
GPU Accelerated Generalised Subclass Discriminant
Analysis for Event and Concept Detection in Video

Stavros
Arestis-Chartampilas

CERTH-ITI
Thermi 57001, Greece

stav_ares@iti.gr

Nikolaos Gkalelis
CERTH-ITI

Thermi 57001, Greece
gkalelis@iti.gr

Vasileios Mezaris
CERTH-ITI

Thermi 57001, Greece
bmezaris@iti.gr

ABSTRACT
In this paper a discriminant analysis (DA) technique
called accelerated generalised subclass discriminant analy-
sis (AGSDA) and its GPU implementation are presented.
This method identifies a discriminant subspace of the input
space in three steps: a) Gram matrix computation, b) eigen-
value decomposition of the between subclass factor matrix,
and c) computation of the solution of a linear matrix sys-
tem with symmetric positive semidefinite (SPSD) matrix of
coefficients. Based on the fact that the computationally in-
tensive parts of AGSDA, i.e. Gram matrix computation and
identification of the SPSD linear matrix system solution, are
highly parallelisable, a GPU implementation of AGSDA is
proposed. Experimental results on large-scale datasets of
TRECVID for event and concept detection show that our
GPU-AGSDA method combined with LSVM outperforms
LSVM alone in training time, memory consumption, and
detection accuracy.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.2.10 [Artificial Intelligence]: Vi-
sion and Scene Understanding

Keywords
GPU; discriminant analysis; nonlinear; large-scale data.

1. INTRODUCTION
Nonlinear discriminant analysis (NDA) approaches [6],

which aim at identifying a discriminant subspace of the orig-
inal high-dimensional input space, and GPU implementa-
tions of computationally intensive algorithms, are recently
getting increasing attention in large-scale video analysis
problems [1, 2, 7, 11]. For instance, generalised subclass
discriminant analysis (GSDA) combined with linear sup-
port vector machines (LSVMs) achieved excellent perfor-
mance in multimedia event detection [7], while in [1, 2] GPU
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accelerated machine learning algorithms are presented, ob-
taining substantial speedups. Motivated by the above de-
velopments, a new DA method, called accelerated GSDA
(AGSDA), and its GPU implementation are presented. The
proposed GPU-AGSDA is evaluated on large-scale video
datasets of TRECVID for the tasks of event and concept
detection, providing promising performance.

The rest of the paper is structured as follows. In Sections 2
and 3, AGSDA and its GPU implementation are presented,
respectively. Experimental results are reported in Section 4,
and Section 5 presents conclusions and future work.

2. ACCELERATED GSDA
Subclass NDA techniques combined with linear classifiers

have resulted in improved classification accuracy as well as
lower storage requirements. The major drawback of these
approaches is the computational cost for learning the DA
transformation matrix. Recent approaches, such as GSDA
[7], have decreased the training times significantly; however,
further improvements are still necessary to deal with large-
scale problems. In this section, exploiting the NDA frame-
work proposed in [8], AGSDA is presented, achieving signif-
icant speedups in training time.

Let X = [x1, . . . ,xN ] = [X1,1, . . . ,XΩ,HΩ ] ∈ RL×N be a
subclass partition of an annotated training set of N observa-
tions xr, r = 1, ..., N, in the input space RL, where Ω is the
number of classes, Hi is the number of subclasses of class i,

Xi,j = [x1
i,j , . . . ,x

Ni,j

i,j ] is the subblock matrix containing the
observations of the j-th subclass of class i, and xni,j , Ni,j are
the n-th observation and the number of observations of (i, j)
subclass, respectively. Such a subclass partitioning can be
easily created using an appropriate clustering algorithm, e.g.
k-means. In order to deal with nonlinearly separable prob-
lems, a vector-valued function φ(·) : RL → RF , φ = φ(x)
may be used to map the partitioned training set X from the
input space RL to a higher- or infinite-dimensional space RF ,
where Φ = [φ1, . . . ,φN ]. It is also required that φ(·) is as-
sociated with a Mercer kernel evaluation function such that
φ>r φq = k(xr,xq) = krq. Assuming that in space RF the
data have zero mean, AGSDA seeks the column-orthogonal
eigenvector matrix Γ ∈ RN×D solving the following gener-
alised eigenvalue problem (GEP) [7]

KAKΓ = KKΓ∆, (1)

K = Φ>Φ, (2)

where K is the Gram matrix of the training set, ∆ ∈ RD×D
is the diagonal eigenvalue matrix with the real eigenvalues
of the GEP in (1) along its diagonal (D � F ). A ∈ RN×N
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is the between subclass factor matrix, whose element Ar,q

corresponding to samples xr ∈ Xi,j , xq ∈ Xk,l is defined as

Ar,q =


pi,j(1− pi)/(Ni,jNi,j), if (i, j) = (k, l),

0 if i = k, j 6= l,

−pi,jpk,l/(Ni,jNk,l), otherwise,

where pi, pi,j are the estimated priors of the i-th class
and (i, j) subclass respectively. Utilising the framework
proposed in [8], the above problem may be solved in the
following two steps: a) identifying the eigenpairs (V,Λ),
V ∈ RN×D, Λ ∈ RD×D of A, b) Obtaining Γ by solving
the following linear matrix system

KΓ = V. (3)

The eigenvector matrix V in the first step of AGSDA can
be efficiently computed following [8].

3. GPU ACCELERATION OF AGSDA
The most computationally intensive parts of AGSDA

training are the computation of the Gram matrix (2) and
the solution of the linear matrix system (3). The above
computations are highly parallelisable. To this end, we em-
ploy GPU hardware to accelerate these parts, achieving a
significant overall speedup, as explained below.

3.1 Gram Matrix Computation
The naive computation of the training Gram matrix (e.g.

see (4) below for Gaussian RBF kernel) for large-scale data
problems is associated with high memory and computational
time requirements. To alleviate these, a tiled general matrix
multiplication (GEMM) algorithm is used in this work, ex-
ploiting the GEMM function of CUDA cuBLAS library and
the concurrency capabilities of recent GPU architectures. In
order to gain insight into our implementation, we provide an
example of computing the Gram matrix using the Gaussian
RBF kernel

krq = k(xr,xq) = exp(−‖xr − xq‖2/2σ2), (4)

where krq is the element of K at the r-th row and q-th col-
umn. Directly evaluating (4) for each pair of training obser-
vations is very costly due to many additions/subtractions,
which do not fully exploit the potential GPU parallelism,
and are additionally more susceptible to precision loss. Fur-
thermore, no function is included in CUDA 7.0 toolkit that
can directly perform this operation.

In matrix form, the Gram matrix can be computed as

K = exp(D), D = − (B + C− 2X>X)

2σ2
, (5)

where C = B>with the elements of matrix B defined as
brq = x>r xr, ∀ r, q, and B,C ∈ RN×N . Utilising the matrix
form, D can be computed in the GPU with a GEMM call
as follows

D = αX>X + βE,

where E = B + C, α = 1
σ2 , β = −1

2σ2 . Using the GEMM
function, a large parallelisation with a respective speedup
is achieved. However, GPU memory size is still the main
restriction of this formulation.

To overcome the above limitation as well, a tiled GEMM
was implemented, where the involved matrices are appropri-
ately partitioned. For demonstration purposes we consider

a 1× 2 partition for the data matrix

X = [X1,X2], (6)

where X1 = [x1, . . . ,xN′ ], X2 = [xN′+1, . . . ,xN ] ∈ RL×N
′
,

N = 2N ′(and without loss of generality assuming that N is
even). The overall problem is then formulated as[

D11 D12

D21 D22

]
= α

[
X>1 X1 X>1 X2

X>2 X1 X>2 X2

]
+ β

[
E11 E12

E21 E22

]
.

Using the above fomulation and noting that D12 = D>21,
matrix D can be computed utilising three GEMM function
calls as follows:

D11 = αX>1 X1 + βE11, (7)

D21 = αX>2 X1 + βE21, (8)

D22 = αX>2 X2 + βE22. (9)

The matrices involved in the above tiled GEMM function
calls are considerably smaller in size compared to the full
matrices in (5), thus alleviating the memory problem.

A further speedup can be achieved by exploiting the tiled
GEMM procedure and properly pipelining GPU computa-
tions and CPU
GPU memory transactions (where 
 de-
notes a concurrent transaction), as shown in Fig. 1. In
this figure, HD# and DH# denote Host-To-Device and
Device-To-Host memory transactions respectively, K# de-
notes GPU computations, while CPU# denotes CPU com-
putations. For instance, in our example, HD1 refers to the
memory transactions to pass matrices X1 and E11 in the
GPU RAM, K1 denotes the GEMM function (7), DH1 is
the copying of the resulting matrix D11 back to CPU RAM
and CPU1 denotes the calculation of K11 by exponentiating
D11 according to the first part of (5). Using this notation
for (7)-(9), and performing the pipelining described in Fig.
1, a 3–way concurrency is achieved in this example (and
up to 4–way concurrency can be achieved in case of finer
partitioning of the data matrix (6)).

We should also note that a formulation similar to the
one described in this section can be used for computing the
test-data kernel matrix, when applying the trained AGSDA
method.

Figure 1: CPU
GPU concurrency.

3.2 Computation of Linear Matrix System
Solution

Based on the fact that the Gram matrix is symmetric
positive semi-definite (SPSD), the Cholesky factorisation is
utilised to solve the linear matrix system in (3) for Γ

KΓ = V⇒ LL>Γ = V⇒
LΨ = V,

L>Γ = Ψ,
(10)

where L ∈ RN×N is a lower triangular matrix, and Ψ ∈
RN×D is an unknown intermediate matrix. The built-in
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dense linear solvers of CUDA 7.0 toolkit, namely cuSolver,
are used. Specifically, the functions cusolverDn<t>potrf()

and cusolverDn<t>potrs() are utilised to perform the
Cholesky factorisation and the subsequent solution of the
two linear matrix systems in (10) for Ψ and Γ respectively.

4. EXPERIMENTAL EVALUATION
In this section, GPU-AGSDA is evaluated in two different

Nvidia graphic cards. Moreover, its performance is com-
pared with the Matlab implementation of AGSDA and the
C++ liblinear implementation of LSVM.

4.1 Datasets and Features
Three datasets are used for the experimental evaluation;

specifically, we utilise subsets of the MED 2012 and SIN
2013 video corpora for event and concept detection:

MED-HBB : For event detection we used the publicly
available partitioning of MED 2012 provided by the authors
of [9]. It utilises a subset of the MED 2012 video corpus,
comprising 25 target events and 13274 videos, and is divided
to a training and evaluation set of 8824 and 4425 videos, re-
spectively. We used improved dense trajectories (DT) to
represent each video with a feature vector in R101376.

SIN13 : For concept detection in video shots, 38 concepts
of the SIN 2013 dataset are utilized. Two feature extraction
procedures are used for representing the videos of the SIN
dataset, as explained below:

a) SIN13-LOCAL: SIFT, SURF and ORB descriptors are
applied to extract local features at keyframe-level. One
keyframe per shot is used. The extracted features are en-
coded using VLAD, and compressed by utilizing a modifica-
tion of the random projection matrix technique to provide
a feature vector in R4000 for each keyframe [10].

b) SIN13-CNN : ConvNet network (CNN) features are em-
ployed for shot representation. Particularly, a 16-layer net-
work [12] pre-trained using the 2009 ImageNet dataset [4]
is employed. In our case, the last layer is utilized as out-
put, providing a 1000-element vector representation for each
keyframe. Again, one keyframe per shot is used.

4.2 Detection Approaches
We evaluated four different detection approaches. Specif-

ically: GPU-AGSDA combined with LSVM running on two
different Nvidia graphic cards, namely the low-end GeForce
GTX 650 and the high-end Tesla K40; the Matlab imple-
mentation of AGSDA combined with LSVM; and the LSVM
implementation of the C++ liblinear library [5]. In our
AGSDA-based algorithms, the LSVM is implemented using
the C++ libsvm library [3]. For convenience, we provide
the following naming convention concerning the different al-
gorithms, implementations and graphic cards used in the
experiments:

a) AGSDA-1: GPU-AGSDA with LSVM, on GTX 650.
b) AGSDA-2: GPU-AGSDA with LSVM, on Tesla K40.
c) AGSDA-3: the Matlab version of AGSDA with LSVM.
d) LSVM: C++ liblinear implementation of LSVM, oper-

ating directly in the input space.
For all experiments we used Intel i7 3770K @3.5GHz,

32GB RAM machines with Win7 x64 OS. One set of pa-
rameters (Gaussian RBF parameter σ, LSVM parameter C)
was estimated for each dataset using a grid search on a 3-fold
cross-validation procedure, and the same parameter values
were used for training all the detectors of the same detec-

tion approach. Moreover, the subclass parameters were set
to H1 = 2,H2 ∈ [1, 2], where H1,H2 refer to the number of
subclasses for the target and rest-of-world classes, respec-
tively.

4.3 Results
The detection results in terms of MXinfAP [13] for con-

cept detection in SIN13-LOCAL and SIN13-CNN, and mean
average precision (MAP) for event detection in MED-HBB
for all approaches are shown in Fig. 2. In the same figure,
the overall training and testing times along all concepts or
events are reported. In Fig. 3 the distribution of the overall
training and testing times of AGSDA-2 along its individual
parts is shown. We observe the following:

� As shown in Fig. 2, the detection performance be-
tween our Matlab (AGSDA-3) and GPU implementation
(AGSDA-1,-2) is equivalent. In addition, a 1.4% to 2.5%
improvement of AGSDA+LSVM over LSVM is achieved.
Overall, AGSDA-LSVM provides better detection results
than LSVM for 30 out of 38 concepts in SIN13-CNN.

� Concerning training time, as shown in Fig. 2, GPU-
AGSDA running on Tesla K40 (AGSDA-2) offers a signif-
icant speedup over both the LSVM of liblinear (which is
a state-of-the-art LSVM implementation in terms of train-
ing time) and our Matlab implementation (AGSDA-3).
Similarly, GPU-AGSDA running on GTX 650 (AGSDA-1)
outperforms (MED-HBB, SIN13-CNN) or performs equiv-
alently (SIN13-LOCAL) to our Matlab implementation.
When compared to LSVM, it provides a 3× speedup in the
MED-HBB dataset and an equivalent or slightly worse train-
ing time performance in the other two datasets.

� In Fig. 3, we observe that for the SIN13-LOCAL and
SIN13-CNN datasets, the most computationally intensive
parts of AGSDA-2 are the computation of the Gram matrix,
the Cholesky factorisation and the LSVM training, while for
MED-HBB dataset, the computation time is dominated by
the memory transactions of the sorting algorithm, followed
by the computations of the Gram matrix. Thus, for the lat-
ter dataset (MED-HBB) the provision of sorted observations
(e.g. sorting the observations during the feature extraction
procedure) can considerably decrease the overall computa-
tion time. We should also note that the LSVM training time
can be considerably reduced using a faster LSVM library
such as liblinear. However, the libsvm library was preferred
due to its better robustness in relation to generalisation per-
formance. We finally observed that in the testing stage, the
computation of Gram representations of test observations is
the bottleneck of our algorithm; this could be alleviated by
using faster Gram representation algorithms [11].

Additionally, comparison with the results reported in [7]
reveals a one to two orders of magnitude training time im-
provement over GSDA. Specifically, the learning time for one
event using a 5×5 optimisation grid with GPU-AGSDA (on
GTX 650) was approximately 5 minutes, while the reported
time for the same experiment for GSDA [7] was above 50
minutes.

Further to the above, GPU-AGSDA also has lower mem-
ory requirements. Specifically, we observed that it required
up to 8 times less memory than the corresponding Mat-
lab implementation. This means, for instance, that on our
hardware the GPU implementation avoided any use of HDD
space as swap memory, in contrast to what the Matlab ver-
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Figure 2: Experimental evaluation results.

sion of AGSDA did during the training part of the MED-
HBB experiment.

5. CONCLUSIONS
In this paper a new efficient discriminant analysis method

called accelerated generalized subclass discriminant analysis
and its GPU implementation are presented. Specifically, a
tiled GEMM procedure for the computation of the Gram
matrix and the GPU implementation of Cholesky factorisa-
tion are exploited to further improve AGSDA in terms of
training time and memory space requirements.

Future work directions include the investigation of a tiled
linear matrix system solver, the exploitation of more effi-
cient Gram matrix representation methods during the test-
ing stage [11], and the porting of the proposed algorithm
to Jetson TK1 embedded platform to achieve mobility and
reduced power consumption.
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