
Incremental Accelerated Kernel Discriminant Analysis
Nikolaos Gkalelis

CERTH-ITI
Thessaloniki, Greece

gkalelis@iti.gr

Vasileios Mezaris
CERTH-ITI

Thessaloniki, Greece
bmezaris@iti.gr

ABSTRACT
In this paper a novel incremental dimensionality reduction (DR)
technique called incremental accelerated kernel discriminant anal-
ysis (IAKDA) is proposed. Consisting of the eigenvalue decom-
position of a relatively small-size matrix and the recursive block
Cholesky factorization of the kernel matrix, a nonlinear DR transfor-
mation is efficiently computed at each incremental step. Moreover,
employing factorization techniques of excellent numerical stability,
IAKDA effectively removes data nonlinearities in the low dimen-
sional subspace. Experimental evaluation on various multimedia
tasks and datasets confirms that the proposed approach combined
with linear support vector machines (LSVMs) offers improved mean
average precision (MAP) and provides an impressive training time
speedup over batch KDA and also over traditional LSVM and kernel
SVM (KSVM).

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; • Theory of computation → Online learning algo-
rithms; •Computingmethodologies→Visual content-based
indexing and retrieval; Dimensionality reduction and mani-
fold learning; Kernel methods;

KEYWORDS
Incremental, kernels, discriminant analysis, dimensionality reduc-
tion, machine learning
ACM Reference Format:
Nikolaos Gkalelis and Vasileios Mezaris. 2017. Incremental Accelerated
Kernel Discriminant Analysis. In Proceedings of MM ’17. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3123266.3123401

1 INTRODUCTION
Kernel discriminant analysis (KDA) is one of the most popular di-
mensionality reduction techniques with important applications,
among others, in multimedia analysis, computer vision and visual-
ization [1, 2, 4, 13, 16, 22, 23, 31, 42]. This method learns a nonlinear
transformation by first applying a nonlinear mapping from the
input space to a new feature space and then solving a generalized
eigenproblem (GEP) defined by the between- and within-scatter

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’17, October 23–27, 2017, Mountain View, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4906-2/17/10. . . $15.00
https://doi.org/10.1145/3123266.3123401

Figure 1: Incremental learning

matrices. Despite its success in many challenging problems, its
difficulty to scale well with the number of training observations
has restricted the widespread use of this technology in today’s Big
Data problems. This limitation is much more intense in incremental
learning problems [37, 53], where new training observations arrive
sequentially one at a time, or in larger groups called chunks, as
shown in Figure 1. For instance, in video event detection applica-
tions [8, 14, 47–49] where usually the videos of the event are scarce
and the event detectors are initially trained using only a few of
them, the use of KDA to learn a new transformation matrix each
time a new positive video example becomes available would have
severe implications in the time-efficiency and usefulness of the
overall approach.

During the past few years, a quite large variety of incremental
linear discriminant analysis (LDA) algorithms have been developed.
For instance, in [37], the between- and within-class scatter matri-
ces are updated and their generalized eigenvalue decomposition
is computed at every incremental step. A sequential DR method
based on a rank-one QR updating algorithm [19] and the adaptive
computation of the desired scatter matrices is presented in [55]. An
extension of the above approach so that it can deal with chunks of
incoming data is provided in [39]. In [56], the projection and total
scatter matrices are updated using a variant of the generalized sin-
gular value decomposition. Assuming centered data, in [28, 54], the
indicator, class-means and projection matrices are updated at each
incremental step using a least-square-based algorithm. In [52], the
above method is extended for real-time streaming applications. In
[9], an adaptive LDA method based on the incremental estimation
of the square root of the inverse covariance matrix is proposed. Due
to the slow convergence of this approach, in [33] a quasi-Newton

https://doi.org/10.1145/3123266.3123401
https://doi.org/10.1145/3123266.3123401

MM ’17, October 23–27, 2017, Mountain View, CA, USA Nikolaos Gkalelis and Vasileios Mezaris

algorithm is applied to accelerate the estimation of the above ma-
trix. In [15, 32], an explicit cost function and the Newton-Raphson
or Gradient Descent algorithms are employed to provide a further
speedup of the method presented in [9]. The sufficient set spanning
approximation is used in [24] for updating the scatter and linear
transformation matrices each time new observations are fetched.
This approach is among the most efficient and accurate incremental
variants of LDA.

The major drawback of the above methods is that they can not be
successfully applied to nonlinear problems. The sequential variant
of spectral regression KDA (SRKDA) presented in [6] is one of the
few nonlinear incremental variants of LDA in the literature. This
method computes a discriminant subspace using the Gram-Schmidt
orthogonalization and spectral regression. However, it requires the
centering of the data in the feature space, which may significantly
increase its computational cost and round-off errors. Moreover,
due to the centering operation, the assumption of SRKDA and its
incremental variant that the kernel matrix is nonsingular is always
violated, breaking down the theoretical development of the method
[31, 38].

In [17, 18], accelerated KDA (AKDA) is presented in order to
overcome the deficiencies of SRKDA and achieve state-of-the-art
training time performance. Specifically, AKDA utilizes a novel ma-
trix factorization and a simultaneous diagonalization framework
to efficiently derive the DR transformation matrix without requir-
ing normalized data. However, despite its efficiency this method
is not appropriate for incremental learning problems. To this end,
incremental AKDA (IAKDA)1 is proposed here that exploits the
framework introduced in [17, 18] to initialize the DR transformation
matrix, and the recursive block Cholesky factorization [19] to up-
date this matrix incrementally. The proposed method offers several
advantages over the incremental approaches described above, more
importantly, it can effectively deal with data nonlinearities and does
not require any data normalization. The experimental evaluation
on various image and video classification datasets [2, 45, 46] shows
that the proposed approach achieves improved accuracy and an im-
pressive speedup over linear and kernel DA, and their incremental
variants. Moreover, as shown by the experimental results, the com-
bination of IAKDA with pre-trained convolutional neural networks
(CNNs) for feature representation provides excellent classification
performance and several orders of magnitude faster training times
in comparison to retraining CNNs at each incremental step. In
summary, the main contributions of this paper are:

• Anovel incremental nonlinear DRmethod is proposed, which
in contrast to the previous approaches deals effectively with
nonlinear learning problems and does not require zero mean
data normalization.

• As demonstrated by the experimental evaluation, the pro-
posed method achieves state-of-the-art training time perfor-
mance and improved detection accuracy in various multime-
dia tasks.

The rest of the paper is structured as follows: The problem for-
mulation is given in Section 2. Section 3 describes the application of
traditional batch KDA in the incremental learning problem, while

1Source code ismade publicy available at https://www.iti.gr/~bmezaris/downloads.html

the proposed IAKDA is presented in Section 4. In Section 5, evalua-
tion results on various datasets are provided. Finally, conclusions
are drawn in Section 6.

2 PROBLEM FORMULATION
In incremental learning, at each time t the overall dataset Xt con-
sists of a previously existing dataset, X̌t = [x̌1, . . . , x̌Ňt

], and a new
dataset X̃t = [x̃1, . . . , x̃Ñt

] containing the observations fetched at
time t , where, x̌κ , x̃κ ∈ RL , L is the dimensionality of the input
space RL , and Ňt , Ñt are the number of observations in X̌t and X̃t ,
respectively. Thus, the total number of observations at time t is
Nt = Ňt + Ñt , and the entire dataset can be represented as

Xt = [X̌t , X̃t]

= [x̌1, . . . , x̌Ňt
, x̃1, . . . , x̃Ñt

]

= [x1, . . . , xNt]. (1)

We assume that the dataset is annotated, that is, each observation
xκ is paired with a label yκ ∈ {1, . . . ,Ct }, where Ct is the number
of classes at time t . The target in incremental DR is to compute the
DR transformation matrix at time t by exploiting the previously
computed quantities at time t − 1, and the new dataset X̃t . This
contrasts batch DR learning where the entire set Xt is used as a
whole ignoring the time information.

3 BATCH KDA
Conventional KDA [4, 31, 42], called hereafter batch KDA, is not
designed for incremental learning problems. That is, for learning
the DR transformation matrix at time t it uses the entire dataset Xt
(1), ignoring any computed quantities at time t − 1. To deal with
nonlinearly-separable classes, the batch KDA utilizes a nonlinear
mapping ϕ(·) from the input space to the so-called feature space
RF of dimensionality F , associated with the Mercer kernel k(·, ·),

ϕ(·) : RL 7→ RF ,

k(·, ·) : RL × RL 7→ R,

so that the inner products in the feature space can be replaced with
kernel function evaluations [21, 30]. Given Xt , it then seeks the
linear transformation Γt ∈ RF×Dt , Dt ≪ F , that maximizes the
following criterion

argmax
Γt

tr((ΓTt Σw,tΓt)†ΓTt Σb,tΓt), (2)

where, tr(A), AT and A† denote trace, transpose and pseudoinverse
of matrix A, respectively. In (2), Σb,t and Σw,t are the between-
and within-class scatter matrices at time t ,

Σb,t =

Ct∑
i=1

Ni,t (µi,t − µt)(µi,t − µt)
T , (3)

Σw,t =

Ct∑
i=1

Nt∑
κ=1

yκ==i

(ϕκ − µi,t)(ϕκ − µi,t)
T , (4)

and ϕκ , Ni,t , µi,t , µt , are the κth observation in RF , the number
of observations and estimated sample mean of class i , and sample
mean of the entire dataset, respectively. The optimization problem

https://www.iti.gr/~bmezaris/downloads.html

Incremental Accelerated Kernel Discriminant Analysis MM ’17, October 23–27, 2017, Mountain View, CA, USA

in (2) is equivalent to finding the nonzero eigenpairs (NZEP) of the
following generalized eigenproblem (GEP)

Σb,tΓt = Σw,tΓtΛt , (5)

where, Γt ’s columns are the eigenvectors of the matrix pencil (Σb,t ,
Σw,t), Λt ∈ RDt×Dt is the diagonal eigenvalue matrix whose diag-
onal elements are sorted in descending order, and Dt = rank(Σb,t).
To avoid working directly in RF , which may be of very high or
infinity dimensionality, the transformation matrix is expressed as
Γt = ΦtΨt , where,

Φt = [ϕ1, . . . ,ϕNt
] ∈ RF×Nt

are the mapped training data, and Ψt ∈ RNt×Dt is the expansion
coefficient matrix. The following GEP is then considered

Sb,tΨt = Sw,tΨtΛt , (6)

which under mild condition [34] is equivalent to the one in (5). That
is, we now need to identify the NZEP (Ψt ,Λt) of the matrix pencil
(Sb,t , Sw,t), where, Sb,t , Sw,t , are the kernel matrices associated
with the between- and within-class variability

Sb,t =

Ct∑
i=1

Ni,t (ηi,t − ηt)(ηi,t − ηt)
T , (7)

Sw,t =

Ct∑
i=1

Nt∑
κ=1

yκ==i

(kκ − ηi,t)(kκ − ηi,t)
T , (8)

ηi,t = Ki,t 1̃Ni,t , ηt = Kt,t 1̃Nt , 1̃Ni,t =
1

Ni,t
1Ni,t , 1̃Nt =

1
Nt

1Nt , 1Ni,t ∈ RNi,t is the all-one vector, Ki,t = ΦT
t Φi,t ,

Φi,t ∈ RF×Ni,t contains the observations of the ith class, kκ =
[k(x1, xκ), . . . ,k(xNt , xκ)]

T is the kernel vector associated with
the κth training observation, and Kt,t is the kernel matrix of the
training observations,

Kt,t = ΦT
t Φt = [k1, . . . , kNt]. (9)

We should note that Σw,t and Sw,t are often replaced by their total
scatter matrix counterparts,

Σm,t =

Nt∑
n=1

(ϕκ − µt)(ϕκ − µt)
T , (10)

Sm,t =

Nt∑
κ=1

(kκ − ηt)(kκ − ηt)
T , (11)

respectively. Typically, the GEP in (6) is solved using techniques
that compute the simultaneous diagonalization of Sb,t and Sw,t (or
Sm,t) [19, 38]. Given the identified linear transformation Ψt , the
projection z ∈ RDt of a test vector x ∈ RL can be then computed
using z = ΓTt ϕ = ΨT

t ΦT
t ϕ = ΨT

t k, where

k = [k(x1, x), . . . ,k(xNt , x)]
T .

We observe that using the batch KDA approach described above,
the various scatter matrices in (7), (8), (or (11)), and the GEP in (6)
need to be computed for each point in time t that a new chunk of
observations is fetched. Taking into account that the computational
cost of KDA at each time period t is approximately 40N 3

t [17, 18],
we can easily conclude that the use of this method in incremental
learning applications is impractical.

4 PROPOSED IAKDA
Given Xt (1) at time t , IAKDA computes the coefficient matrix Vt
satisfying the following simultaneous diagonalization [17, 18]

WT
t Σb,tWt = ICt−1, (12)

WT
t Σw,tWt = 0Ct−1, (13)

WT
t Σm,tWt = ICt−1, (14)

where, 0Ct−1 ∈ RCt−1×Ct−1 is the all-zero matrix, and Wt = ΦtVt .
That is, the computed Wt satisfies the KDA optimization criterion
presented in (2) [17, 18, 31, 38]. IAKDA consists of an initialization
and an incremental updating part, as described in the following
subsections.

4.1 Initialization
The initialization step of IAKDA is based on AKDA [17, 18]. Let
Xt = [x1, . . . , xNt], where t = 1, be the initial dataset fetched
by the learning system. Following AKDA, the respective scatter
matrices Σb,t (3), Σw,t (4) and Σm,t (10), can be factorized as

Σb,t = ΦtCb,tΦT
t ,

Σw,t = ΦtCw,tΦT
t ,

Σm,t = ΦtCm,tΦT
t ,

where,

Cb,t = RtN−1/2
t OtN−1/2

t RTt (15)

Cw,t = INt − RtN−1
t RTt ,

Cm,t = INt −
1
Nt

JNt

nt = [N1,t , . . . ,NCt ,t]
T , (16)

Nt = diag(N1,t , . . . ,NCt ,t), (17)

[Rt]n,i =

{
1 if yκ == i,
0 else, (18)

and, JNt , INt ∈ RNt×Nt are the all-one matrix and identity matri-
ces. Above, nt , Nt are the so-called strength vector and matrix,
[Rt]n,i is the element in the nth row and ith column of the class in-
dicator matrix Rt ∈ RNt×Ct , and N1/2

t = diag(
√
N1,t , . . . ,

√
NCt ,t).

Moreover, in (15), Ot is the so-called core matrix, defined as

Ot = ICt −
n1/2
t nT /2

t

nT /2
t n1/2

t

, (19)

where nT /2
t denotes the transpose of n1/2

t = [
√
N1,t , . . . ,

√
NCt ,t]

T .
Let Θt ∈ RNt×Dt be the matrix defined as follows

Θt = RtN−1/2
t Ξt , (20)

where the columns of Ξt ∈ RCt×Ct−1 are the eigenvectors of Ot
corresponding to its nonzero eigenvalues. As shown in [17, 18],
Θt provides the simultaneous diagonalization of Cb,t , Cw,t and
Cm,t . The expansion coefficient matrix Vt can then be computed
by solving the following linear system

Kt,tVt = Θt . (21)

It can be verified that the respective transformation Wt provides
the desired simultaneous diagonalization presented in (12), (13), (14).

MM ’17, October 23–27, 2017, Mountain View, CA, USA Nikolaos Gkalelis and Vasileios Mezaris

For more details on the above mathematical derivations the inter-
ested reader is refereed to [17, 18]. The kernel matrix Kt,t is always
symmetric positive definite or symmetric positive semidefinite. To
this end, its Cholesky factorization is used to efficiently solve the
linear system in (21). The overall procedure for the initialization of
IAKDA is summarized in Algorithm 1. We should note that based
on AKDA, the initialization step of IAKDA is very efficient offering
an approximately O(N 3

t /3) computational complexity dominated
by the Cholesky factorization of Kt,t [17–19]. More importantly, as
we see in the next subsection, the above framework facilitates the
design of an incremental updating step, offering a further speedup
over batch KDA as well as AKDA.

Algorithm 1 IAKDA: Initialization

Input: X1, k(·, ·)
Output: V1, X1, R1, n1, N1, K1,1, L1
1: Compute the elementary matrices R1 (18), n1 (16), N1 (17)
2: Compute O1 (19) and its eigenvector matrix Ξ1
3: Compute the eigenvector matrix Θ1 (20)
4: Compute K1,1 (9) and its Cholesky factor L1
5: Solve the linear system in (21) to obtain V1

4.2 Incremental updating
As defined in (1), let X̌t = [x̌1, . . . , x̌Ňt

] and X̃t = [x̃1, . . . , x̃Ñt
]

be the existing and new dataset at time t , respectively. Thus, the
overall dataset at time t is formed as follows

Xt = [X̌t , X̃t].

In AKDA the overall dataset Xt is used to obtain Vt as shown
in the initialization step above and described in more detail in
[17, 18]. In contrary, IAKDA computes Vt very efficiently using the
precomputed arrays at t − 1 and the new dataset X̃t , as explained
in the following. The indicator matrix and the strength vector and
matrix can be efficiently updated as follows

Rt = [ŘTt , R̃
T
t]

T , (22)
nt = ňt + ñt , (23)
Nt = Ňt + Ñt , (24)

where, Řt , ňt , Ňt and R̃t , ñt , Ñt are the indicator matrix, strength
vector and strength matrix associated with X̌t and X̃t , respectively.
In case that not all existing classes Čt are represented in X̃t , or
when new classes are introduced in X̃t , the corresponding arrays
in (22), (23) and (24) are padded with zeros accordingly, in order to
allow the execution of the respective matrix operations. Utilizing
the updated nt , the core matrix Ot can be computed using (19)
and subsequently its eigenvector matrix Ξt can be easily retrieved.
Similarly, utilizing the updated Rt , Nt and Ξt , the eigenvector
matrix Θt is obtained using (20). The kernel matrix Kt,t = ΦT

t Φt
can be represented as

Kt,t =

[
Ǩt,t K̆T

t,t
K̆t,t K̃t,t

]
, (25)

where,Φt = [Φ̌t , Φ̃t], Φ̌t , Φ̃t are the feature space representation of
X̌t and X̃t , respectively, Ǩt,t = Φ̌T

t Φ̌t is the existing kernel matrix,

already computed in time t − 1, K̆t,t = Φ̃T
t Φ̌t , and K̃t,t = Φ̃T

t Φ̃t .
Based on the above formulation, the Cholesky factor update is
computed using a block Cholesky framework [19] as explained in
the following. Suppose that the lower triangular Cholesky factor
Lt of Kt,t is expressed in block format as

Lt =
[

L1,t 0̆t
L2,t L3,t

]
, (26)

where, the blocks L1,t ∈ RŇt×Ňt , L2,t ∈ RÑt×Ňt , L3,t ∈ RÑt×Ñt

are lower triangular matrices needed to be identified, and 0̆t is the
Ňt × Ñt all-zero matrix. Using (26), Kt,t can be expressed as

Kt,t = LtLTt =

[
L1,tLT1,t L1,tLT2,t
L2,tLT1,t L2,tLT2,t + L3,tLT3,t

]
. (27)

Equating blocks between (25) and (27) we get

Ǩt,t = L1,tLT1,t , (28)

K̆t,t = L2,tLT1,t , (29)

K̃t,t = L2,tLT2,t + L3,tLT3,t . (30)

From (28) we observe that L1,t is identical to the Cholesky factor
Ľt of Ǩt,t , which has been already computed in the previous time
period

L1,t = Ľt .
The next block of the Cholesky factor can then be easily retrieved
by solving the triangular system in (29) yielding

L2,t = K̆t,t Ľ−Tt ,

where A−T denotes the inverse of any matrix AT . Finally, by the
following reformulation of (30),

K̃t,t − K̆t,t Ǩ−1
t,t K̆T

t,t = L3,tLT3,t ,

we observe that L3,t is the Cholesky factor of K̃t,t − K̆t,t Ǩ−1
t,t K̆T

t,t .
Using the computed Θt and Lt , the linear transformation Vt is then
retrieved by solving the following two triangular linear systems

LtYt = Θt , (31)
LtVt = Yt . (32)

The incremental updating part of IAKDA is depicted in Algorithm
2. In summary, we see that Rt (22), nt (23), Nt (24), Kt,t (25) and
Lt (26) are computed by fully exploiting their respective counter-
parts in the previous period of time, thus, achieving a significant
speedup over the application of KDA or AKDA in the incremen-
tal learning problem. We also observe that in overall IAKDA has
very good numerical properties due to the fact that it consists of a

Algorithm 2 IAKDA: Incremental updating

Input: X̌t , X̃t , Řt , ňt , Ňt , Ǩt,t , Ľt , k(·, ·)
Output: Vt , Xt , Rt , nt , Nt , Kt,t , Lt
1: Update elementary matrices Rt (22), nt (23), Nt (24)
2: Compute Ot (19) and its eigenvector matrix Ξt
3: Compute the eigenvector matrix Θt (20)
4: Update the kernel matrix Kt,t (25)
5: Update the Cholesky factor Lt (26)
6: Solve the two triangular systems in (31), (32) to obtain Vt

Incremental Accelerated Kernel Discriminant Analysis MM ’17, October 23–27, 2017, Mountain View, CA, USA

few elementary matrix operations and very stable decomposition
algorithms.

5 EXPERIMENTAL EVALUATION
The proposed methods are evaluated using various datasets for the
tasks of object, concept and event detection in images and videos,
as described in the next subsections.

5.1 Datasets
For the experimental evaluation the following 7 datasets are used: a)
AwA [25]: provides images matching the 50 animal categories in Os-
herson’s animal/attribute matrix, b) Ayahoo [12]: consists of various
object and concept images collected using the Yahoo! image search
engine, c) Caltech101 [27]: contains images belonging to a wide
variety of categories, such as airplane, chair and crocodile, d) Eth80
[26]: consists of 8 object classes, recorded from 41 different views,
e) Imagenet [10]: this is a large-scale concept detection dataset, f)
Med10 [20, 36]: contains videos belonging to one of 3 real-world
events or to the “rest-of-the-world” event, g) Office [43]: provides
images of various resolution from the Amazon.com and an office en-
vironment captured using a webcam and a digital LSR camera. From
each of the 6 latter datasets 3 images are depicted in Figure 2 (repre-
sentative images from AwA dataset are not shown due to copyright
reasons). In the med10 dataset, videos are represented in the input
space R101376 using the improved dense trajectory features [2, 51].
For the rest of the datasets, the image descriptors corresponding to
the 4096 neurons of DeCAF’s 6-th layer [11] provided in [45, 46]
are used.

5.2 Experimental setup
For the evaluation in the task of event detection, the med10 dataset
is already divided to 1744 training and 1742 testing videos. For the
rest of the datasets, we randomly selected 100 observations from
each class to create a training set, and used the rest of the obser-
vations to form the testing set. Moreover, classes of less than 200
observations were equally divided to training and testing sets. The
resulted partitions for each dataset are shown in Table 1. Further-
more, each training set is divided into 10 equal partitions, where
each partition contains the same number of observations per class.
This is done in order to simulate a streaming application, where at
each period of time a new chunk of observations is received.

During the evaluation, IAKDA is compared with the incremental
LDA (ILDA) presented in [24], and batch versions of LDA, KDA and
the state-of-the-art AKDA [17, 18]. For IAKDA our Matlab imple-
mentation is used. For ILDA the code provided in [24] is utilized, for
LDA and KDA the efficient Matlab functions provided in [5, 6] are
exploited, while for AKDA the respective Matlab implementation
of [17, 18] is used. For their comparison in the various tasks, the DR
methods are further combined with a linear support vector machine

Table 1: Train/test observations per dataset

AwA ayahoo caltech101 eth80 imagenet office
train 4941 988 3539 1680 11762 2075
test 25792 1249 5192 1600 153836 2039

(LSVM) [50], which learns the desired target classes in the discrimi-
nant subspace. The above methods are also compared with batch
versions of LSVM and KSVM directly applied in the input space.
For both LSVM and KSVM the library provided in [7] is exploited.
The Gaussian kernel is utilized for IAKDA, AKDA, KDA and KSVM.
At time period t , the batch LDA, KDA, AKDA, LSVM and KSVM
are trained using the overall set Xt , consisting of the existing set
X̌t and the new set of observations X̃t , as described for the batch
KDA in Section 3. The different approaches are optimized using
3-fold cross-validation (CV), where at each fold the training set is
randomly split to 30% learning set and 70% validation set. During
the CV procedure, the kernel parameter γ of the Gaussian kernel
exp(−γ ∥xκ − xν ∥2) is searched in {0.01, 0.1, 0.6} ∪ {1, 1.5, . . . , 7},
while for the SVM penalty term the following parameter space is
used {0.1, 1, 10, 100}.

The performance of themth method at each dataset and time
period is measured using theMAPmeasure, ϱ̄m = 1

C
∑C
i=1 ϱm,i , and

the training time speedup over KDA, θ̄m = θKDA/θm , where ϱm,i
is the average precision [41] of themth method at the ith class, and
θm is the training time of methodm alongC classes in the dataset. In
our evaluation, for the med10 dataset all theC = 3 event classes are
used. For the rest of the datasets, only the first C = 10 classes from
each one are considered, while the observations belonging to the
rest of the classes are regarded as instances of the rest-of-the-world
class. Moreover, for the training time we consider only the time for
building each classifier with the parameters fixed to the optimal
ones derived using the CV procedure, i.e., the CV time is excluded.
The evaluation was performed using Intel i7 3770K@3.5Ghz CPU,
32 GB RAM workstations with 64-bit Windows 7.

5.3 Results
The evaluation results in terms of MAP and training time speedup
over KDA for each method and along all time periods are shown
in Figures 3, 5 and 6. The MAP and training time speedup for the
1st, 5th and 10th time period (i.e. for the first 10th, half and the
whole training dataset) are recorded in Tables 2 and 3, respectively.

Table 2: MAP rates at t = 1, 5, 10

LDA ILDA LSVM KDA AKDA IAKDA KSVM
AwA – 1 26.3% 26.3% 34.5% 37.6% 39.5% 39.1% 38.2%
AwA – 5 25.6% 23.1% 47.2% 52.4% 56.3% 56.4% 53.7%
AwA – 10 28.8% 27.2% 52.7% 57.4% 63.3% 63.5% 60.4%
ayahoo – 1 67% 66.9% 70.4% 70.7% 71.3% 70.9% 70.7%
ayahoo – 5 71.3% 71.3% 79.6% 79.4% 81.7% 81.6% 81.8%
ayahoo – 10 71.5% 72.1% 84.2% 82.6% 87.1% 87.7% 85.4%
caltech101 – 1 29.2% 28.9% 59.5% 59% 57.5% 58% 57.4%
caltech101 – 5 62.6% 62% 73.3% 76.8% 76.1% 76% 74.6%
caltech101 – 10 60.3% 69.1% 76.2% 80.7% 82.6% 82.7% 78%
eth80 – 1 25.4% 11.9% 68.2% 63.2% 62.7% 62.3% 68.7%
eth80 – 5 76% 79.6% 83.8% 74.9% 85.7% 84.8% 83.6
eth80 – 10 73.2% 83.6% 84.4% 77.8% 87.5% 86.8% 84.3
imagenet – 1 12.6% 13.8% 29.4% 32.1% 37% 36.6% 34.3%
imagenet – 5 12.7% 22.3% 46.6% 55.8% 57.9% 57.6% 51.1%
imagenet – 10 31.7% 31.8% 49.7% 60.3% 63.2% 63.5% 57.2%
med10 – 1 30.7% 30.8% 30.2% 30.5% 30.6% 29.8% 29.8%
med10 – 5 52% 52% 51.9% 48.5% 51.9% 51.9% 50.1%
med10 – 10 56.4% 55.9% 56.2% 54.8% 57.6% 57.6% 54.2%
office – 1 60.1% 60.3% 59.9% 57.1% 64.4% 63.3% 6.34%
office – 5 69.9% 66% 74.9% 69.9% 79% 78.9% 77.4%
office – 10 66.2% 76% 80.5% 74.9% 85.3% 85.5% 83.2%

MM ’17, October 23–27, 2017, Mountain View, CA, USA Nikolaos Gkalelis and Vasileios Mezaris

Figure 2: Images from 6 datasets used in the evaluation

Figure 3: MAP and speedup rates on med10

Finally, the speedup diagrams depicting the speedup achieved from
IAKDA over AKDA along all time periods in the different datasets
are provided in Figure 4. From the obtained results we conclude the
following:

i) In the majority of the datasets and time periods, IAKDA and
AKDA provide the best performance in terms of MAP. For example,
in the two larger datasets, AwA and imagenet, at the 10th time
period, IAKDA attains a MAP gain over the third best approach of
more than 3%. This is due to the very good numerical properties
of both methods, which in comparison to the other DR methods,

Figure 4: Speedup of IAKDA over AKDA in seven datasets

Table 3: Speedup rates at t = 1, 5, 10

LDA ILDA LSVM KDA AKDA IAKDA KSVM
AwA – 1 2.1 1 0.3 1 4.3 4.1 0.05
AwA – 5 5.4 2 1.4 1 21.8 32.3 0.2
AwA – 10 9.9 7 3.2 1 44.1 94.6 0.4
ayahoo – 1 1.2 1 0.3 1 1.4 1.4 0.2
ayahoo – 5 2.7 1.4 0.2 1 5.4 6 0.09
ayahoo – 10 2.8 1.4 0.3 1 7.6 11.8 0.1
caltech101 – 1 1.9 0.9 0.3 1 1.9 2.2 0.1
caltech101 – 5 5.1 1.9 1.8 1 16.6 23.1 0.6
caltech101 – 10 6.3 4.1 4.7 1 33.7 68.6 1.5
eth80 – 1 1.8 0.8 0.5 1 0.8 1 0.3
eth80 – 5 3.2 1.6 1.2 1 7.6 8.8 0.8
eth80 – 10 4.9 4.3 2.7 1 16.4 29 2
imagenet – 1 3.3 1.3 0.9 1 10.2 10.3 0.1
imagenet – 5 59.3 5.3 5.8 1 47.6 78.5 0.4
imagenet – 10 310.6 41.1 13.4 1 81.8 195.3 0.8
med10 – 1 0.7 0.4 0.04 1 1.1 1.1 0.02
med10 – 5 0.7 0.4 0.02 1 1.4 1.8 0.01
med10 – 10 0.8 0.6 0.03 1 2 4.3 0.01
office – 1 1.5 0.8 0.3 1 2.4 2 0.2
office – 5 3.5 1.7 0.8 1 10.4 12 0.5
office – 10 5.9 2.9 1.9 1 22.2 40.9 1.3

consist of few elementary matrix operations and very stable decom-
position algorithms.

ii) In AwA, ayahoo, imagenet, and to a smaller extent in cal-
tech101, we observe that the kernel DR methods (KDA, AKDA and

Incremental Accelerated Kernel Discriminant Analysis MM ’17, October 23–27, 2017, Mountain View, CA, USA

Figure 5: MAP and speedup rates on AwA, ayahoo and imagenet

IAKDA) as well as the LSVM and KSVM applied directly in the input
space, achieve a large MAP gain over the linear DR approaches
(LDA, ILDA). This shows that the classification tasks in the above
datasets are nonlinear, and, thus, the linear DR approaches fail to
discover an adequate linear discriminant subspace. The same is
true for the office and eth80 datasets, however, with the difference
that now KDA underperforms as well. We observe that in this case
the number of observations is relatively low, and therefore the
small sample size problem is quite intense. In consequence, the
KDA scatter matrices are severely ill-posed, which explains the
poor performance of this approach in these two datasets. Finally,
in the med10 we observe that all methods have quite similar MAP
performance. To this end, we conclude that the use of improved
dense trajectories has effectively removed nonlinearities in this
dataset.

iii) We observe that IAKDA and AKDA attain the best and second
best training time performance in the majority of the datasets.

Specifically, only LDA in the imagenet dataset provides a better
performance after the 7th incremental step, which is expected due
to the fact that for large-scale datasets (i.e. when N >> L) such as
this one, LDA has a O(L3) complexity.

iv) An impressive training time speedup of IAKDA over the
batch KDA is attained in all datasets. For instance, IAKDA is ap-
proximately 195, 95 and 69 times faster than KDA in the imagenet,
AwA and caltech101 datasets, respectively. As shown in the various
figures, this speedup is the aggregation of the speedup offered by
the base method (AKDA) plus the additional speedup achieved by
the proposed incremental variant (IAKDA).

v) As shown in Figure 4, a linear speedup of IAKDA over its
base method, AKDA, is attained. For instance, in the majority of
the datasets at the 10th incremental step, IAKDA is already 2 times
faster than AKDA. Considering the impressive training time effi-
ciency of the base AKDA method [17, 18], this is a considerable
further improvement. Moreover, we observe that this improvement

MM ’17, October 23–27, 2017, Mountain View, CA, USA Nikolaos Gkalelis and Vasileios Mezaris

Figure 6: MAP and speedup rates on calthech101, office and eth80

is achieved without sacrificing the detection performance at any of
the datasets.

vi) In comparison to deep learning, the proposed approach, i.e.
the combination of IAKDAwith pre-trained CNNs, is several orders
of magnitude faster and it can be applied more efficiently to incre-
mental learning problems. For instance, in our internal evaluations
the computation of the initialization step for learning the TRECVID
SIN 2013 concepts [3] required a few minutes, versus several hours
for fine-tuning the pre-trained GoogleNet [44]. Moreover, prelimi-
nary results have shown that using the weights of pre-trained CNNs
together with KDA-class algorithms for feature representation and
LSVMs for classification outperforms the use of CNNs in the tasks
of event and concept detection [1, 29].

Finally, we should note that the most intensive parts of IAKDA
can be parallelized using appropriate computing architectures, as
for instance is shown in [1, 2, 19], providing even greater training
time efficiency.

6 CONCLUSIONS
In this paper, IAKDA was proposed that exploits the simultaneous
diagonalization framework presented in [17, 18] and a variant of
the block recursive Cholesky factorization to devise an incremental
learning algorithm for dimensionality reduction. The experimen-
tal evaluation on various image/video datasets demonstrated the
effectiveness of IAKDA in both learning time and classification
accuracy. Future work includes the investigation of techniques for
the efficient simultaneous optimization of IAKDA and CNNs [35]
and the use of appropriate fine-tuning approaches, similarly to [40],
to further improve performance.

ACKNOWLEDGMENTS
This work was supported by the EU’s Horizon 2020 research and in-
novation programme under grant agreement H2020-732665 EMMA.

Incremental Accelerated Kernel Discriminant Analysis MM ’17, October 23–27, 2017, Mountain View, CA, USA

REFERENCES
[1] S. Arestis-Chartampilas, N. Gkalelis, and V. Mezaris. 2015. GPU accelerated

generalised subclass discriminant analysis for event and concept detection in
video. In Proc. ACM MM. Brisbane, Australia, 1219–1222.

[2] S. Arestis-Chartampilas, N. Gkalelis, and V. Mezaris. 2016. AKSDA-MSVM: A
GPU-accelerated multiclass learning framework for multimedia. In Proc. ACM
MM. Amsterdam, The Netherlands, 461–465.

[3] G. Awad, C. G. M. Snoek, A. F. Smeaton, and Georges Quénot. 2016. TRECVid
semantic indexing of video: A 6-year retrospective. ITE Transactions on Media
Technology and Applications 4, 3 (2016), 187–208.

[4] G. Baudat and F. Anouar. 2000. Generalized discriminant analysis using a kernel
approach. Neural Comput. 12, 10 (October 2000), 2385–2404.

[5] D. Cai, X. He, and J. Han. 2008. SRDA: An efficient algorithm for large-scale
discriminant analysis. IEEE Trans. on Knowl. and Data Eng. 20, 1 (January 2008),
1–12.

[6] D. Cai, X. He, and J. Han. 2011. Speed up kernel discriminant analysis. The VLDB
Journal 20, 1 (February 2011), 21–33.

[7] C.-C. Chang and C.-J. Lin. 2011. LIBSVM: A library for support vector machines.
ACM Trans. Intell. Syst. Technol. 2, 3 (2011), 27:1–27:27.

[8] X. Chang, Y. Yang, A. G. Hauptmann, E. P. Xing, et al. 2015. Semantic concept
discovery for large-scale zero-shot event detection. In Proc. Int. Conf. on Artificial
Intelligence. Buenos Aires, Argentina, 2234–2240.

[9] C. Chatterjee and V. P. Roychowdhury. 1997. On self-organizing algorithms and
networks for class-separability features. IEEE Trans. Neural Networks. 8, 3 (May
1997), 663–678.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, et al. 2009. ImageNet: A large-scale hierar-
chical image database. In Proc. IEEE CVPR. Miami, Florida, USA, 248–255.

[11] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, et al. 2014. DeCAF: A deep convolutional
activation feature for generic visual recognition. In Proc. ACM ICML. Beijing,
China, 647–655.

[12] A. Farhadi, I. Endres, D. Hoiem, and D. A. Forsyth. 2009. Describing objects by
their attributes. In Proc. IEEE CVPR. Miami, Florida, USA, 1778–1785.

[13] K. Fukunaga. 1990. Introduction to statistical pattern recognition (2nd ed.). Aca-
demic Press Professional, Inc., San Diego, CA, USA.

[14] D. Galanopoulos, F. Markatopoulou, V. Mezaris, and I. Patras. 2017. Concept
Language Models and Event-based Concept Number Selection for Zero-example
Event Detection. In Proc. ACM ICMR. Bucharest, Romania, 397–401.

[15] Y. A. Ghassabeh, F. Rudzicz, and H. A. Moghaddam. 2015. Fast incremental LDA
feature extraction. Pattern Recognit. 48, 6 (June 2015), 1999–2012.

[16] N. Gkalelis and V. Mezaris. 2014. Video event detection using generalized subclass
discriminant analysis and linear support vector machines. In Proc. ACM ICMR.
Glasgow, UK, 25:25–25:32.

[17] N. Gkalelis and V. Mezaris. 2015. Accelerated nonlinear discriminant analysis.
arXiv preprint arXiv:1504.07000 (2015).

[18] N. Gkalelis and V. Mezaris. [n. d.]. Accelerated kernel discriminant analysis. IEEE
Trans. Pattern Anal. Mach. Intell. ([n. d.]), under review.

[19] G. H. Golub and C. F. van Loan. 2013. Matrix computations (4th ed.). The Johns
Hopkins University Press, Baltimore, MD, USA.

[20] A. Habibian, K. E. A. van de Sande, and C. G. M. Snoek. 2013. Recommendations
for video event recognition using concept vocabularies. In Proc. ACM ICMR.
Dallas, Texas, USA, 89–96.

[21] T. Hofmann, B. Schölkopf, and A. J. Smola. 2008. Kernel methods in machine
learning. Annals of Statistics 36, 3 (2008), 1171–1220.

[22] Z. Huang, H. T. Shen, J. Shao, S. Rüger, et al. 2008. Locality condensation: A
new dimensionality reduction method for image retrieval. In Proc. ACM MM.
Vancouver, British Columbia, Canada, 219–228.

[23] S. Ji and J. Ye. 2008. Generalized linear discriminant analysis: A unified framework
and efficient model selection. IEEE Trans. Neural Netw. 19, 10 (October 2008),
1768–1782.

[24] T.-K. Kim, S.-F. Wong, B. Stenger, J. Kittler, et al. 2007. Incremental linear dis-
criminant analysis using sufficient spanning set approximations. In Proc. IEEE
CVPR. Minneapolis, Minnesota, USA.

[25] C. H. Lampert, H. Nickisch, and S. Harmeling. 2009. Learning to detect unseen
object classes by between-class attribute transfer. In Proc. IEEE CVPR. 951–958.

[26] B. Leibe and B. Schiele. 2003. Analyzing appearance and contour based methods
for object categorization. In Proc. IEEE CVPR, Vol. 2. Madison, WI, USA, 409–415.

[27] F.-F. Li, R. Fergus, and P. Perona. 2006. One-shot learning of object categories.
IEEE Trans. Pattern Anal. Mach. Intell. 65, 4 (April 2006), 594–611.

[28] L.-P. Liu, Y. Jiang, and Z.-H. Zhou. 2009. Least square incremental linear dis-
criminant analysis. In Proc. IEEE Int. Conf. on Data Mining. Miami, Florida, USA,

298–306.
[29] F. Markatopoulou, A. Ioannidou, C. Tzelepis, T. Mironidis, et al. 2015. ITI-CERTH

participation to TRECVID 2015. In Proc. TRECVID. Gaithersburg, MD, USA.
[30] J. Mercer. 1909. Functions of positive and negative type, and their connection

with the theory of integral equations. Philos. Trans. Roy. Soc., London 209 (1909),
415–446.

[31] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, et al. 2000. Invariant feature extraction
and classification in kernel spaces. In Proc. NIPS. Denver, CO, USA, 526–532.

[32] H. A. Moghaddam and M. Matinfar. 2007. Fast adaptive LDA using quasi-Newton
algorithm. Pattern Recognit. Letters 28, 5 (January 2007), 613–621.

[33] H. A. Moghaddam, M. Matinfar, S. M. S. Sadough, and K. A. Zadeh. 2005. Al-
gorithms and networks for accelerated convergence of adaptive LDA. Pattern
Recognit. 38, 4 (April 2005), 473–483.

[34] K.R. Muller, S. Mika, G. Ratsch, S. Tsuda, et al. 2001. An Introduction to Kernel-
Based learning Algorithms. IEEE Trans. Neural Netw. 12, 2 (March 2001), 181–202.

[35] K. Ota, M. S. Dao, V. Mezaris, and F. G. B. De Natale. 2017. Deep learning for
mobile multimedia: A survey. ACM Trans. Multimedia Comput. Commun. Appl.
13, 3s (June 2017), 34:1–34:22.

[36] P. Over, G. Awad, J. G. Fiscus, B. Antonishek, et al. 2010. TRECVID 2010 - an
overview of the goals, tasks, data, evaluation mechanisms, and metrics. In Proc.
TRECVID. Gaithersburg, MD, USA.

[37] S. Pang, S. Ozawa, and N. Kasabov. 2005. Incremental linear discriminant analysis
for classification of data streams. IEEE Trans. Systems, Man, and Cybernetics, Part
B 35, 5 (September 2005), 905–914.

[38] C. H. Park and H. Park. 2005. Nonlinear discriminant analysis using kernel
functions and the generalized singular value decomposition. SIAM J. Matrix
Analysis Applications 27, 1 (2005), 87–102.

[39] Y. Peng, S. Pang, G. Chen, A. Sarrafzadeh, et al. 2013. Chunk incremental IDR/QR
LDA learning. In Proc. Int. Joint Conf. on Neural Networks. Dallas, TX, USA, 1–8.

[40] N. Pittaras, F. Markatopoulou, V. Mezaris, and I. Patras. 2017. Comparison of
fine-tuning and extension strategies for deep convolutional neural networks. In
Proc. Multimedia Modeling, Vol. 10132. Reykjavik, Iceland, 102–114.

[41] S. Robertson. 2016. A new interpretation of average precision. In Proc. Int.
ACM SIGIR Conf. Research and Development in Information Retrieval. Singapore,
Singapore, 689–690.

[42] V. Roth and V. Steinhage. 1999. Nonlinear discriminant analysis using kernel
functions. In Proc. NIPS. Denver, Colorado, USA, 568–574.

[43] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. 2010. Adapting visual category
models to new domains. In Proc. ECCV. Heraklion, Crete, Greece, 213–226.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, et al. 2015. Going deeper with convolutions.
In Proc. IEEE CVPR. Boston, MA, USA, 1–9.

[45] T. Tommasi, N. Patricia, B. Caputo, and T. Tuytelaars. 2015. A deeper look
at dataset bias. In Proc. German Conf. on Pattern Recognit. Aachen, Germany,
504–516.

[46] T. Tommasi and T. Tuytelaars. 2014. A testbed for cross-dataset analysis. In Proc.
ECCV Workshops. Zurich, Switzerland, 18–31.

[47] C. Tzelepis, D. Galanopoulos, V. Mezaris, and I. Patras. 2016. Learning to detect
video events from zero or very few video examples. Image Vision Comput. 53
(2016), 35–44.

[48] C. Tzelepis, N. Gkalelis, V. Mezaris, and I. Kompatsiaris. 2013. Improving event
detection using related videos and relevance degree support vector machines. In
Proc. ACM MM. Barcelona, Spain, 673–676.

[49] C. Tzelepis, Z. Ma, V. Mezaris, B. Ionescu, et al. 2016. Event-based media pro-
cessing and analysis: A survey of the literature. Image Vision Comput. 53 (2016),
3–19.

[50] V. Vapnik. 1998. Statistical learning theory. New York: Willey.
[51] H. Wang and C. Schmid. 2013. Action recognition with improved trajectories. In

Proc. IEEE ICCV. Sydney, Australia, 3551–3558.
[52] Q. Wang and L. Zhang. 2012. Least squares online linear discriminant analysis.

Expert Syst. Appl. 39, 1 (January 2012), 1510–1517.
[53] T. Xiao, J. Zhang, K. Yang, Y. Peng, et al. 2014. Error-driven incremental learning

in deep convolutional neural network for large-scale image classification. In Proc.
ACM MM. Orlando, Florida, USA, 177–186.

[54] J. Ye. 2007. Least squares linear discriminant analysis. In Proc. ACM ICML. Corvalis,
Oregon, USA, 1087–1093.

[55] J. Ye, Q. Li, H. Xiong, H. Park, et al. 2004. IDR/QR: An incremental dimen-
sion reduction algorithm via QR decomposition. In Proc. ACM SIGKDD. Seattle,
Washington, USA, 364–373.

[56] H. Zhao and P. C. Yuen. 2008. Incremental linear discriminant analysis for
face recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 38, 1 (January 2008), 210–221.

	Abstract
	1 Introduction
	2 Problem formulation
	3 Batch KDA
	4 Proposed IAKDA
	4.1 Initialization
	4.2 Incremental updating

	5 Experimental evaluation
	5.1 Datasets
	5.2 Experimental setup
	5.3 Results

	6 Conclusions
	Acknowledgments
	References

