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Abstract. Exploiting concept correlations is a promising way for boost-
ing the performance of concept detection systems, aiming at concept-
based video indexing or annotation. Stacking approaches, which can
model the correlation information, appear to be the most commonly
used techniques to this end. This paper performs a comparative study
and proposes an improved way of employing stacked models, by using
multi-label classification methods in the last level of the stack. The ex-
perimental results on the TRECVID 2011 and 2012 semantic indexing
task datasets show the effectiveness of the proposed framework compared
to existing works. In addition to this, as part of our comparative study,
we investigate whether the evaluation of concept detection results at the
level of individual concepts, as is typically the case in the literature, is
appropriate for assessing the usefulness of concept detection results in
both video indexing applications and in the somewhat different problem
of video annotation.

Keywords: Concept detection, concept correlation, stacking, multi-
label classification.

1 Introduction

Semantic concept detection in videos, often also referred to as semantic indexing
or high-level feature extraction, is the task of assigning one or more labels (se-
mantic concepts) to video sequences, based on a predefined concept list [1]. This
process is important for several applications such as video search and retrieval,
concept-based annotation and video summarization.

The majority of concept detection systems are based on variations of the
following process: Ground-truth annotated videos are segmented into shots, vi-
sual features are extracted from each shot, and supervised classifiers are trained
separately for each concept. Then, a new, non-annotated video shot can be as-
sociated with concept labels by applying the trained concept detectors, to get a
set of confidence scores. These scores indicate the belief of each detector that the
corresponding concept appears in the shot. Assigning concepts to video shots is
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by definition a multi-label classification problem, since multiple concepts may
match a single video shot. The process of training each concept detector indepen-
dently, as described earlier, is known as Binary Relevance (BR) transformation
and is the simplest way of solving multi-label learning problems.

In this baseline BR system, any existing semantic relations among concepts
are not taken into account (e.g., the fact that sun and sky will often appear to-
gether in the same video shot). Thus, one way of improving the performance of
concept detection is to also consider such concept correlations. A group of meth-
ods in this category follow a stacking architecture (e.g. [2], [3]). The predictions
of multiple BR-trained concept detectors form model vectors that are used as a
meta-learning training set for a second learning round. While there is no strict
rule for the selection of the meta-learning algorithm, researchers mainly adopt
a second round of BR models. In this work we examine the use of elaborate
multi-label classification algorithms instead of BR models for the second-layer
learning.

In addition to this, a closer look to the way that concept detection is evalu-
ated shows that researchers focus on evaluating it in a concept-based indexing
and retrieval setting, i.e. given a concept, measure how well the top retrieved
video shots for this concept truly relate to it. However, besides the retrieval
problem, another important problem related to video concept detection is the
annotation problem, i.e. the problem of estimating which concepts best describe
a given video shot. We argue that the retrieval-based evaluation of concept de-
tection results is not sufficient for assessing the goodness of concept detectors
in the context of the annotation problem, and we experimentally underline the
importance of reporting evaluation results in both these directions.

2 Related Work

Concept correlation refers to the relations among concepts within a video shot.
By using this information we can refine the predictions derived from multiple
concept detectors in order to improve their accuracy, a process known as Con-
text Based Concept Fusion (CBCF) [3]. Two main types of methods have been
adopted in the literature for this: a) Stacking-based approaches that collect the
scores produced by a baseline set of concept detectors and introduce a second
learning step in order to refine them, b) Inner-learning approaches that follow a
single-step learning process, which jointly considers low-level visual features and
concept correlation information [1].

In this work we mainly focus on the first category. Stacking approaches aim
to detect dependencies among concepts in the last layer of the stack. One pop-
ular group is the BR-based stacking approaches. For example, Discriminative
Model Fusion (DMF) [2] obtains concept score predictions from the individual
(BR-trained) concept detectors in the first layer, in order to create a model vec-
tor for each shot. These vectors form a meta-level training set, which is used to
train a second layer of BR models. Correlation-Based Pruning of Stacked Binary
Relevance Models (BSBRM) [4] extends the previous approach by pruning the
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predictions of non-correlated concept detectors before the training of each indi-
vidual classifier of the second-layer BR models. Similarly to DMF, the Baseline
CBCF (BCBCF) [3] forms model vectors, in this case using the ground truth
annotation, in order to train second-layer BR models. Furthermore, the authors
of [3] note that not all concepts can take advantage of CBCF, so their method
refines only a subset of them. Another group of stacking approaches are the
graph-based ones, which model label correlations explicitly [1]. Multi-Cue Fu-
sion (MCF) method [5] uses the ground truth annotation to build decision trees
that describe the relations among concepts, separately for each concept. Initial
scores are refined by approximating these graphs.

Inner-learning approaches make use of contextual information from the be-
ginning of the concept learning process. For example, the authors of [6] and [7]
propose methods that simultaneously learn the relation between visual features
and concepts and also the correlations among concepts. In [8] a probabilistic
Multi-Label Multi-Instance learning approach is proposed, where the multi-label
part models correlations among multiple concepts and the multi-instance part
models relations among different image regions. These two parts are combined
into a single step in order to develop a complete system that detects multiple
concepts in an image. In [9] a combination of a weighted version of kNN and
multiple SVM classifiers are used for jointly assessing the semantic similarity be-
tween concepts and the visual similarity between images annotated with them.
Although inner-learning approaches are out of the scope of this work, they were
briefly discussed in this paragraph for the sake of completeness.

In TRECVID 2012 several teams explicitly study label correlations. For ex-
ample, in [10] the Concept Association Network is used, which is a rule-based
system searching for frequent item sets of concepts and extracting association
rules. Other systems aim to take advantage of “imply” and “exclude” relations
between concepts [11], [12]. However, we did not consider such methods in the
present comparative study, because in the TRECVID experiments reported in
the aforementioned publications these methods did not exhibit a significant im-
provement in the goodness of concept detection, compared to the BR baseline.

Label correlation has also been investigated in the broader multi-label learn-
ing domain. In [13], multi-label classification methods, including methods that
consider contextual relations, are compared on multimedia data. In [9] and [14]
such methods are adapted for concept detection. Nevertheless, none of these
approaches considers the use of multi-label classification methods as part of a
stacking architecture. The latter is the focus of this work, and section 3 describes
the way we adapt such methods in order to build models in the second-layer of
the stacking architecture that learn the correlations among labels.

3 The Proposed Stacking Architecture

Let D1, ..., DN denote a set of N trained concept detectors on N different con-
cepts. Let T denote a validation set of video shots, which will be used for training
the second layer of the stacking architecture, and m denote the model vector of a
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new unlabeled video shot. Figure 1 summarizes the full pipeline from training the
second-layer classifiers to using them for classifying an unlabeled sample when
using: (1) the BR stacking architecture (Fig. 1(b),(d)), and (2) the proposed
stacking architecture (Fig. 1(c),(e)). Both architectures use exactly the same
strategy to create the meta-level training set; the trained BR models (D1, ..., DN )
of the first layer are applied to the validation dataset T and in this way a model
vector set M is created, consisting of the scores that each of D1, ..., DN has as-
signed to each video shot of T for every concept (Fig. 1(a)). What distinguishes
the two architectures is the way that this meta-learning information is used and
therefore the way that the second-layer learning is performed.

During the training phase, the BR stacking architecture builds a new set of
BR models (D′

1, ..., D
′
N ). To train each model, a different subset of M that is

ground-truth annotated for the corresponding concept Cn that the meta-concept
detector D′

n will be trained for, is used (Fig. 1(b)). In contrast, the proposed
architecture uses the whole model vector set and the ground truth annotation
at once in order to train a single multi-label classification model D′, instead of
separate models D′

1, ..., D
′
N (Fig. 1(c)).

During the classification phase, a new unlabeled video shot is firstly given to
the first layer BR models (D1, ..., DN ) and a model vector m is returned. On the
one hand, the BR stacking architecture will let each of the D′

1, ..., D
′
N models to

classify m and one score will be returned separately from each model (Fig. 1(d)).
On the other hand, the proposed architecture uses the single trained model D′

in order to return a final score vector (Fig. 1(e)).
With respect to learning concept correlations, the BR-based stacking meth-

ods learn them only by using the meta-level feature space. However, the learning
of each concept is still independent of the learning of the rest of the concepts.
The rationale behind us proposing the use of multi-label learning algorithms in
replacement of the BR models at the second layer of the stacking architecture is
based on the assumption that if we choose algorithms that explicitly consider la-
bel relationships as part of the second-layer training, improved detection can be
achieved. Our stacking architecture learns concept correlations in the last layer
of the stack both from the outputs of first-layer concept detectors and by mod-
elling correlations directly from the ground-truth annotation of the meta-level
training set. This is achieved by instantiating our architecture in our experiments
with different second-layer algorithms that model:

– Correlations between pairs of concepts;
– Correlations among sets of more than two concepts;
– Multiple correlations in the neighbourhood of each testing instance.

To model the correlation information described above we exploit methods
from the multi-label learning field [15]. Pairwise methods can consider pairwise
relations among labels; similar to the multi-class problem, one versus one mod-
els are trained and a voting strategy is adopted in order to decide for the final
classification. In this category we choose the Calibrated Label Ranking (CLR)
algorithm [16] that combines pairwise and BR learning. Label power set (LP)
methods search for subsets of labels that appear together in the training set
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Fig. 1. Comparing BR and the proposed stacking architecture. (a) First layer of a
stacking architecture. Video shot set T is given to trained concept detectors D1, ..., DN ,
and a model vector setM consisting of the responses of the detectors for each video shot
of T is returned. (b) Training of the second layer of a BR-stacking architecture. During
the training phase, BR-stacking builds a second set of concept detectors (D′

1, ..., D
′
N )

separately for each concept, using for training each of D′
1, ..., D

′
N a different subset of M

according to the availability of ground-truth annotations for each concept. (c) Training
of the second layer of the proposed stacking architecture. The proposed architecture
uses both the complete model vector set M and the ground truth annotations in order
to build a single multi-label model D′. (d)&(e) During the classification phase, a new
unlabeled video shot is firstly given to the first layer BR models (D1, ..., DN ) and a
model vector m is returned, to be used as input to the second layer classifiers. (d) The
BR stacking architecture will let each of the D′

1, ..., D
′
N models to classify m and one

score will be returned separately from each model. (e) The proposed architecture uses
m as input to the single trained multi-label classification model D′. In both cases, a
set of final scores s1, ..., sN are produced, corresponding to concepts C1, ..., CN .

and consider each set as a separate class in order to solve a multi-class problem.
We choose the original LP tranformation [15], as well as the Pruned Problem
Transformation algorithm (PPT) [17] that reduces the class imbalance problem
by pruning label sets that occur less than l times. Finally, lazy style methods
most often use label correlations in the neighbourhood of the tested instance,
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to infer posterior probabilities. In this direction we choose ML-kNN algorithm
[18], which models exactly this information. Note that the chosen methods can
output both a bipartition of the labels (relevant/irrelevant) and scores in the
[0,1] range. In selecting the above methods, we took into account the computa-
tional complexity of these and other similar methods and tried to avoid using
particularly computationally intensive ones.

One could argue that graph-based methods also search for meta-models that
model label correlations for all concepts at once; however, we differ from these
methods as we choose multi-label learning approaches rather than probabilistic
models. The use of multi-label classification algorithms as the second layer of
a stacking architecture has the significant advantage of allowing the represen-
tation of the videos using state-of-the-art high dimensional low-level features
(for describing the video at the first layer of the stack), as opposed to simpler
features used in e.g. [13], [9], while at the same time keeping relatively low the
dimensionality of the input to the multi-label classifier of the second layer, thus
making the overall concept detection architecture applicable even to large-scale
problems.

4 Experimental Setup

4.1 Dataset and Evaluation Methodology

We tested our framework on the TRECVID 2011 and 2012 Semantic Indexing
(SIN) datasets [19], [20]. Each of them consists of a development set and a test
set (approximately 400 and 200 hours of internet archive videos for training
and testing, respectively, for TRECVID 2011, and another 600 and 200 hours
for TRECVID 2012). We further partitioned the original test set into 2 sets
(validation and test set, 50% each) by using the Iterative Stratification algorithm
[21], suitable for multi-label data, and evaluated all techniques on the latter set
using the 50 and 46 concepts that were evaluated as part of the TRECVID 2011
and 2012 SIN Task, respectively.

Regarding the annotations for these datasets, we augmented those used by
TRECVID in 2011 with the results of collaborative annotation [22], [23] that
was carried out for the same dataset (among other datasets) as part of the 2012
edition of the SIN Task. We solve disagreements between the two annotations
by using the max operator (where in each collection of annotations, numbers
1, 0, -1 for a given shot-concept pair denote the following: 1=concept appears,
-1=does not appear, 0=ambiguous). We further augmented the ground truth by
using the concept “imply” relations provided by TRECVID. Finally, ambiguous
and missing annotations are ignored during evaluation. A similar process was
performed in order to augment the original annotations for the TRECVID 2012
dataset exploiting the results of the 2013 collaborative annotation [22], [23].

As discussed in the introduction, we also want to investigate if the typical way
of evaluating concept detection results [19] is suitable for assessing their goodness
for different applications. Based on this, we adopt two evaluation strategies: i)
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Considering the video indexing problem, given a concept, we measure how well
the top retrieved video shots for this concept truly relate to it. ii) Considering
the video annotation problem, given a video shot, we measure how well the top
retrieved concepts describe it. For each such strategy we calculate Mean Average
Precision (MAP) and Mean Precision at depth k (MP@k).

4.2 Baseline Detectors and Comparisons

For the first layer of the stacking architecture (which also serves as the baseline
for comparisons) we use one concept detection score per concept, extracted by
combing the output of 25 linear SVM classifiers trained for the same concept,
following the methodology of [24].

We instantiate the second layer of the proposed architecture with four dif-
ferent multi-label learning algorithms as described in section 3, and will refer to
our framework as P-CLR , P-LP, P-PPT and P-MLkNN when instantiated with
CLR [16], LP [15], PPT [17] and ML-kNN [18] respectively. The value of l for
P-PPT was set to 30.

We compare the proposed framework against BCBCF [3], DMF [2], BSBRM
[4] and MCF [5], which were reviewed in section 2. For BCBCF we use the con-
cept predictions instead of the ground truth in order to form the meta-learning
dataset, as this was shown to improve its performance in our experiments; we
refer to this method as CBCFpred in the sequel. Regarding the concept selection
step we use these parameters: λ = 0.5, θ = 0.6, η = 0.2, γ = the mean of Mutual
Information values. For MCF we only use the spatial cue, so temporal weights
have been set to zero. Finally, the ϕ coefficient threshold, used by BSBRM, was
set to 0.09.

For the purpose of implementing the above techniques the Logistic Regres-
sion learning algorithm [25] is used for the classification tasks considered by some
of the methods. The WEKA [26] and MULAN [27] machine learning libraries
were used as the source of single-class and multi-label learning algorithms, re-
spectively.

5 Results and Discussion

We performed two sets of experiments for each of the two TRECVID datasets
1. For the TRECVID 2011 dataset, in the first set, the meta-level training set
is composed of predictions from 50 concept detectors (the 50 concepts for which
ground-truth annotations exist not only in the training set but also in the test
set). In the second set of experiments, we include information from 296 more
first-layer concept detectors (346 in total). For the TRECVID 2012 dataset the
two experiment sets were similarly instantiated with 46 and 346 concepts respec-
tively. Table 1 summarizes the results for the two datasets.

We start the analysis, based on the MAP and MP@k results, separately
for each evaluation strategy. Results regarding the indexing problem (Table

1 The experiments were conducted on a PC with 3.5 GHz CPU and 16GB of RAM.
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Table 1. Performance, in terms of MAP, MP@k and CPU time, for the different
methods that are compared on the TRECVID 2011 and 2012 datasets. The number of
concepts that are evaluated on these datasets are 50 and 46, respectively. The meta-
learning feature space for the second layer of the stacking architecture is constructed
using detection scores for (I) the same 50 and 46 concepts and (II) an extended set
of 346 concepts. The ∼ symbol indicates that the difference in MP@k between the
denoted method and the best-performing method in the same column of the table is
not statistically significant (thus, the absence of ∼ suggests statistical significance).
CPU times refer to mean training (in minutes) for all 50 or 46 concepts on datasets
of 67874 and 72818 shots, respectively, and application of the trained second-layer
detectors on one shot of the test set (in milliseconds). Evaluation was performed only
on shots that are annotated with at least one concept.

(I) Using the output of 50 (TRECVID 2011) and
46 (TRECVID 2012) detectors for meta-learning

TRECVID 2011 TRECVID 2012
(a) (b) (c) (d) (e) (f) (g) (h) (i)

mean
Method MAP MP@100 MAP MP@3 MAP MP@100 MAP MP@3 Exec. Time

(Indexing) (Annotation) (Indexing) (Annotation) Training
/Testing

Baseline 0.3391 0.6608 0.6150 0.3697 0.2052 0.3711 0.6006 0.3251 N/A
DMF[2] 0.4068 0.7448 0.6878 0.4226 0.2614 0.4350 0.7610 0.4102 1.33/0.30
BSBRM[4] 0.3744 0.7038 0.6785 0.4174 0.2260 0.3848 0.7499 0.4046 0.39/0.09
CBCFpred[3] 0.3321 0.6146 0.6586 0.4081 0.1675 0.2700 0.6529 0.3582 0.96/0.35
MCF[5] 0.3388 0.6630 0.6122 0.3762 0.2039 0.3654 0.6661 0.3581 24.86/0.32
P-CLR 0.3876 0.7238 0.6876 0.4183 0.1997 0.3335 0.7530 0.4041 3.63/3.85
P-LP 0.3925 0.7404 0.6852 0.4174 0.2667 0.4430 0.7603 0.4074∼ 74.27/63.08
P-PPT 0.3614 0.6334 0.6797 0.4162 0.2443 0.4213 0.7536 0.4048 29.88/0.20
P-MLkNN 0.4727 0.7998 0.6667 0.4073 0.2760 0.4893 0.7487 0.4021 21.41/17.72

(II) Using the output of 346 detectors for meta-learning
TRECVID 2011 TRECVID 2012

(j) (k) (l) (m) (n) (o) (p) (q) (r)
mean

Method MAP MP@100 MAP MP@3 MAP MP@100 MAP MP@3 Exec. Time
(Indexing) (Annotation) (Indexing) (Annotation) Training

/Testing
Baseline 0.3391 0.6608 0.6150 0.3697 0.2052 0.3711 0.6006 0.3251 N/A
DMF[2] 0.4095 0.7480 0.6833 0.4177 0.2611 0.4383 0.7538 0.4075 10.03/0.48
BSBRM[4] 0.4114 0.7472 0.6905 0.4231∼ 0.2778 0.4517 0.7645 0.4111∼ 1.66/0.08
CBCFpred[3] 0.3643 0.6782 0.6713 0.4109 0.2294 0.3854 0.7218 0.3824 12.68/0.28
MCF[5] 0.3440 0.6702 0.5979 0.3667 0.2030 0.3628 0.6717 0.3656 131.68/0.81
P-CLR 0.3310 0.6320 0.6731 0.4111 0.2071 0.3578 0.7508 0.4030 28.76/7.47
P-LP 0.4281 0.7684 0.7001 0.4242 0.2940 0.4761 0.7733 0.4125 390.99/68.26
P-PPT 0.3710 0.6268 0.6879 0.4176 0.2848 0.4663 0.7622 0.4100∼ 144.34/0.23
P-MLkNN 0.4959 0.8078 0.6810 0.4145 0.3182 0.5278 0.7704 0.4111∼ 135.30/115.82

1:(a),(b),(e),(f),(j),(k),(n),(o)) clearly show the effectiveness of the proposed
stacking architecture when combined with ML-kNN. ML-kNN assumes that sim-
ilarity among predictions means semantic similarity and also that the same errors
that are observed in the first layer will be performed to images with similar con-
cepts. While ML-kNN can model any possible correlation in the neighbourhood
of a testing instance, LP and PPT can model only those that have appeared
in the training set. Modelling pairwise correlations can not been considered as
robust, because CLR exhibits moderate to low performance.
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When assessing the performance of detectors in relation to the annotation
problem, P-LP appears more suitable: In the first round of experiments (Table
1:(c),(d),(g),(h)), it performs slightly worse than DMF; in the second round
(Table 1:(l),(m),(p),(q)) it exhibits the best performance. In general, though,
with respect to the annotation problem, there is no clear winner: the performance
differences between methods that model label correlations and BR methods are
often limited (although in most cases statistically significant).

In order to investigate the statistical significance of the differences in MP@k
observed in Table 1, the chi-square test [28] is used together with the fol-
lowing null hypothesis: “there is no significant difference in the total number
of correct shots/concepts that appear in the first k positions between the re-
sults obtained after the application of the best performing method and the
results obtained after the application of another competing approach”. This
test is performed separately for each of the MP@k columns of Table 1 (columns
(b),(d),(f),(h),(k),(m),(o),(q)). Methods that do not have statistically significant
difference (p ≥ 0.05) from the best performing method are indicated with the ∼
symbol.

Regarding the second fold of this work, we observe in Table 1 that good
results in the indexing-based evaluation do not guarantee the same when the
system is assessed with respect to the annotation problem, and vice versa. There
is not any method that reaches top performance for both of these problems. The
differences in the ordering of the tested methods according to their goodness
in the different experiments are striking, thus highlighting the importance of
following both evaluation strategies and reporting results in both these directions
when evaluating general-purpose concept detection methods. In addition to this,
researchers should bear in mind that every top-performing method is shown in
our experiments to be most appropriate for addressing only one of these two
problems. The results presented in this work could be used as a guide in order
for researchers to choose the appropriate method based on the specific task that
they are interested in.

Finally, we take a look at the execution times that each method requires
(Table 1:(i),(r)). One could argue that the proposed architecture that uses multi-
label learning methods requires considerably more time than the typical BR-
stacking one. However, we should note here that extracting one model vector
from one video shot, using the first-layer detectors for 346 concepts requires
approximately 1.33 minutes in our experiments, which is about three orders of
magnitude slower than the slowest of the second-layer methods. As a result of the
high computational complexity of the first layer of the stack, the execution time
differences between all the second-layer methods that are reported in Table 1
can be considered negligible. At this point it would be reasonable to compare the
stacking-based multi-label architecture to the one-layer alternative, i.e., building
a multi-label classifier directly from the low-level visual features of video shots.
However, the high requirements for memory space and computation time that
the latter methods exhibit do not make this comparison practically feasible for
our datasets on typical PCs, as we explain in the following.
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The computational complexity of BR, CLR, LP and PPT when used in a
single-layer architecture depends on the complexity of the base classifier, in our
case the Logistic Regression, and on the parameters of the learning problem.
Let us assume that N concepts need to been detected and m training exam-
ples are available for learning to detect them. In this learning problem the BR
algorithm, which builds N models (one for each concept), is the simplest one.
CLR is the next least complex algorithm, requiring the building of N BR-models
and additionally N ∗ (N − 1)/2 one-against-one models. LP is the most complex
algorithm, since it trains a multi-class model, with the number of classes being
equal to the number of distinct label sets in the training set. PPT works in the
same fashion as the LP with the difference that only a pruned set of distinct
label sets will be used to train the multi-class model. Finally, the training of ML-
kNN is linear with respect to the size of the training set and the length of the
training vectors, but the algorithm needs to make many calculations that involve
the consideration of all k-neighbours of all m training examples. Given that the
training datasets used in this work consist of more than 200.000 training exam-
ples, and each training example (video shot) is represented by a 4000-element
low-level feature vector and is associated with a few tens of concepts (e.g. 46
for TRECVID 2012), according to the above, for the TRECVID 2012 dataset
the BR algorithm would build 46 models, CLR would build 46 BR-models and
1035 one-against-one models, LP and PPT would build a multi-class classifier
of 1544 and 152 (for pruning threshold equal to 30 as reported in section 4.2)
classes, respectively, and finally ML-kNN would compare each training example
with all other (200.000) available examples; in all these cases, the 4000-element
low-level feature vectors would be employed. Taking into consideration the di-
mensionality of these feature vectors all above actions require considerably more
time compared to the BR alternative that we employ as the first layer in our
proposed stacking architecture. In addition to this, the software (MULAN [27])
used in our experiments requires the full training set to be loaded on memory at
once, which again is practically unfeasible without extending the MULAN code,
which is out of the scope of this work. We conclude that the two major obstacles
of using multi-label classification algorithms in a one-layer architecture are the
high memory space and computation time requirements, and this finding further
stresses the merit of our proposed multi-label stacking architecture.

6 Conclusion and Future Work

This paper proposed an alternative way of employing the stacking architecture,
used for concept detection score refinement. Multi-label classification algorithms
that consider label correlations appear to be more suitable for a meta-learning
training, instead of the commonly used Binary Relevance models. This conclu-
sion is supported by a comparative study on two challenging datasets involving
a multitude of diverse concepts. Furthermore, this paper compared concept de-
tection approaches on two different problems, video indexing and annotation.
In relation to this comparison, the message that this work aims to pass is that
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there is not a method able to deal with both these problems in the best possible
way; good performance of video indexing according to each concept separately
is not a good indicator of the suitability of the method for addressing different
problems such as concept-based video annotation. Future directions of work in-
clude improving the speed of some of the second-layer learning methods and also
experimenting with modifications of methods that gave promising results, such
as MLkNN and LP.
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