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ABSTRACT
This paper presents a method for the detection and localiza-
tion of instances of user-specified objects within a video or
a collection of videos. The proposed method is based on
the extraction and matching of SURF descriptors in video
frames and further incorporates a number of improvements
so as to enhance both the detection accuracy and the time ef-
ficiency of the process. Specifically, (a) GPU-based process-
ing is introduced for specific parts of the object re-detection
pipeline, (b) a new video-structure-based sampling technique
is employed for limiting the number of frames that need to
be processed and (c) improved robustness to scale variations
is achieved by generating and employing additional instances
of the object of interest based on the one originally provided
by the user. The experimental results show that the algo-
rithm achieves high levels of detection accuracy while the
overall needed processing time makes the algorithm suitable
for quick instance-based labeling of video and the creation of
object-based spatio-temporal fragments.

Index Terms— Object Re-detection, SURF descriptors,
RANSAC algorithm, Shot Segmentation, GPU processing

1. INTRODUCTION

Object re-detection can be seen as a particular case of image
matching, aiming at finding occurrences of a specific object
within a single video or a collection of videos. For doing so,
an object re-detection algorithm takes as input an image that
depicts the object of interest and evaluates its similarity with
different pieces of the video content. Moreover, if the object
of interest has been annotated with an appropriate label, this
object re-detection procedure could assign this label to the de-
tected re-appearances, thus providing a tool for instance-level
annotation of the video. Based on this, object re-detection
could contribute to the realization of interactive and linked
television, since the identification of object-specific spatio-
temporal fragments in the video and their association with
appropriate labels are important steps for finding related con-
tent fragments and for establishing links between them.

∗This work was supported by the European Commission under contracts
FP7-287911 LinkedTV and FP7-318101 MediaMixer.

2. RELATED WORK

One of the most popular state-of-the-art approaches for es-
timating the similarity between pairs of images is based on
extracting and matching scale- and rotation-invariant local de-
scriptors. Local salient features of the image can be extracted
using edge (e.g. Canny [1]) or corner detectors (e.g. Harris-
Laplace [2]) or even by applying a dense sampling strategy
(i.e. sampling image patches on a regular dense grid). Sub-
sequently local descriptors, like the well-known SIFT [3] and
SURF [4] ones, can be used for the representation of the de-
tected interest-points, while indicatively other approaches in-
clude the BRISK [5] descriptor, an affine-invariant extension
of SIFT, called A-SIFT [6], and binary approaches like the
BRIEF [7] descriptor. Moreover, the development of GPU-
based implementations of these descriptors’ extraction soft-
ware offers a significant boost in time performance. Such im-
plementations for the SIFT and SURF descriptors have been
described for example in [8], [9].

A simple method for matching the descriptors in the fol-
lowing step, is to perform k-nearest neighbor (k-NN) search
for each extracted descriptor in a brute-force manner, while
other techniques accelerate the matching procedure by apply-
ing hashing algorithms such as the Dichotomy Based Hash
(DBH) [10]. After computing the matched pairs of descrip-
tors a refinement step is usually performed aiming to filter-out
the outliers. A common strategy for this purpose is to apply
some ratio test regarding the distances of the calculated near-
est neighbors [3], while a geometric verification between the
matched pair of images can be performed using for example
the RANSAC algorithm [11].

Some researchers have also tried to extend the matching
procedure for detecting and tracking still objects in videos.
In [12] the SURFTrac algorithm was proposed, combining
SURF descriptors and motion information in order to predict
the position of the interest points at the subsequent frame of
the video and thus reducing the search area and the needed
processing time. Another method for automatic object label-
ing was presented in [13], which is based on interest point
tracking and a multiple region matching strategy for propagat-
ing region labels from a single frame to the next ones, while a
similar approach for fast video object-based annotation was
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described in [14]. This method propagates the bounding
box of the object by performing interest-point matching, en-
hanced by a color adaptation scheme and a bounding box re-
positioning algorithm. Alternative approaches for real-time
object detection that are based on a prior fast learning step
have also been proposed. In [15] a database with the ob-
ject’s patches, corresponding to a range of possible camera
viewpoints, is initially created and during the detection the
algorithm matches the incoming interest points of the video
frames against the stored patches, while a similar approach
which combined incremental interest-point matching with an
optical flow tracker and a RANSAC pose estimator is pre-
sented in [16]. The lack of need for computing descriptors
makes these algorithms fast at run-time. Finally, some ap-
proaches for the detection of specific instances of objects have
been described in methods for instance-based video retrieval
that participated to the Instance Search Task of TRECVID.
An example of these techniques is the algorithm in [17] which
creates a Bag-of-Words (BoW) representation [18] of the ob-
ject of interest, combining a hessian-affine region detector
with a SIFT-variant descriptor, called RootSIFT [19]. Then,
matching between the BoW descriptors is based on a ratio
test and the geometric consistency is tested using a RANSAC-
based algorithm, proposed in [20].

Although these methods exhibit good performance in
terms of detection accuracy, their time-efficiency, as reported
in the corresponding publications, makes them inadequate for
real-time processing of high resolution professional videos
with 25 or 30 fps frame-rate. For this purpose we designed a
fast and accurate technique for object re-detection in videos,
whose needed processing time is several times shorter than
the video’s actual duration. As indicated by the experimen-
tal evaluation, the implemented technique constitutes a fast
and reliable tool for the creation and labeling of object-based
spatio-temporal fragments in videos.

3. BASELINE APPROACH FOR OBJECT
RE-DETECTION

After reviewing the state-of-the-art we developed a baseline
OpenCV implementation that builds on the extraction and
matching of local descriptors. The algorithm takes as input
an image that depicts the object of interest O and a video V
of N frames and detects instances of this object by evaluating
its similarity against all the frames of this video successively.
For each frame of the video an appropriate bounding box is
stored by calculating the coordinates of the upper-left corner
(x, y) and its width and height. When no instance is detected
the stored bounding box is [0 0 0 0]. After processing all
video frames the algorithm performs a temporal filtering on
the overall detection results, aiming to minimize false posi-
tives (i.e. erroneous detections) and false negatives (i.e. erro-
neous misses). This procedure is summarized in Algorithm 1.

Interest-point detection and description are performed us-

Algorithm 1 Baseline object re-detection algorithm.
Notation: O is the manually selected object of interest, V is

the video to be processed containing N frames, Fi is the
i-th frame of the video and ≈ symbolizes the matching
operation.

Input: An image that depicts the selected object of interest
O and a video V of N frames.

Output: A file of N entries where each one of them corre-
sponds to a video frame and contains the coordinates of
the calculated bounding box.

1: for i = 1→ N do
2: Perform O ≈ Fi

3: Store the bounding box
4: end for
5: Perform temporal filtering on the detection results.

ing the SURF algorithm [6], while the following matching
step is implemented in a brute-force manner (i.e. each ex-
tracted descriptor from the object O is matched against all
the extracted descriptors from the i-th frame Fi) looking each
time for the 2 best matches via a k-NN search for k = 2. So,
for each detected interest point of O we search for the 2 best
matches in Fi that correspond to the 2 nearest neighbors N1

and N2. Erroneous matches are then discarded by applying
the following rule: keep an interest point in O and its corre-
sponding best match in Fi if ‖DistN1‖1/|DistN2‖1 ≤ 0.8,
where ‖‖1 is the Manhattan distance between the interest
point in O and each of the calculated nearest neighbor. After
this matching is performed for all points in O, additional out-
liers are filtered-out by estimating the homography between
O and Fi using the RANSAC algorithm [11]. If a sufficient
number of pairs of descriptors remains after this geometric
validation step then the object is said to be detected in Fi

and an appropriate bounding box is calculated, otherwise a
bounding box of the form [0 0 0 0] is stored for this frame.
The work-flow of the baseline implementation for object re-
detection is illustrated in Fig. 1. The final filtering step of
the overall detection results is based on a sliding window of
21 frames and a set of temporal rules that decide on the exis-
tence or absence of the object O in the middle frame of this
window.

4. PROPOSED APPROACH FOR OBJECT
RE-DETECTION

Building on this baseline implementation we tried to improve
performance, both in terms of detection accuracy and time
efficiency, by working on the following three directions: (a)
GPU-based processing, (b) video-structure-based sampling of
video frames and (c) improved robustness to scale variations.
Our work on each of them is described in the following sec-
tions.
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Fig. 1. The overall work-flow of the baseline implementation
for object re-detection.

4.1. GPU-accelerated object re-detection

Some parts of the baseline implementation are accelerated
by exploiting the processing power of the modern Graphic
Processing Units (GPUs). More specifically in this time-
improved version, the GPU is used for: (a) the decomposi-
tion of the video into frames, (b) the feature extraction and
description, using a GPU-based implementation of the SURF
algorithm, (c) the matching of the extracted descriptors, us-
ing a GPU-based version of the Brute-Force matcher with 2-
NN search and (d) for drawing the estimated bounding boxes
on the video frames. These GPU-based processes are real-
ized using code included in version 2.4.3. of the OpenCV
library. The only parts of the algorithm that are still handled
by the CPU are: (a) the filtering of erroneous matches after
the descriptor matching step and (b) the post-processing of
the detection results with temporal filtering. After these mod-
ifications the algorithm exhibited significant reduction of the
processing time, preserving the same levels of detection ac-
curacy.

4.2. Video-structure-based sampling of video frames

Aiming at further reduction of the overall processing time we
designed a new algorithm that realizes an efficient sampling
of the video frames, replacing the sequential processing with
a structure-based one. The improved object re-detection algo-
rithm utilizes the analysis results of automatic shot segmen-
tation (using an algorithm proposed in [21]). So, besides the
object of interest O and the video V, the improved algorithm
reads a matrix S that is the output of the shot segmentation
algorithm, where Si,j , j = 1, ...5 are the information on the
i-th shot. Specifically, Si,1 and Si,2 are the shot boundaries,
i.e. the index of the starting and ending frames of the shot
and Si,3, Si,4, Si,5 are the indices of three representative key-
frames of this shot.

The re-detection procedure is accelerated since the new
algorithm initially tries to match the object O with the 5
frames of the i-th shot that are identified in matrix S (i.e.

Si,j , j = 1, ...5), and only if matching is successful, it pro-
ceeds with comparing O against all frames of that shot. It then
continues with the key-frames of the next shot, until all shots
have been checked. By applying this sampling strategy the
algorithm analyses in full only the parts (i.e. the shots) of the
video where the object appears (being visible in at least one
of the key-frames of these shots) and quickly rejects all re-
maining parts by performing a small number of comparisons.
The updated algorithm is described in Algorithm 2.

Algorithm 2 Object re-detection with efficient sampling of
video frames.
Notation: Further to the notation used in Alg 1, Si,j are the

elements of the matrix S with the boundaries and the key-
frames of each shot and M is the number of shots.

Input: Same as for Alg. 1, plus the matrix S.
Output: Same as for Alg. 1.

1: for i = 1→M do
2: for j = 1→ 5 do
3: Perform O ≈ FSi,j

4: if success then
5: for k = Si,1 → Si,2 do
6: Perform O ≈ Fk

7: Store the bounding box
8: end for
9: Break

10: end if
11: end for
12: end for
13: Perform temporal filtering on the detection results.

4.3. Robustness to scale variations

The last extension of our algorithm aims to improve the ro-
bustness to scale variations. Major changes in scale of the ob-
ject, which are common in realistic scenarios, may lead to de-
tection failure due to the significant limitation of the area that
is used for matching. E.g. a highly zoomed-in instance of the
object may correspond to a very small portion of the searched
object O, while an instance that is seen from a very distant
viewing position may occupy only a small part of the overall
image. Trying to handle these levels of scale transformation,
we automatically generate a zoomed-out O2 and a zoomed-
in O3 instance of the object O (denoted as O1 from now on)
and we utilize them in the matching procedure. Specifically,
when the object O1 is not matched against a frame or key-
frame of the video, then the algorithm repeats the matching
attempt using firstly the zoomed-out instance O2 and then the
zoomed-in one O3. So, the pipeline of the final version of the
object re-detection method is presented in Algorithm 3.

The construction of the zoomed-in instance O3 was based
on the selection of a center-aligned sub-area of the origi-
nal object O1 and the enlargement to the actual size of O
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Algorithm 3 Object re-detection with efficient sampling of
video frames and robustness to scale variations.
Notation: Further to the notation used in Alg. 2, Ol, l =

1, ...3 are the originally selected object of interest and
the automatically generated zoomed-out and zoomed-in
instances of it respectively.

Input: Same as for Alg. 2.
Output: Same as for Alg. 2.

1: Read O and generate additional instances
2: for i = 1→M do
3: Flag = MISDETECTION
4: for j = 1→ 5 do
5: for l = 1→ 3 do
6: Perform Ol ≈ FSi,j

7: if success then
8: for k = Si,1 → Si,2 do
9: for l = 1→ 3 do

10: Perform Ol ≈ Fk

11: if success then
12: Store a bounding box
13: Break
14: else
15: if l = 3 then
16: Store [0 0 0 0] (no detection)
17: end if
18: end if
19: end for
20: end for
21: Flag = DETECTION
22: Break
23: end if
24: end for
25: if Flag = DETECTION then
26: Break
27: end if
28: end for
29: end for
30: Perform temporal filtering on the detection results.

by applying bilinear interpolation. So, the choice is about
the size of the centralized area of the original object O that
we want to focus on. In our experiments the size of the
selected area was occupying 70% of the actual size of O1,
which corresponds to a 140% zoom-in factor. The construc-
tion of the zoomed-out instance O2 was performed by shrink-
ing the original image O1 into a smaller one using nearest
neighbor interpolation. The zoom-out factor for each selected
object was determined by the restrictions of the GPU-based
implementation of SURF. These restrictions are related to
the number of octaves used for the analysis. Based on the
parameterization of the used SURF descriptor (4 octaves)
the zoom-out factor is calculated according to the formula
F ∗ = max{184/Oh, 184/Ow}, where Oh and Ow is the

Fig. 2. Examples of tested objects, selected from a cultural
heritage show.

height and width of the object O1 respectively.

5. EXPERIMENTS AND RESULTS

For the evaluation of the algorithm’s performance, both in
terms of detection accuracy and time efficiency, we conducted
a set of experiments on a system with an Intel Core i7 pro-
cessor at 3.4GHz, 8GB RAM memory and a CUDA-enabled
NVIDIA GeForce GTX560 graphics card. The used dataset
consists of (a) 6 videos of 273 minutes total duration and
409.087 frames and (b) 30 manually selected objects. The
videos are episodes from a cultural heritage show of the Dutch
public broadcaster AVRO1, called “Antiques Roadshow”, and
the selected objects are objects that appear in these shows like
paintings, cards, plates and teapots, jewelleries and clocks,
small carpets, etc. (see Fig. 2). According to the ground-truth
data (generated via manual annotation of the overall set of
frames) 75.632 frames contain at least one of these objects,
whereas none of the selected objects appears in the remain-
ing 333.455 frames. Regarding the size of these objects, after
initial experiments we concluded that an instance O with an
average size (among the various appearances of this object in
the video) provides the best detection performance, and this
practice was used for the selection of appropriate instances
of the used objects in the experiments, so as to maximize the
detection accuracy of the baseline that we compare with.

Moreover, aiming to quantify the improvement that each
extension of the baseline approach is responsible for, we
tested the following experimental configurations: C1: base-
line implementation, C2: GPU-accelerated implementation,
C3: GPU-accelerated and video-structure-based sampling
implementation and C4: complete proposed approach (GPU-
acceleration, video-structure-based sampling, and robustness

1http://avro.nl/
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to scale variations implemented).
The detection accuracy of the algorithm is described in

terms of Precision, Recall and F-Score. The evaluation was
performed in a per-frame basis considering the 30 selected
objects and counting the number of frames where these were
correctly detected, missed, etc. Time efficiency was evaluated
by expressing the processing time of each configuration as a
factor of real-time processing i.e. comparing these times with
the actual duration of the processed videos (a factor below 1
indicates faster-than-real-time processing). The experimen-
tal results are summarized in Table 1. For the last column
(Time), a range is reported for each configuration, since pro-
cessing times can vary significantly depending on the video
structure and the percentage of frames in which the sought
object appears.

As can be seen all versions of the algorithm exhibited very
good results in terms of detection accuracy, while the last one
(C4) that includes the mechanism for the enhancement of the
algorithm’s robustness to scale transformations achieved the
best results. The algorithm performed considerably well for a
range of different scales and orientations and when the object
was partially visible or partially occluded. Indicative exam-
ples of such cases are presented in Fig. 3.

For further quantifying the impact of the extension pre-
sented in Section 4.3 to the accuracy of object re-detection,
we also run experiments with two specific sets of frames
where the object of interest is observed from a very close
and a very distant viewing position, respectively. So, we se-
lected from the complete dataset a set of 2.940 frames with
highly zoomed-in instances and a set of 4.648 frames with
highly zoomed-out instances, and for each set we performed
the same experiments as before. The results are summarized
in Tables 2 and 3. We can see in these tables that the Re-
call and F-Score values indicate that our complete proposed
approach (C4) clearly outperforms all the previous configura-
tions.

Fig. 3. Object of interest (top row) and in green bounding
boxes the detected appearances of it, after zoom in/out (mid-
dle row) and occlusion-rotation (bottom row).

Table 1. Evaluation results for configurations C1 to C4.
Precision Recall F-Score Time

(x Real-Time)
C1 0.999 0.868 0.929 2.98-5.26
C2 0.999 0.850 0.918 0.35-1.24
C3 0.999 0.849 0.918 0.03-0.13
C4 0.999 0.872 0.931 0.03-0.19

Table 2. Evaluation results for highly zoomed-out instances.
Precision Recall F-Score

C1 0.999 0.856 0.922
C2 0.999 0.856 0.922
C3 1 0.852 0.920
C4 1 0.992 0.996

Table 3. Evaluation results for highly zoomed-in instances.
Precision Recall F-Score

C1 0.999 0.831 0.907
C2 0.999 0.831 0.907
C3 1 0.799 0.888
C4 1 0.914 0.955

The only case where the proposed method failed to de-
tect the object of interest was for extremely high zoom-in and
zoom-out factors. After analysing the experimental results we
concluded that the algorithm can effectively detect the object
for a wide range of scaling factors that vary from roughly 25%
(zoom-out) to 250% (zoom-in) of the actual image size, but
fails for lower and higher values.

Regarding time performance, the development of the
video-structure-based sampling strategy led to a great reduc-
tion of the required processing time. The proposed algorithm
needs about 10% (averaging the values of the last column in
Table 1) of the video’s duration to perform the analysis, while
it preserves the same high levels of detection accuracy with
the previous slower configurations. Comparing the proposed
method with other approaches from the reviewed literature,
we can see that among the fastest existing methods is the one
of [16], which runs at approximately 28 fps, and is therefore
suitable for the real-time processing of videos. However, as
mentioned in Section 2, this algorithm initially performs an
off-line learning step by building a database of image patches,
which significantly increases the overall processing time.

6. CONCLUSIONS

In this paper we presented a method for fast and accurate ob-
ject re-detection in video that is based on the extraction and
matching of local descriptors. Aiming at real-time perfor-
mance we accelerated some parts of the algorithm with GPU-
based processing, and we introduced a new structure-based
sampling technique that limits the number of video frames
that have to processed. Moreover, we improved the detection
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accuracy by enhancing the algorithm’s robustness to scale
variations using two additional automatically constructed in-
stances of the original image in the detection procedure. The
experiments show that the proposed technique can be used as
a reliable tool for fast and accurate detection and labeling of
object-based spatio-temporal fragments in videos.
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