event classes we use the mean average
precision (MAP), as is typically the case in the video event detection literature,
e.g. [8], [22], [28].

4.2 Video representation and uncertainty

For video representation, 2 keyframes per second are extracted at regular time
intervals from each video. Each keyframe is represented using the last hidden
layer of a pre-trained Deep Convolutional Neural Network (DCNN). More specif-
ically, a 16-layer pre-trained deep ConvNet network provided in [26] is used. This
network had been trained on the ImageNet data [6], providing scores for 1000
ImageNet concepts; thus, each keyframe has a 1000-element vector representa-
tion. Then, the typical procedure followed in state of the art event detection
systems includes the computation of a video-level representation for each video
by taking the average of the corresponding keyframe-level representations [31],
11, 5], (2]

In contrast to the existing event detection literature, in the case of RD-SVM-
iGSU (or also KSVM-iGSU and the original LSVM-iGSU), the aforementioned
keyframe-level video representations can be seen as observations of the input
Gaussian distributions that describe the training videos. That is, let X be a
set of [ annotated random vectors representing the aforementioned video-level
model vectors. We assume that each random vector is distributed normally; i.e.,
for the random vector representing the i-th video, X;, we have X; ~ N (x;,%;).
Also, for each random vector X;, a number, N;, of observations, {x! € R":t =
1,...,N;} is available; these are the keyframe-level model vectors that have been
computed. Then, the mean vector and the covariance matrix of X; are computed
respectively as follows

3= ’ (xt —x;)(xt — xi)T. (12)

Now, due to the assumption for isotropic covariance matrices, we approximate
the above covariance matrices as multiples of the identity matrix, i.e. ¥; = 021,
by minimizing the squared Frobenious norm of the difference ¥; —E with respect
to o2. It can be shown (by using simple matrix algebra [10]) that for this it suffices
to set 02 equal to the mean value of the elements of the main diagonal of 3.
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4.3 Experimental results and discussion

The proposed kernel extensions of LSVM-iGSU [27] (KSVM-iGSU, RD-KSVM-
iGSU) are tested on the MED14 dataset, and compared to standard kernel SVM
(KSVM), LSVM-iGSU [27] and RD-KSVM [28]. We note here that for the prob-
lem of video event detection (and especially when only a few positive training
samples are available), kernel SVM is the state-of-the-art approach [5],[2], while,
when also a few related samples are available, RD-KSVM leads to state-of-the-
art detection performance [28]. We experimented on the problem of learning
from 10 positive examples per each event class, together with 5 related sam-
ples, that are drawn from the set of 25 related samples provided for each event
class following the method presented in [28]; i.e., the 5 nearest to the median
of all 25 related samples were kept for training both RD-KSVM and RD-SVM-
iGSU. Also, we randomly chose 70 negative samples for each event class, while
we repeated each experiment 10 times. That is, for each different experimen-
tal scenario, the obtained performance of each classifier (KSVM, RD-KSVM,
LSVM-iGSU, KSVM-iGSU, and RD-SVM-iGSU) is averaged over 10 iterations,
for each of which 10 positive samples have been randomly selected from the pool
of 50 positive samples that are available in our training dataset for each target
event class.

For all the above experimental scenarios where a kernel classifier is used, the
radial basis function (RBF) kernel has been used. Training parameters (C' for
LSVM-iGSU; C, v for KSVM, KSVM-iGSU; and C, ~, and ¢ for RD-KSVM,
RD-KSVM-iGSU) are obtained via cross-validation. For C, ~, a 10-fold cross-
validation procedure (grid search) is performed with C, 7 being searched in the
range {2716,2715 22 23} For ¢, an approach similar to that presented in
[28] is followed. That is, related samples are initially treated as true positive
and true negative ones (in two separate cross-validation processes) and C, ~y are
optimized as described above; then, by examining the minimum cross-validation
errors of the two above processes, we automatically choose whether to treat the
related samples as weighted positive or weighted negative ones, and also fix the
value of C' to the corresponding optimal value. Using this C', we proceed with a
new cross-validation process (again grid search) for finding the optimal ~, ¢ pair
(where c is searched in the range [0.01,1.00] with a step of 0.05).

Table 1 shows the performance of the proposed KSVM-iGSU and RD-KSVM-
iGSU, compared to LSVM-iGSU [27], the standard KSVM, and the RD-KSVM
[28], respectively, in terms of average precision (AP), for each target event, and
mean AP (MAP), across all target events. Bold-faced values indicate the best
performance for each event class. We can see that LSVM-iGSU, whose improved
performance over the standard linear SVM was studied extensively in [27], can-
not outperform the kernel methods that are typically used for the video event
detection problem, achieving a MAP of 0.1761. Without using any related sam-
ples, KSVM-iGSU that takes into account the input uncertainty, outperformed
the standard kernel SVM for 25 out of 30 target event classes, achieving a MAP
of 0.2527 in comparison to KSVM’s 0.2128 (achieving a relative boost of 18.75%).
Moreover, when related samples were used for training, the proposed RD-KSVM-
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iGSU outperformed the baseline RD-KSVM for 27 out of 30 target event classes,
achieving a MAP of 0.2730, in comparison to RD-KSVM’s 0.2218 (i.e. a relative
boost of 23.08%). This RD-KSVM-iGSU result also represents a 8% relative im-
provement (MAP of 0.2730 versus 0.2527) in comparison to KSVM-iGSU, which
does not take advantage of related video samples during training. The above
results suggest that using uncertainty for training video event detectors leads
to promising results, while the additional exploitation of related samples can
further improve event detection performance.

Finally, in Fig. 1 we present indicative results of the proposed RD-KSVM-
iGSU in comparison with the baseline RD-KSVM [28] for four event classes,
showing the top-5 videos each classifier retrieved. Green borders around frames
indicate correct detection results, while red ones indicate false detection. These
indicative results illustrate the practical importance of the AP and MAP differ-
ences between these two methods that are observed in Table 1.

5 Conclusions and Future Work

Two extensions of LSVM-iGSU, which is a linear classifier that takes input un-
certainty into consideration, were proposed in this paper. The first one (KSVM-
iGSU) results in non-linear decision boundaries, while the second one (RD-
KSVM-iGSU), which is proposed especially for the problem of video event detec-
tion, exploits related class observations. The applicability of the aforementioned
methods was verified using the TRECVID MED 2014 dataset, where solely a
limited number of positive and related samples were used during training.

In the future, we plan to extend KSVM-iGSU such that the uncertainty of the
input data is taken into consideration anisotropically. Also, we plan to exploit
related samples in a more elaborate way; for instance, by clustering them into
subclasses and assigning a different relevance degree to each subclass.
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