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Abstract. In this work we deal with the problem of how different local
descriptors can be extended, used and combined for improving the effec-
tiveness of video concept detection. The main contributions of this work
are: 1) We examine how effectively a binary local descriptor, namely
ORB, which was originally proposed for similarity matching between lo-
cal image patches, can be used in the task of video concept detection. 2)
Based on a previously proposed paradigm for introducing color exten-
sions of SIFT, we define in the same way color extensions for two other
non-binary or binary local descriptors (SURF, ORB), and we experimen-
tally show that this is a generally applicable paradigm. 3) In order to
enable the efficient use and combination of these color extensions within
a state-of-the-art concept detection methodology (VLAD), we study and
compare two possible approaches for reducing the color descriptor’s di-
mensionality using PCA. We evaluate the proposed techniques on the
dataset of the 2013 Semantic Indexing Task of TRECVID.

Keywords: Video feature extraction, concept detection, concept-based
video retrieval, binary descriptors.

1 Introduction

Concept-based video annotation and indexing is a very important task for the
multimedia analysis field and a significant part of applications such as video
retrieval, video event detection and video hyperlinking [27], [17]. A typical video
concept detection system consists of three main modules: the video decompo-
sition module, where video sequences are segmented into shots and each shot
is represented by e.g. one or more characteristic keyframes/images; the feature
extraction module, where features (e.g. local image descriptors, motion descrip-
tors) are extracted from the visual information and encoded into a descriptor
vector; and, finally the learning module, which employs machine learning algo-
rithms in order to solve the problem of associating image descriptor vectors and
concept labels.
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Fig. 1. Block diagram of a typical concept detection system

In this work we focus on the feature extraction process. Scale Invariant Fea-
ture Transform (SIFT) [16] and Speeded Up Robust Features (SURF) [2] are
probably the two local descriptors that are most-widely used for this task. How-
ever, they are non-binary descriptors, which makes them not so suitable for
applications requiring the transmission of descriptor vectors. For example, when
considering a mobile application where pictures are taken with a mobile device
and local descriptors from these pictures need to be sent to a server for further
processing, then it is very important that the local descriptors are as compact
as possible, to minimize transmission requirements [8]. ORB (Oriented FAST
and Rotated BRIEF) [22] is a binary local descriptor, which was originally pro-
posed for similarity matching between local image patches. We examine ORB
in the task of video concept detection, and we show that it constitutes a viable
alternative to the non-binary descriptors currently used in this task, while its
compact size and low storage needs make this descriptor appealing for mobile ap-
plications. Subsequently, inspired by two color extensions of SIFT [24], namely
RGB-SIFT and OpponentSIFT, we define the corresponding color extensions
for the two other local descriptors considered in this work (SURF, ORB), and
we show that this relatively straightforward way of introducing color informa-
tion is in fact a generic methodology that works similarly well for different local
descriptors. In addition, we present a different way of performing Principal Com-
ponent Analysis (PCA) [28] for feature reduction, which improves the results of
SIFT/SURF/ORB color extensions when combined with VLAD encoding. Our
experiments were performed on the TRECVID 2013 Semantic Indexing (SIN)
dataset [19], which consists of a development set and a test set (approximately
800 and 200 hours of internet archive videos for training and testing, respec-
tively).

The rest of this paper is organized as follows: Section 2 reviews related work,
focusing on local image descriptors. Section 3 discusses how the binary ORB
descriptor can be used for video concept detection. Section 4 introduces the color
extensions of SURF and ORB, while Section 5 discusses two possible approaches
of employing PCA for color descriptors. Section 6 presents our experiments and
results, and finally Section 7 summarizes our main conclusions.

2 Related Work

Figure 1 summarizes a typical concept detection system. The video decompo-
sition module uses shot segmentation algorithms in order to divide the initial
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video sequence into shots, and then possibly also single-out a subset of the visual
information (e.g. keyframes, tomographs [26]) to be used for further processing.
Then, the feature extraction module deals with the extraction of meaningful
feature vectors to represent each piece of visual information. A variety of visual,
textual and audio features can be extracted to this end; a review of different types
of features can be found in [27]. In large-scale video concept detection, typically
local image features are utilized, being extracted from representative keyframes
or similar 2D image structures [26]. Two of the most popular local descriptors
are SIFT [16] and SURF [2]. Both of them extract features that are invariant to
rotation, scale and illumination variations, while SURF extraction is somewhat
less computationally-demanding (SURF is two times faster than SIFT accord-
ing to [2]). SIFT and SURF construct vectors of floating-point values (which are
often quantized to integers in the range [0,255]). For many modern applications,
though, e.g. concept detection on mobile devices, small-sized yet discriminative
descriptors are very important in order to extract, store and transmit them effi-
ciently (e.g. send local descriptors to a server for performing concept detection).
Binary local descriptors are an attractive alternative to non-binary descriptors
such as SIFT and SURF, generating binary strings which can be computed ef-
ficiently while also requiring lower storage space. BRIEF [5], ORB [22], BRISK
[15], and FREAK [1] are some examples of binary local descriptors that have
been proposed for similarity matching between local image patches. They are all
based on calculating the differences between pairs of pixel intensity values within
an image patch; what distinguishes them is the pattern they follow in order to
perform these pair-wise pixel comparisons. Studies show that ORB is among the
most accurate binary descriptors for image matching [6]. The possibility of using
ORB in image classification was also briefly examined in [12].

The above mentioned non-binary and binary local descriptors are intensity-
based: they are applied to grayscale images (e.g. an RGB image is firstly con-
verted to grayscale), and the extracted features are calculated from the pixel
intensity values. Two color variants of SIFT, namely RGB-SIFT and Oppo-
nentSIFT, that increase the illumination invariance, the discriminative power
and also make the descriptor invariant to light color changes were proposed
in [24]. Methods that consider the color information in order to improve the
SURF descriptor have also been proposed, but were examined only on the im-
age matching problem [11], [10], [9]. For example, [10] calculates a color local
kernel histogram in the neighborhood of each keypoint and concatenates it with
the original SURF descriptor that has been extracted from the pixel intensity
values of the same neighborhood. In [12], the extraction of ORB from all three
color channels of the RGB color space was considered.

For the purpose of visual concept detection, local descriptors extracted from
different patches of one image are subsequently aggregated into a global image
representation, a process known as feature encoding. The most popular encod-
ing in the last years has been the Bag-of-Words (BoW) [21]. Fisher vector (FV)
[20], Super Vector (SV) [30] and VLAD (Vector of Locally Aggregated Descrip-
tors) [13] are three state-of-the-art encodings that significantly outperform the
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BoW [25] [7]. FV encoding describes the difference between the distribution of
features for an image and the distribution fitted to the features of all the train-
ing data. VLAD [13] is a fast approximation of FV that performs somewhat
worse but is more compact and faster to compute [14], which makes it a good
compromise. SV [30] works in the same lines, however requires larger codebooks
than VLAD and FV in order to exhibit similar levels of accuracy, which in-
creases the memory and computation requirements. The three latter encodings
are high-dimensional and their dimensionality is affected by the dimensionality
of the local descriptors they encode, thus dimensionality reduction approaches
such as PCA are widely used for making the image representation more com-
pact prior to learning/classification. Dimensionality reduction can be performed
at two stages: local descriptors can be reduced prior to the encoding, and then
the final encoding can also be further compacted [14].

Finally, for learning the associations between the image representations and
concept labels, algorithms such as Logistic Regression (LR) and Support Vector
Machines (SVM) are typically trained separately for each concept, on ground-
truth annotated corpora. Then, when a new unlabeled video shot arrives, the
trained concept detectors will return confidence scores that show the belief of
each detector that the corresponding concept appears in the shot. This baseline
learning process can be further improved in different ways, e.g. by taking into
account concept correlations instead of training each detector independently [18].

3 Using a Binary Local Descriptor for Concept Detection

ORB [22] is a binary local image detector and descriptor that presents similar
discriminative power with SIFT and SURF in image matching problems, it has
similar properties such as invariance in rotation, scale and illumination, but at
the same time is more compact and faster to be computed. A 256-element binary
ORB vector requires 256 bits to be stored; in contrast, an integer-quantized 128-
element SIFT vector requires 1024 bits. In addition, according to [22], ORB is
an order of magnitude faster than SURF to compute, and more than two orders
of magnitude faster than SIFT.

There is not a single way for introducing binary descriptors in the visual
concept detection pipeline. [12] did so by considering the BoW encoding, and
proposed a modified K-means algorithm (the “K-majority” algorithm) for gener-
ating the codebook (vocabulary) of BoW, that would result in a binary codebook.
To illustrate the modifications, Algorithm 1 presents the steps of the original K-
means clustering algorithm. In order to create a binary codebook, [12] used the
Hamming distance in Step 2 of the Construction stage and also in the Assign-
ment stage, while in Step 3 they used their “K-majority” voting method in order
to calculate a binary cluster center.

In this work we claim that a binary descriptor (ORB) can be used for the
video concept detection in the same way as its non-binary counterparts. Specif-
ically, let us assume that I is a set of images and xi i = 1, ..., N are ORB
descriptors extracted from I, where xi ∈ {0, 1}d. N is the total number of ex-
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Algorithm 1 Steps of K-means algorithm
Codebook construction:
1. Randomly initialize a set of K cluster centers wk

2. For each descriptor vector xi, compute index ki of the cluster centre nearest to xi

3. Update the cluster centers wk

4. Repeat steps 2 and 3 until convergence
Word assignment:
Given a new local descriptor vector x′, assign it to the nearest cluster wk

tracted local descriptors and d is the dimension of the ORB descriptor. From
these binary descriptors, we generate a floating-point codebook of K visual code-
words wk ∈ Rd, k = 1, ...,K, using a standard K-means. The distances between
the binary ORB descriptors and the codewords (Construction: Step 2 and As-
signment stage of Algorithm 1) are calculated by the L2 norm. In Step 3 of
Algorithm 1, averaging is also performed as in the original K-means (calculating
the mean of a set of vectors).

Assigning binary local descriptors to a binary codebook using the hamming
distance, as in [12], is faster than assigning them to a floating-point codebook
using the L2 distance. However, considering that for the concept detection prob-
lem the time needed for the assignment to codebook is negligible compared to
other processes of the pipeline (e.g. feature encoding, classification), more impor-
tant is what leads to a more discriminative codebook that improves the concept
detection accuracy. We report results of comparing these two codebook creation
strategies (that of [12] and the one described in this section) in Section 6.

4 Color Extensions of Binary and Non-binary Local
Descriptors

Based on the good results of two color extensions of SIFT, namely RGB-SIFT
and OpponentSIFT [24], we examine the impact of using the same methodol-
ogy for introducing color information to other descriptors (SURF, ORB). Our
objective is to examine if this is a methodology that can benefit different local
descriptors and is therefore generally applicable.

Let d denote the dimension of the original local descriptor (typically, d will be
equal to 64 or 128 for SURF and 128 or 256 for ORB). Figure 2 summarizes the
process of extracting RGB-SURF, RGB-ORB, OpponentSURF and Opponen-
tORB descriptors. An RGB image has three 8-bit channels (for red, green and
blue). The original non-color local descriptors are calculated on 8-bit grayscale
images, so they first transform the RGB image to grayscale. In contrast to this,
our RGB-SURF/ORB (Fig. 2:(a)) apply the original SURF or ORB descriptors
directly to each of the three R, G, B channels and for each keypoint extract three
d-element feature vectors. These are finally concatenated into one 3 · d-element
feature vector, which is the RGB-SURF or RGB-ORB descriptor vector.

Similarly, our OpponentSURF/ORB (Fig. 2:(b)) descriptors firstly transform
the initial RGB image to the opponent color space [24]. We refer to the trans-
formed channels as O1, O2 and O3. O3 is the luminance channel, i.e. the one
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Fig. 2. Block diagram of color SURF/ORB descriptor extraction, where d denotes the
dimension of the original local descriptor.

that the original SURF/ORB descriptors use. The other two channels (O1 and
O2) capture the color information, where O1 is the red-green component and
O2 is the blue-yellow component. Following the transformation, a normalization
step that converts the ranges of each channel within the [0,255] range is em-
ployed, as in [24]. Similarly with RGB-SURF/ORB, the original SURF or ORB
descriptors are then applied separately to each transformed channel and the final
3 · d-element feature vectors are the concatenation of the three feature vectors
extracted from the three channels.

5 Reducing the Dimensionality of Local Color Descriptors

State-of-the-art encoding methods generate high-dimensional vectors that make
difficult the training of machine learning algorithms. For example, while the

Algorithm 2 Algorithm for channel-PCA
Input: The number of color channels c (c = 3 in our color descriptors); the dimension d of each
channel of the color descriptor (normally 128 or 256); the desired dimension l′ of the reduced
feature vector (the full feature vector will be reduced from l = c · d to l′); the complete feature
matrix A that will be used for learning the projection matrices
Projection Matrix calculation: Calculate c projection matrices of size d × pi according to:
for i = 1 to c do

1. Perform eigenvalue decomposition of the covariance matrix corresponding to the features of
the current channel (i.e., corresponding to a part of the features in A)

2. Select the number of principal components pi to retain for this channel (
∑c

i=1 pi = l′)
3. Form the channel’s projection matrix using only the first pi principal components

end for
Dimensionality reduction using channel-PCA: Given a new feature vector x′, transform the
features of each color channel using the corresponding projection matrix, and concatenate the
transformed feature vectors for all channels
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BoW model generates a k-element feature vector, where k equals to the number
of visual words, VLAD encoding generates a k · l-element feature vector (where
l is the dimension of the local descriptor; in the case of the color extensions
of descriptors discussed in the previous section, l = 3 · d). Thus, it is common
to employ dimensionality reduction before the construction of VLAD vectors,
on local descriptors, mainly using PCA [28]. In this section we explain that
directly applying PCA to the full vector of color descriptors, as implied from
previously published works (e.g. [7]; termed “typical-PCA” in the sequel), is not
the only possible solution, and we propose a simple modification of this descriptor
dimensionality reduction process that it experimentally shown to improve the
concept detection results in several cases.

PCA projects linearly l-dimensional features to a lower-dimensional feature
space. Given a matrix A with dimension l × n, where n is the number of obser-
vations, if we want to perform dimensionality reduction (from l to l′) with PCA,
the reduced matrix A′ will be A′ = ET ·A, where E is the projection matrix (of
dimension l × l′) and T denotes the transpose of a matrix.

PCA aims to find those directions in the data space that present high vari-
ance. When PCA is applied directly to the entire vector of one of the color exten-
sions of (binary or non-binary) local descriptors, if one or two of the three color
channels of the descriptor exhibit lower diversity than the others, then these risk
being under-represented in the reduced dimensionality space. To avoid this, we
propose performing PCA separately for each color channel and consider an equal
number of principal components from each of them, to create three projection
matrices that correspond to each of the three channels, instead of one projection
matrix that corresponds to the complete descriptor vector. The three reduced
single-channel descriptor vectors that can be obtained for a color descriptor us-
ing the aforementioned projection matrices are finally concatenated in a reduced
color-descriptor vector. Algorithm 2 summarizes the proposed channel-PCA al-
gorithm.

6 Experiments

6.1 Experimental Setup

Our experiments were performed on the TRECVID 2013 Semantic Indexing
(SIN) dataset [19], which consists of a development set and a test set (approx-
imately 800 and 200 hours of internet archive videos for training and testing,
respectively). We evaluate our system on the test set using the 38 concepts that
were evaluated as part of the TRECVID 2013 SIN Task, and we follow the
TRECVID methodology for the evaluation of the results [19].

For experimenting with all methods, one keyframe was initially extracted for
each video shot and was scaled to 320×240 pixels prior to feature extraction. For
some of our final experiments, we also extracted two visual tomographs [26] from
each shot. Regarding feature extraction, we followed the experimental setup of
[7] and we used the toolbox that its authors have published. More specifically, we
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used the dense SIFT descriptor, that accelerates the original SIFT descriptor, in
combination with the Pyramid Histogram Of visual Words (PHOW) approach
[4]. PHOW is a simple modification of dense SIFT that uses more than one
square regions at different scale levels in order to extract features. For SURF and
ORB we used their implementations included in OpenCV, and further extended
these implementations with the corresponding color variants that we introduced
in Section 4. The same square regions at different scale levels of the PHOW
approach were used as the image patches that were described by ORB and SURF.
We calculated 128-SIFT, 128-SURF and 256-ORB grayscale descriptors; then,
each color extension of a descriptor resulted in a color descriptor vector three
times larger than that of the corresponding original descriptor, as explained
in Section 4. All the local descriptors were compacted (to 80 dimensions for
SIFT, SURF and their color extensions, following the recommendations of [7]
and [14]; to 80 dimensions for grayscale ORB and to 256 dimensions for ORB
color extensions) using PCA and were subsequently aggregated using the VLAD
encoding. Similarly with the authors of [7], we divided each image into the same 8
regions using spatial binning and we used sum pooling to combine the encodings
from different regions. As a result of the above process, a VLAD vector of 163840
elements for SIFT, SURF or grayscale ORB and of 524288 elements for ORB
color extensions was extracted for each image (by image we mean here either
a keyframe or a visual tomograph). These VLAD vectors were compressed into
4000-element vectors by applying a modification of the random projection matrix
[3]. These reduced VLAD vectors served as input to the Logistic Regression (LR)
classifiers that we used. Following the cross validated committees methodology
of [17], we trained five LR classifiers per concept and per local descriptor (SIFT,
ORB, RGB-ORB etc.), and combined the output of these five by means of late
fusion (averaging). When different descriptors were combined, again late fusion
was performed by averaging of the classifier output scores. In all cases, the
final step of concept detection was to refine the calculated detection scores by
employing the re-ranking method proposed in [23].

6.2 Results and Discussion

Tables 1, 2 and 3 present the results of our experiments in terms of Mean Ex-
tended Inferred Average Precision (MXinfAP) [29], which is an approximation
of the Mean Average Precision (MAP) suitable for the partial ground truth that
accompanies the TRECVID dataset [19].

Table 1. Performance (MXinfAP, %) for ORB, when the binary codebook proposed
in [12] and when a floating-point codebook is used. In parenthesis we show the relative
improvement w.r.t. the binary codebook.

Descriptor Binary codebook [12] Floating-point codebook Floating-point codebook
(no PCA) (PCA 80)

ORB 4.52 10.36 (+129.2%) 11.43 (+152.9%)
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In Table 1 we examine the performance of the original grayscale ORB de-
scriptor in concept detection, when used in conjunction with a binary codebook
(as in [12]) and a floating-point one (as in Section 3). In both cases, VLAD
encoding is employed. We can see that the binary codebook proves ineffective;
the floating-point one outperforms it by more than 129%. We also compacted
the ORB descriptors to 80 dimensions using PCA before encoding them, which
further increased MXinfAP to 11.43%. Based on this result, in all subsequent
experiments with ORB and its extensions a floating-point codebook was used.
In addition, grayscale ORB was compacted to 80 dimensions.

In Table 2 we evaluate the different local descriptors and their color exten-
sions considered in this work, as well as combinations of them. First, comparing
the original ORB descriptor with the other two non-binary descriptors (SIFT,
SURF), we can see that ORB performs rather similarly to its non-binary counter-
parts (more precisely, its MXinfAP is a bit worse). This performance is achieved
despite ORB and its extensions being much more compact than SIFT and SURF,
as seen in the second column of Table 2. Second, concerning the methodology
for introducing color information to local descriptors, we can see that the com-

Table 2. Performance (MXinfAP, %) for the different descriptors, when typical and
channel-PCA for dimensionality reduction is used. In parenthesis we show the relative
improvement w.r.t. the corresponding original grayscale local descriptor for each of the
SIFT, SURF and ORB color variants.

Descriptor Descriptor Keyframes, Keyframes, Boost(%) w.r.t
size in bits typical-PCA channel-PCA typical-PCA

SIFT 1024 14.22 14.22 -
RGB-SIFT 3072 14.97 (+5.3%) 14.5 (+2.0%) -3.1%
OpponentSIFT 3072 14.23 (+0.1%) 14.34 (+0.8%) +0.8%
SIFT combination - 19.11 (+34.4%) 19.24 (+35.3%) +0.7%
SURF 1024 14.68 14.68 -
RGB-SURF 3072 15.71 (+7.0%) 15.99 (+8.9%) +1.8%
OpponentSURF 3072 14.7 (+0.1%) 15.26 (+4.0%) +3.8%
SURF combination - 19.4 (+32.2%) 19.48 (+32.7%) +0.4%
ORB 256 11.43 11.43 -
RGB-ORB 768 13.02 (+13.9%) 13.58 (+18.8%) +4.3%
OpponentORB 768 12.61 (+10.3%) 12.73 (+11.4%) +1.0%
ORB combination - 17.38 (+52.1%) 17.45 (+52.7%) +0.4%
SIFT/SURF combination - 22.4 22.35 -0.2%
SIFT/ORB combination - 21.32 21.46 +0.7%
SURF/ORB combination - 21.56 21.74 +0.8%
SIFT/SURF/ORB combination - 23.00 23.01 0.0%

Table 3. Performance (MXinfAP, %) for different combinations of descriptors, (a)
when features are extracted only from keyframes, (b) when horizontal and vertical
tomographs described by SIFT, RGB-SIFT and OpponentSIFT are also examined, (c)
when the Label Powerset algorithm is also applied [18].

Descriptor (a) Keyframes (b) Keyframes+ (c) Keyframes+
(channel-PCA) Tomographs Tomographs+LP

SIFT combination 19.24 20.28 21.35
SURF combination 19.48 19.74 20.92
ORB combination 17.45 17.83 19.92
SIFT/SURF/ORB combination 23.01 24.49 25.58
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bination of the original SIFT descriptor and the two known color SIFT variants
that we examine (“SIFT combination” in Table 2) outperforms using the original
SIFT descriptor alone by 34.4% (35.3% for channel-PCA). The similar combi-
nations of the SURF color variants with the original SURF descriptor, and of
the color variants of ORB with the original ORB descriptor, are shown in Table
2 to outperform the original SURF and ORB by 32.2% and 52.1%, respectively
(which increase to 32.7% and 52.7% for channel-PCA). These results show that
the relatively straightforward way we used for introducing color information to
SURF and ORB, based on the similar SIFT extensions, is in fact generally ap-
plicable to heterogeneous local descriptors.

To analyse the influence of PCA on the vectors of local color descriptors,
we also compared in Table 2 the channel-PCA of section 5 with the typical
approach of applying PCA directly on the entire color descriptor vector. In both
cases PCA was applied before the VLAD encoding, and in applying channel-
PCA we kept the same number of principal components from each color channel
(e.g. for RGB-SIFT, which is reduced to l′ = 80 using typical-PCA, we set
p1 = p2 = 27 for the first two channels and p3 = 26 for the third color channel;
p1+ p2+ p3 = l′). According to the relative improvement figures reported in the
last column of Table 2, performing the proposed channel-PCA in several cases
improves the concept detection results, compared to the typical-PCA alternative,
without introducing any additional computational overhead.

Another observation from Table 2 is that the concept detection performance
increases when pairs of local descriptors (including their color extensions) are
combined (i.e., SIFT/SURF, SIFT/ORB and SURF/ORB combinations), which
shows a complementarity in the information that the different local descriptors
capture. The best overall results among the experiments of Table 2 are achieved
when all the local descriptors and their color variants are combined (last row of
this table), reaching a MXinfAP of 23.01%.

Finally, in Table 3 we report experiments with two literature techniques that
can further benefit the combination of SIFT, SURF and ORB. Specifically, we
experiment with video tomographs [26] (for simplicity these are described using
only SIFT and its two color extensions) and a two-layer stacking architecture
that captures concept correlations using the Label Powerset (LP) algorithm in
the second layer [18]. In all experiments of this table, for the color variants of
SIFT, SURF and ORB, channel-PCA was used. The results of Table 3 indicate
that introducing some form of motion information (through tomographs) and
considering the correlations among concepts (through LP) can give an additional
11.2% relative improvement to the best results reported in Table 2 (MXinfAP
increased from 23.01% to 25.58%).

7 Conclusions

In this work we showed that a binary local descriptor (ORB) can perform suf-
ficiently well, compared to its non-binary counterparts, in the video concept
detection task. We also showed that a methodology previously used for defining
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two color variants of SIFT is a generic one that is also applicable to descrip-
tors such as ORB and SURF. We proposed a different way of employing PCA
for dimensionality reduction of color descriptors that are used in combination
with VLAD (channel-PCA). Finally, we quantified the impact of combining the
above techniques (e.g. combination of binary and non-binary color descriptors)
and other previously proposed methods (tomographs, LP) to a concept detection
system.
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