
AKSDA-MSVM: A GPU-accelerated Multiclass Learning
Framework for Multimedia

Stavros
Arestis-Chartampilas

CERTH-ITI
Thermi 57001, Greece

stav_ares@iti.gr

Nikolaos Gkalelis
CERTH-ITI

Thermi 57001, Greece
gkalelis@iti.gr

Vasileios Mezaris
CERTH-ITI

Thermi 57001, Greece
bmezaris@iti.gr

ABSTRACT
In this paper, a combined nonlinear dimensionality re-
duction and multiclass classification framework is pro-
posed. Specifically, a novel discriminant analysis (DA) tech-
nique, called accelerated kernel subclass discriminant analy-
sis (AKSDA), derives a discriminant subspace, and a linear
multiclass support vector machine (MSVM) computes a set
of separating hyperplanes in the derived subspace. More-
over, within this framework an approach for accelerating the
computation of multiple Gram matrices and an associated
late fusion scheme are presented. Experimental evaluation
in five multimedia datasets, on tasks such as video event
detection and news document classification, shows that the
proposed framework achieves excellent results in terms of
both training time and generalization performance.

Keywords
Discriminant analysis; GPU; multiclass classification; SVM

1. INTRODUCTION
In high-dimensional machine learning problems such as

multimedia classification, the curse-of-dimensionality be-
comes a major challenge: the complexity of the pattern
recognition model grows exponentially with the dimension-
ality of the space [8, 25]. A key observation for solving
the curse-of-dimensionality problem is that most physical
processes observed in some high-dimensional ambient space
adhere to another, low-dimensional manifold. Hence, the
curse-of-dimensionality can be alleviated by first identifying
and then operating in this “intrinsic” low-dimensional space.
Based on this fact, a major research direction is the inves-
tigation of frameworks that combine manifold learning with
classification approaches [3, 29, 12, 15, 22, 19].

Kernel discriminant analysis (KDA) is a powerful class of
manifold learning techniques (e.g. KFD [20], GDA [2]) that
combined with linear (or piece-wise linear) classifiers have
provided very good results in very challenging tasks. More-
over, further performance improvements have been achieved

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15-19, 2016, Amsterdam, Netherlands
c© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2967263

by subclass extensions of conventional KDA approaches,
which by imposing a less strict requirement for the feature
mapping are able to identify a more discriminant subspace
(e.g. KSDA [28], KMSDA [13]). In the resulting subspace,
it is then possible to use lower-capacity classifiers, such as
linear SVMs (LSVMs), improving the generalization perfor-
mance of the overall system [25].

Despite the above advances, the application of subclass-
based KDA approaches to large-scale problems remains com-
putationally challenging. The core of this limitation lies in
the computation of the Gram matrix and the solution of
the generalized eigenvalue problem. Recently, accelerated
generalised subclass discriminant analysis (AGSDA) and its
GPU implementation have been proposed, alleviating the
above drawbacks and achieving state-of-the-art results in a
variety of problems [1]. For example, its combination with
LSVM (AGSDA-LSVM) has resulted in increased precision
and orders of magnitude faster training times over LSVM
and KSVM [1] in the problems of concept and event de-
tection in video. Furthermore, earlier approaches such as
SRKDA [4] and GSDA [10] (upon which AGSDA was based)
were previously already shown to provide improved perfor-
mance over many other KDA approaches.

The AGSDA-LSVM described above resolves many prob-
lems of subclass-based KDA approaches, but still suffers
from the following limitations: i) it has been developed
only for two-class problems and zero-mean datasets, ii) the
GPU acceleration of AGSDA-LSVM has been proposed only
in conjunction with the Gaussian RBF kernel. To this
end, in this paper we propose AKSDA-MSVM that extends
AGSDA-LSVM for multiclass classification, and datasets
that are not necessarily normalized to have zero mean.
Moreover, by carefully reformulating the Gram matrices of
three popular kernels, we show how they can be simul-
taneously computed, exploiting both GPU and multi-core
CPU acceleration. The experimental evaluation of AKSDA-
MSVM on several large-scale datasets for both multimedia
classification and retrieval tasks shows that the proposed
approach achieves excellent performance in terms of both
training time and generalization accuracy. Summarizing,
the main contributions of this paper are:

• To the best of our knowledge, this is the first work that
combines nonlinear discriminant analysis with multi-
class support vector machines for multimedia classifi-
cation.

• A method for the parallel computation of multiple
Gram matrices is proposed, exploiting GPU and multi-
core CPU acceleration.

http://www.certh.gr/root.en.aspx
mailto:stav_ares@iti.gr
http://www.certh.gr/root.en.aspx
mailto:Gkalelis@iti.gr
http://www.certh.gr/root.en.aspx
mailto:Bmezaris@iti.gr
http://dx.doi.org/10.1145/2964284.2967263

• The proposed approach achieves very good perfor-
mance in terms of training time and generalization
performance. Moreover, its software implementation
is made freely available to the scientific community1.

The rest of the paper is structured as follows: In Section
2, the proposed AKSDA-MSVM approach is described. Ex-
perimental results are presented in Section 3, while Section
4 concludes the paper.

2. AKSDA-MSVM

2.1 AKSDA
Let X = {(xn, (ωn, υn)), n = 1, . . . , N} be a subclass par-

tition of an annotated training set, where xn ∈ RL is the
n-th training observation in the L-dimensional input space,
ωn ∈ {1, . . . ,Ω}, υn ∈ {1, . . . ,Υωn} are its class and sub-
class labels, Υωn is the number of subclasses of class ωn,
and Ω, N are the total number of classes and observations
respectively. The partitioning of classes to subclasses can
be performed fully automatically (in our experiments this is
done using k-means). Moreover, the training set is ordered
in ascending order according to the class and subclass labels
(i.e., ωn ≤ ωn+1, and within a given class it is υn ≤ υn+1).
Given X , AKSDA solves the generalized eigenvalue problem:

KcAKcΨc = KcBKcΨcΛc, (1)

where, Kc, [Kc]r,q = kc(xr,xq) is the Gram matrix of
the training set associated with a Mercer kernel function
kc(·, ·) : RL × RL → R, A is the between-subclass factor
matrix, whose element [A]r,q corresponding to samples xr,
xq is defined as

[A]r,q =


P̂ (ωr,υr)(1−P̂ (ωr))

N2
ωr,υr

, if (ωr, υr) = (ωq, υq),

0 if ωq = ωr, υq 6= υr,

− P̂ (ωr,υr)P̂ (ωq,υq)

Nωr,υrNωq,υq
, otherwise,

Nωr , P̂ (ωr), Nωr,υr , P̂ (ωr, υr) are the number of observa-
tions and estimated prior probabilities of class ωr and sub-
class (ωr, υr) respectively, B = I − 1

N
J is the total factor

matrix, I and J are N × N identity and all-ones matrices,
Ψc ∈ RN×D is the column-orthogonal eigenvector matrix,
Λc ∈ RD×D is the diagonal matrix with sorted eigenval-
ues in its diagonal, D = Υ − 1 is the dimensionality of the
projection subspace2, and Υ is the total number of sub-
classes. Following [11], the above problem can be solved in
two steps: a) identifying the eigenpairs (V, ∆), V ∈ RN×D,
∆ ∈ RD×D of A, b) obtaining Ψc by solving the following
linear matrix system

KcΨc = V. (2)

The eigenvector matrix V in the first step of AKSDA can
be efficiently computed following [11]. The projection z of
an observation x in the discriminant subspace can then be
computed as z = ΨT

c [kc(x1,x), . . . , kc(xN ,x)]T .

1Software: http://mklab.iti.gr/project/aksda
2Kc may be semidefinite positive matrix and in this case
D ≤ Υ − 1. However, we assume that Kc is positive defi-
nite, which can be easily accomplished through regulariza-
tion [11].

2.2 GPU-accelerated computation of multiple
Gram matrices

One of the most computationally expensive parts of
AKSDA (and of most kernel-based approaches) in terms of
both memory consumption and learning time is the calcula-
tion of the Gram matrix Kc. In [1], a tiled general matrix
multiplication (GEMM) approach was proposed for the effi-
cient computation of the Gram matrix with Gaussian RBF
kernel. Inspired from [1], we propose a method for accel-
erating the computation of multiple Gram matrices. For
illustration purposes, we examine the application of the pro-
posed method in accelerating the computation of the Gram
matrices associated with the Gaussian RBF, t-student and
Cauchy kernels

k1(xr,xq) = exp(−γ‖xr − xq‖2),

k2(xr,xq) = (1 + ‖xr − xq‖d)−1,

k3(xr,xq) = (1 + ‖xr − xq‖2/σ)−1, (3)

where exp() is the exponential function, and γ, d, σ are the
respective kernel parameters. Rearranging the above we get

k1(xr,xq) = exp(−γurq), k2(xr,xq) = sgmd/2(urq),

k3(xr,xq) = sgm1(urq/σ),

where sgmι(υ) = (1+υι)−1 is a sigmoid scalar function, and
urq = ‖xr − xq‖2. Considering exp(), sgmι() as element-
wise matrix operators, the respective Gram matrices can be
expressed as

K1 = exp(−γD), K2 = sgmd/2(D), K3 = sgm1(D/σ).
(4)

The most computationally expensive part above is the com-
putation of matrix D, defined as D = XTX + E, where X
is the training data matrix, E = F + C, C = FT , and the
elements of F are defined as [F]rq = xTr xr, ∀ r, q. As shown
in [1], D can be easily partitioned to an arbitrary number
of tiles, which can be computed in parallel by exploiting
the GEMM function of CUDA’s cuBLAS library. Further-
more, the element-wise matrix operations in (4) can also be
parallelized by exploiting a multi-core CPU. Note that by
appropriately formulating other kernel functions (e.g. the
Inverse Multi-quadric kernel3) an arbitrary number of dif-
ferent Gram matrices can be parallelized.

2.3 Classification
Let Z = {Zc, c = 1, . . . , C} be a training dataset of C

subsets, where each subset Zc = {(zn,c, ωn), n = 1, . . . , N},
zn,c = ΨT

c [kc(x1,xn), . . . , kc(xN ,xn)]T ∈ RD is derived
from X using AKSDA and a specified kernel function kc(·, ·).
Given the above dataset, we define a linear model for each
class and kernel function

fi,c(zn,c) = wT
i,czn,c, (5)

where wi,c ∈ RD is the weight vector referring to i-th class
and c-th kernel function4. For the identification of the
weight vectors we utilize the linear MSVM approach [16,
6]. That is, the following optimization problem is solved

3More details in http://crsouza.blogspot.com/2010/03/
kernel-functions-for-machine-learning.html
4Note that a bias term is not included in (5). However, this
can be easily solved by using augmented weight vectors or
appropriate kernel functions as explained in [6].

http://mklab.iti.gr/project/aksda
 http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html
 http://crsouza.blogspot.com/2010/03/kernel-functions-for-machine-learning.html

using the respective training subset Zc

min
wi,c,ξn,c

1

2

Ω∑
i=1

wT
i,cwi,c +R

N∑
n=1

ξn,c,

subject to the constraints

(wωn,c −wi,c)
T zn,c ≥ ei,n − ξn,c, ∀i, n

where, ξn,c ≥ 0 is the slack variable corresponding to zn,c,
R > 0 is the penalty term, ei,n = 1−δi,n, and δi,n is the class
indicator function, i.e., δi,n = 1 if ωn = i, δi,n = 0 otherwise.
Given the learned models in (5) a test observation xt can be
then classified according to the following rule

ωt = arg max
i=1,...,Ω

(fi,c(zt,c)),

where zt,c = ΨT
c [kc(x1,xt), . . . , kc(xN ,xt)]

T . However, the
above rule does not combine the different kernel modalities.
To this end, following [18] the parameters α, β of the sigmoid
function below are estimated in order to be able to map class
similarities to posterior class probabilities

P̂c(i|xn) =
1

1 + exp(αfi,c(zn,c) + β)
.

Then, assuming equiprobable priors for each class, the sum
rule [17] can be applied to yield the overall posterior proba-
bility for the i-th class

Ṗ (i|xt) =

C∑
c=1

P̂c(i|xt),

and the following rule is used for classifying test observations

ωt = arg max
i=1,...,Ω

(Ṗ (i|xt)). (6)

3. EXPERIMENTAL RESULTS

3.1 Compared methods
We experimentally compare the following methods:
i) MSVM-1: Multiclass LSVM implementation of libsvm

[5]. We use the Matlab version (compiled again in our eval-
uation workstation, so that all cores of the machine are ex-
ploited5). Matlab makes use of Intel’s state-of-the-art nu-
merical libraries, which speed up this method significantly.

ii) MSVM-2: Same as MSVM-1, with multiclass KSVM
instead of multiclass LSVM.

iii) MSVM-3: Multiclass LSVM implementation of liblin-
ear (out-of-the-box Matlab multi-core version) [7], which is
among the fastest MSVM implementations.

iv) AKSDA-MSVM-1: The proposed method, using only
the Gaussian RBF kernel. The liblinear MSVM [7] is em-
ployed for learning the separating hyperplanes.

v) AKSDA-MSVM-2: Same as AKSDA-MSVM-1, but
with four kernels. Specifically, the Gaussian RBF, T-
Student, Cauchy and Inverse Multi-quadric.

3.2 Datasets
One TRECVID, two UCI6 (Amazon, YouTube) and two

libsvm7 (News20, Sector) datasets are used for the evalua-
tion of the proposed method, described in the following:
5As advised in http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
faq.html#f8032
6http://archive.ics.uci.edu/ml
7https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

i) MED12: This is an annotated subset of the TRECVID
MED 2012 video corpus, where each video is represented in
R101376 using improved dense trajectories [1, 14, 21, 26]. It
consists of 25 target events and 13249 videos. The overall
set is divided to 8824 training and 4425 evaluation videos.

ii) Amazon: It consists of 1500 reviews posted by 50
Amazon customers. Each review is represented by a 10000-
dimensional vector. A random partition to 1200 training
and 300 test observations is used.

iii) YouTube: It consists of 30 video game classes and up
to 13 feature types per observation. We only use the audio
MFCC features (2000-dimensional), and a subset of 20000
observations from the overall training set. For evaluation,
the entire test set of 17177 instances is employed.

iv) News20: A collection of approximately 20000 news
documents from 20 different newsgroups, used for text clas-
sification. A partition of 15935 training and 3993 test ob-
servations in R62061 is provided, already scaled. It is a very
sparse dataset with approximately 0.13% non-zero elements.

v) Sector: A collection of 9619 corporate web pages orga-
nized into 105 categories based on each company’s commer-
cial activity. The scaled version of the dataset, partitioned
to 6412 training and 3207 test observations in R55197, is used.
It is very sparse, with only 0.3% non-zero elements.

3.3 Experimental setup
For all tested methods, model selection is done using 3-fold

cross-validation, where at each fold the training set is split to
30% learning set and 70% validation set. For both AKSDA-
MSVM (-1 & -2) and the KSVM of libsvm (MSVM-2), the
kernel and SVM penalty parameters are searched in {0.5,
1, 1.5, . . . , 10} and {0.1, 1, 10, 100}, respectively. For the
penalty term of the LSVMs a broader set of candidate values
is used according to relevant literature, i.e., {0.01, 0.03, 0.1,
0.3, 1, 3, 10} for the News20 and Sector, and {0.1, 1, 10,
100} for the YouTube and Amazon datasets. Moreover, class
balancing is applied to each SVM classifier using a weight
(N−Ni)/Ni, where Ni, N are the number of observations in
i-th class and the total number of observations, respectively.
The PC used for the evaluation is an Intel i7 3770K@3.5Ghz
with 32 GB RAM, Windows 7, and a low-end Nvidia GPU
(GTX 650). The experiments with AKSDA-MSVM were
also repeated on a high-end GPU (GTX TITAN).

Figure 1: Training time along different parts of
AKSDA-MSVM-1 on GTX TITAN

0

2

4

6

8

10

12

14

16

Partitioning Gram matrix Linear System Projection SVM

T
im

e
 (

se
c)

Sector News20 Amazon YouTube MED12

3.4 Results
The retrieval evaluation results in terms of mean average

precision (MAP) and the respective times on GTX 650 are

http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f8032
http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f8032
http://archive.ics.uci.edu/ml
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Table 1: Performance evaluation on YouTube
Method MAP Train/Test(minutes)

MSVM-1 [5] 38.94% 81.14/7.3
MSVM-2 [5] 49.14% 118.7/7.58
MSVM-3 [7] 28.14% 0.78/0.018
AKSDA-MSVM-1 49.28% 0.57/0.087
AKSDA-MSVM-2 51.6% 2.45/0.337

Table 2: Performance evaluation on MED12
Method MAP Train/Test(minutes)

AGSDA-LSVM [1] 41.20% 23.4/18.6
LSVM (from [1]) 38.73% 75.5/2
AKSDA-MSVM-1 41.20% 0.85/0.66
AKSDA-MSVM-2 41.87% 1.01/0.80

Table 3: Performance evaluation on three datasets
(CCR %, Train/Test time in minutes)

Method Amazon News20 Sector

MSVM-1 [5] 66% 84.52% 91.89%
0.65/0.020 3.1/0.16 2.12/0.18

MSVM-2 [5] 66.33% 84.62% 91.64%
0.657/0.020 4.8/0.18 2.14/0.19

MSVM-3 [7] 72.3% 84.59% 93.73%
0.08/0.001 0.71/0.04 4.75/0.03

AKSDA- 77.33% 86.3% 94.17%
MSVM-1 0.008/0.002 1.51/0.49 0.31/0.15

AKSDA- 79.3% 86.6% 94.44%
MSVM-2 0.023/0.003 2.48/0.58 0.65/0.16

Table 4: Performance evaluation on GTX TITAN
(Train/Test time in minutes)

Dataset AKSDA-MSVM-1 AKSDA-MSVM-2

Amazon 0.008/ 0.001 0.011/0.0016
News20 0.36/0.073 0.79/0.1
Sector 0.12/0.03 0.45/0.045
YouTube 0.27/0.05 0.93/0.2
MED12 0.18/0.09 0.3/0.11

Figure 2: Scalability analysis of AKSDA-MSVM-1
along different datasets and GPU cards. Training
times on GTX 650 (top value) and GTX TITAN
(bottom value) are reported, in minutes.

0.31
0.12

1.51
0.36

0.008
0.008 0.57

0.27

0.85
0.18

0

2

4

6

8

10

12

0 0.5 1 1.5 2 2.5

Fe
at

u
re

 d
im

e
n

si
o

n
a

lit
y

(L
)

· 104

Number of training samples (N)

· 104

Sector News20 Amazon YouTube MED12

shown for the YouTube and MED12 video datasets, in Ta-
bles 1 and 2. It should be noted that due to higher RAM size
requirements, MSVM-1 to -3 could not run for the MED12
dataset. The classification results in terms of correct classi-

fication rate (CCR) and the respective times (on GTX 650)
for the Amazon, News20 and Sector datasets, are presented
in Table 3. The training and test times of AKSDA-MSVM-1
& -2 on GTX TITAN, for all datasets, are shown in Table
4. Finally, the distribution of the training time of AKSDA-
MSVM-1 along its individual components for each dataset,
and the overall training time on GTX 650 and GTX TI-
TAN, are shown in Figures 1 and 2, respectively. From the
obtained results we observe the following:

i) AKSDA-MSVM-2, followed by AKSDA-MSVM-1,
achieve the best generalization performance in all datasets.

ii) In terms of training time (even on GTX 650), AKSDA-
MSVM-1 outperforms the state-of-the-art liblinear SVM im-
plementation (MSVM-3) in three out of four datasets, while
AKSDA-MSVM-2 (despite the computation of four Gram
matrices) is still much faster than the MSVMs of libsvm
(MSVM-1 & -2) in all datasets (Tables 1 & 3). Moreover,
an impressive training time speedup (more than one order
of magnitude) of the proposed method over the GPU accel-
erated AGSDA-LSVM [1] is observed in the MED12 dataset
(Table 2). This is mainly due to the fact that AKSDA-
MSVM solves one large eigenproblem (which is done ef-
ficiently using the proposed GPU-accelerated framework)
to obtain a transformation matrix Ψc common for all (Ω)
classes (see Sections 2.1, 2.2), while AGSDA-LSVM com-
putes the GPU-accelerated solution of Ω eigenproblems to
obtain one transformation matrix for each class. Finally,
as expected, further improvement in training/test times is
observed with the high-end GTX TITAN GPU (Table 4).

iii) From the analysis in Figure 1 we observe that the
subclass partitioning, Gram matrix computation and linear
system solver are the most intensive parts of the proposed
method. Moreover, we can see that the linear system solver
and the Gram matrix computation are mostly affected by
the number of training observations and the feature vector
dimensionality, respectively.

iv) In Figure 2, it is shown that in terms of training time
the proposed method scales very well both with the number
of training observations N and with feature dimensionality
L. Specifically, considering the training times required for
Sector and News20 when using GTX TITAN (thus over-
looking any hardware limitations of the GTX 650), we see
that for a similar feature vector size, doubling the number
of training samples results in a ×3 increase in training time,
instead of the expected ×8 increase of conventional KDA
(due to its O(N3) complexity). Additionally, comparing the
results for Sector and MED12, we see that despite a +100%
increase in feature vector size and +50% increase in number
of samples, the training time increases only by +50%.

4. CONCLUSIONS
A GPU-accelerated multiclass learning framework was

presented providing very good performance in several
multimedia-centered machine learning tasks. Future work
directions include the extension of the proposed framework
for multiple kernel learning [27, 9, 23] and the combination
of AKSDA and MSVM in a single optimization problem [24].

5. ACKNOWLEDGEMENTS
This work was supported by the EU’s FP7 and Hori-

zon 2020 research and innovation programmes under grant
agreements FP7-600826 ForgetIT and H2020-687786 InVID.

6. REFERENCES
[1] S. Arestis-Chartampilas, N. Gkalelis, and V. Mezaris.

GPU accelerated generalised subclass discriminant
analysis for event and concept detection in video. In
Proc. ACM Multimedia, pages 1219–1222, Brisbane,
Australia, 2015.

[2] G. Baudat and F. Anouar. Generalized discriminant
analysis using a kernel approach. Neural Comput.,
12(10):2385–2404, Oct. 2000.

[3] P. N. Belhumeur, J. P. Hespanha, and D. J.
Kriegman. Eigenfaces vs. Fisherfaces: Recognition
using class specific linear projection. IEEE Trans.
Pattern Anal. Mach. Intell., 19(7):711–720, Jul. 1997.

[4] D. Cai, X. He, and J. Han. Speed up kernel
discriminant analysis. VLDB J., 20(1):21–33, Mar.
2011.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Trans. on Intelligent
Systems and Technology, 2:27:1–27:27, 2011.

[6] K. Crammer and Y. Singer. On the algorithmic
implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res., 2:265–292, Mar. 2002.

[7] R.-E. Fan, K.-W. Chang, C.-J. Hsieh et al.
LIBLINEAR: A library for large linear classification.
J. Mach. Learn. Res., 9:1871–1874, 2008.

[8] K. Fukunaga. Introduction to statistical pattern
recognition (2nd ed.). Academic Press Professional,
Inc., San Diego, CA, USA, 1990.

[9] M. G. Genton. Classes of kernels for machine learning:
A statistics perspective. J. Mach. Learn. Res.,
2:299–312, Mar. 2002.

[10] N. Gkalelis and V. Mezaris. Video event detection
using generalized subclass discriminant analysis and
linear support vector machines. In Proc. ACM ICMR,
pages 25:25–25:32, Glasgow, UK, 2014.

[11] N. Gkalelis and V. Mezaris. Accelerated nonlinear
discriminant analysis. arXiv preprint
arXiv:1504.07000, 2015.

[12] N. Gkalelis, V. Mezaris, and I. Kompatsiaris. Mixture
subclass discriminant analysis. IEEE Signal Process.
Lett., 15(5):319–332, May 2011.

[13] N. Gkalelis, V. Mezaris, I. Kompatsiaris, and
T. Stathaki. Mixture subclass discriminant analysis
link to restricted gaussian model and other
generalizations. IEEE Trans. Neural Netw. Learn.
Syst., 24(1):8–21, Jan 2013.

[14] A. Habibian et al. Recommendations for video event
recognition using concept vocabularies. In Proc. ACM
ICMR, pages 89–96, Dallas, Texas, USA, 2013.

[15] T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel
methods in machine learning. Ann. Statist.,
36(3):1171–1220, 2008.

[16] S. S. Keerthi, S. Sundararajan et al. A sequential dual
method for large scale multi-class linear SVMs. In
Proc. 14th ACM SIGKDD, pages 408–416, Las Vegas,
USA, Aug. 2008.

[17] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas. On
combining classifiers. IEEE Trans. Pattern Anal.
Mach. Intell., 20(3):226–239, Mar. 1998.

[18] H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on
platt’s probabilistic outputs for support vector
machines. Mach. Learn., 68(3):267–276, oct 2007.

[19] Y. Liu, Y. Liu, S. Zhong, and K. C. Chan.
Semi-supervised manifold ordinal regression for image
ranking. In Proc. ACM Multimedia, pages 1393–1396,
2011.

[20] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and
K. R. Mullers. Fisher discriminant analysis with
kernels. In Neural Networks for Signal Processing IX,
1999. Proc. of the 1999 IEEE Signal Processing
Society Workshop, pages 41–48, 1999.

[21] P. Over, G. Awad et al. TRECVID 2012 - an
introduction to the goals, tasks, data, evaluation
mechanisms and metrics. In Proc. TRECVID 2012
Workshop, Gaithersburg, MD, USA, Nov. 2013.

[22] F. Radenović, H. Jégou, and O. Chum. Multiple
measurements and joint dimensionality reduction for
large scale image search with short vectors. In Proc.
ACM ICMR, pages 587–590, Shanghai, China, 2015.

[23] S. Sonnenburg, G. Rätsch, C. Schäfer, and
B. Schölkopf. Large scale multiple kernel learning. J.
Mach. Learn. Res., 7:1531–1565, Dec. 2006.

[24] A. Tefas, C. Kotropoulos, and I. Pitas. Using support
vector machines to enhance the performance of elastic
graph matching for frontal face authentication. IEEE
Trans. Pattern Anal. Mach. Intell., 23(7):735–746,
Jul. 2001.

[25] V. Vapnik. Statistical learning theory. New York:
Willey, 1998.

[26] H. Wang and C. Schmid. Action recognition with
improved trajectories. In Proc. IEEE Int. Conf. on
Computer Vision (ICCV), pages 3551–3558, Sydney,
Australia, Dec. 2013.

[27] J. Ye, S. Ji, and J. Chen. Multi-class discriminant
kernel learning via convex programming. J. Mach.
Learn. Res., 9:719–758, Jun. 2008.

[28] D. You, O. C. Hamsici, and A. M. Martinez. Kernel
optimization in discriminant analysis. IEEE Trans.
Pattern Anal. Mach. Intell., 33(3):631–638, Mar. 2008.

[29] M. Zhu and A. M. Martinez. Subclass discriminant
analysis. IEEE Trans. Pattern Anal. Mach. Intell.,
28(8):1274–1286, Aug. 2006.

	Introduction
	AKSDA-MSVM
	AKSDA
	GPU-accelerated computation of multiple Gram matrices
	Classification

	Experimental results
	Compared methods
	Datasets
	Experimental setup
	Results

	Conclusions
	Acknowledgements
	References

