
1

A system for the semantic multi-modal analysis of
news audio-visual content

Vasileios Mezaris, Spyros Gidaros, Georgios Th. Papadopoulos, Walter Kasper, Jörg Steffen, Roeland Ordelman,
Marijn Huijbregts, Franciska de Jong, Ioannis Kompatsiaris, Michael G. Strintzis

Abstract—News related content is nowadays among the most
popular types of content for users in everyday applications.
Although the generation and distribution of news content has
become commonplace, due to the availability of inexpensive
media capturing devices and the development of media sharing
services targeting both professional and user-generated news
content, the automatic analysis and annotation that is required
for supporting intelligent search and delivery of this content
remains an open issue. In this paper, a complete architecture for
knowledge-assisted multi-modal analysis of news-related multi-
media content is presented, along with its constituent compo-
nents. The proposed analysis architecture employs state-of-the-
art methods for the analysis of each individual modality (visual,
audio, text) separately, and proposes a novel fusion technique
based on the particular characteristics of news-related content
for the combination of the individual modality analysis results.
Experimental results on news broadcast video illustrate the
usefulness of the proposed techniques in the automatic generation
of semantic annotations.

I. I NTRODUCTION

Access to news related multimedia content, either ama-
teur or professional, is nowadays a key element in business
environments as well as everyday practice for individuals.
The proliferation of broadband internet and the development
of media sharing services over the World Wide Web have
contributed to the shifting of traditional news content cre-
ators, such as news agencies and broadcasters, towards digital
news manipulation and delivery schemes. At the same time,
the availability of inexpensive media capturing devices has
additionally triggered the creation and distribution of vast
amounts of user-generated news audio-visual content, giving
rise to citizen journalism. Several distribution channels, from
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generic ones (e.g. YouTube1) to dedicated citizen journalism
services (e.g. YouReporter2) have been developed in the last
few years as part of this evolution of the news distribution
environment. Although the generation and distribution of news
content has become commonplace, the automatic analysis and
annotation that is required for supporting intelligent search
and delivery of this content remains an open issue. In general,
the cornerstone of the efficient manipulation of any type of
multimedia material is the understanding of the semantics of
it [1]; news related audio-visual content is no exception to this
rule.

In response to the need for understanding the semantics
of multimedia content in general, knowledge-assisted analysis
has recently emerged as a promising category of techniques
[2]. Knowledge-assisted analysis refers to the coupling of tra-
ditional analysis techniques such as segmentation and feature
extraction with prior knowledge for the domain of interest.
The introduction of prior knowledge to the analysis task is
a natural choice for countering the drawbacks of traditional
approaches, which include the inability to extract sufficient
semantic information about the multimedia content (e.g. se-
mantic objects depicted and events presented, rather than
lower-level audiovisual features) and the ambiguity of the
extracted information (e.g. visual features may be very similar
for radically different depicted objects and events). Machine
learning techniques are often used as part of knowledge-
assisted analysis architectures, being suitable for discovering
complex relationships and interdependencies between numer-
ical image data and the perceptually higher-level concepts.
Among the most commonly adopted machine learning tech-
niques are Neural Networks (NNs), Hidden Markov Models
(HMMs), Bayesian Networks (BNs), Support Vector Machines
(SVMs) and Genetic Algorithms (GAs) [3], [4]. Other analysis
approaches make use of prior knowledge in the form of
explicitly defined facts, models and rules, i.e. they provide
a coherent semantic domain model to support inference [2],
[5].

In this work, an architecture for the knowledge-assisted
multi-modal analysis of news-related multimedia content is
proposed. This initially employs state-of-the-art methods for
the analysis of each individual modality (visual, audio, text)
separately. Subsequently, a fusion technique that does not
require training with the use of a manually annotated dataset
is introduced for combining the individual modality analysis

1http://www.youtube.com/
2http://www.youreporter.it/
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results.This technique takes into account knowledge encoded
in an appropriate ontology infrastructure, and its main nov-
elty lies in that it explicitly takes into account the potential
variability of the different uni-modal analysis techniques in
terms of the decomposition of the audio-visual stream that they
adopt, the fuzzy degrees of content-concept association that
they produce, the concepts of the overall large-scale ontology
that they consider, the varying semantic importance of each
modality, and other factors.

The paper is organized as follows: related work on news
multi-modal analysis is reviewed in section II. In section
III the analysis problem that this work attempts to address
is formulated and the overall architecture of the proposed
approach is presented. The knowledge representation and the
different uni-modal analysis techniques that are part of this
architecture are outlined in sections IV and V, while the
technique developed for combining the individual modality
analysis results is presented in detail in section VI. Section
VII reports on the experimental evaluation and comparison of
the developed techniques, and conclusions are drawn in section
VIII.

II. RELATED WORK

Knowledge-assisted semantic multimedia analysis tech-
niques can be classified, on the basis of the information
that they exploit for analysis, to uni-modal and multi-modal
ones. Uni-modal techniques exploit information that comes
from a single modality of the content, e.g. they exploit only
visual features for classification [6]. Multi-modal techniques,
on the other hand, exploit information from multiple content
modalities in an attempt to overcome the limitations and
drawbacks of uni-modal ones. Applications of multi-modal
techniques range from semantic multimedia analysis to audio-
visual speech recognition [7], discourse processing in dialogue
systems [8], and video retrieval [9].

In general, the multi-modal techniques can be broadly clas-
sified to those jointly processing low-level features that come
from different modalities [10] [11], and those that combine
the results of multiple uni-modal analysis techniques [12] [13].
Rank aggregation and other methods used primarily in retrieval
applications to combine ranked lists of retrieval results [14]
[15], can also be classified to the latter category. While it can
be argued that each one of the two aforementioned classes
of multi-modal techniques has its advantages and thus can be
more or less suitable than the other for a given application, it
is generally observed that techniques of the latter class are
more suitable when a “deep” analysis of each modality is
required (e.g. speech recognition and linguistic analysis of the
transcripts, rather than mere classification of audio segments
to a limited number of classes).

Regarding news content analysis in particular, there has
been a number of approaches presented in the last few years. In
some of them, the emphasis is on textual transcript processing;
other modalities such as the visual one have limited contri-
bution. For example, in [16], news video is segmented into
shots and scenes using visual and audio analysis techniques;
the semantic categorization of each resulting news segment

is performed using only the results of natural language pro-
cessing techniques on OCR-generated transcripts. In [17], the
emphasis is again mostly on textual information processing,
and the results of it together with limited visual analysis results
(detected captions, faces, etc.) are fused for the purpose of
visualization of large-scale news video collections, with the
objective of facilitating browsing the collection and retrieving
video clips. However, recent advances in visual information
analysis and classification have made possible the extraction
of rich semantic information from the visual modality as well;
this should be exploited.

The number of supported classes of news content is another
important factor when examining different news content anal-
ysis approaches. In [18], a two-layer classification scheme is
introduced, where the second-layer classifier fuses the output
of the individual first-layer classifiers, for building detectors
for just two classes: anchor and commercial. In [11] the prob-
lem of fusing the results of different classifiers to eventually
classify each news video segment to one of5 classes (politics,
society, health, sports, and finance) is treated as a Bayesian
risk minimization problem. In [19],10 news categories (i.e.
Politics, Military, Sport, etc.) are defined, detectors are de-
signed for processing textual and audio-visual information
separately based on SVMs and GMMs, and a fusion strategy
is used for deciding on the category membership of each news
story. Although such methods highlight important aspects of
news multi-modal analysis, the limited number of classes that
they consider means that they either solve a very constrained
problem (such as anchor or commercial detection) or that they
result in a very broad classification of news content (i.e. to
5-10 classes). Acknowledging the need to consider a larger
number of classes as well as multiple modalities, in [20]
multimodal fusion is formulated as an optimization problem
and generic methods for optimizing linear and non-linear
combinations of modalities are discussed; again, however,
testing of the developed techniques is reported on a rather
limited number of classes.

Finally, the type of considered news content and the exact
application that multi-modal fusion techniques support may
vary among the relevant literature approaches. In [21], a
generic approach to fusion is also proposed based on the use
of conceptual graphs; however, the focus is on fusing TV
program metadata such as program title and date, rather than
semantic information coming from the analysis of the audio,
visual etc. modalities. As a consequence, the developed formu-
lation cannot handle uncertain input, e.g. the fuzzy degrees of
content-concept association that individual modality analysis
techniques such as visual classifiers typically produce. This
technique has been used as part of a recommendation system
for smart television [12]. In [22], the problem of consolidating
information coming from various textual news sources on
the Web is considered. The developed method can handle
uncertain input (confidence levels for each individual analysis
result), but employs simple majority voting for combining the
results coming from the different news sources, rather than
taking into account that the reliability of each source may
differ. In [14], the problem of multi-modal fusion for retrieval
is addressed and methods such as Borda Count and Borda Fuse
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for combining ranked lists of retrieval results are discussed;
however, these methods do not consider issues that are specific
to multi-modal fusion for analysis, such as the existence of a
different content decomposition for each modality.

III. PROPOSEDAPPROACH

A. Problem Formulation

The objective of analysis in this study is to associate
each elementary temporal segment (e.g. video shot) of the
audiovisual stream with one or more semantic concepts. Let
us start by defining an ontologyO that includes the set of
concepts that are of interest to a given application domain and
their hierarchy:

O = {C, ≤C} (1)

where C = {ck}K
k=1 is the set of concepts and≤C is a

partial order onC called concept hierarchy or taxonomy.
C ′ ⊂ C is the set of top-level concepts of the ontology, i.e. the
sibling concepts that define the coarsest possible classification
of content according toO. In any practical application, the
employed ontology will normally include additional elements
such as properties, concept relations in addition to those
specifying the hierarchy, etc., as discussed in the following
section. However, the above simplified ontology definition is
sufficient at this point.

Let us assume thatI individual modality analysis tools exist.
These tools may include visual video classification, linguistic
analysis of speech transcripts, audio event detection etc. Each
of these tools defines a decompositionDi of a multimedia con-
tent item (i.e. creates an ordered set of temporal segments) and,
considering all concepts ofC or a subset of them, associates
each segment ofDi with one or more concepts by estimating
the corresponding “degrees of confidence”. The values of the
latter may be either binary{0, 1} or (following normalization,
if necessary) real in the range[0, 1]. Thus, application of
the I aforementioned analysis tools to a multimedia content
item will result to the definition of a set of content temporal
decompositions

D = {Di}I
i=1 (2)

In the general case, each decompositionDi is a different
set of temporal segments, since modality-specific criteria are
typically used for determining the latter; e.g. a meaningful
elementary visual decomposition of video would probably
be based on the results of visual shot change detection,
while for automatic speech recognition (ASR) transcripts it
would probably be based on audio classification or speaker
diarization results instead. All the decompositions together
define a temporal segment setS,

S = {sj}J
j=1 (3)

It is useful to observe thatS, which contains all segments in
D, is a set of temporal segments with no hierarchy, many of
which may temporally overlap in full or in part (an example
of this can be seen in Fig. 7). Each member of setS can be
defined as a vector

sj = [tAj , tBj , {dj(ck)}K
k=1] (4)

where tAj , tBj are the start- and end-time of the temporal
segment anddj(ck) ∈ [0, 1] is the degree with which the
individual modality analysis tool that definedsj associated it
with conceptck of the ontology after analysis of the relevant
uni-modal information. In many cases,sj would be expected to
be a sparse vector (sincedj(.) would normally be zero for the
majority of concepts of the ontology) and therefore in practice
may be represented more efficiently as a variable-length vector
that includes only the non-zero values ofdj(.), but the former
representation is used in the sequel for notational simplicity.

The multi-modal analysis problem addressed in this work
is, given the above setS of heterogeneous individual modality
analysis results and the ontologyO, and using one of the
decompositions of setD as a reference decomposition, to
decide what is the most plausible annotation (or the ordered list
of N most plausible annotations) for each temporal segment
of the reference decomposition. It should be clarified that
the term “reference decomposition” is used for denoting the
decomposition that is used for associating the final multi-
modal analysis results with the content; its selection is made by
the user according to the specific user/application needs. For
example, if a retrieval application requires the content to be in-
dexed at the level of visual shots, this is the decomposition that
should be used as reference decomposition during analysis, to
ensure that multi-modal analysis results are indeed associated
with every individual visual shot; if, on the contrary, indexing
and retrieval e.g. at the speaker level (i.e. according to different
speakers) is required, the corresponding decomposition should
be used as the reference one during analysis. Evidently, the
multi-modal analysis process can be repeated using each
time a different reference decomposition, to allow for the
multi-modal annotation for segments belonging to different
decompositions (e.g. both visual shots and speaker segments),
if this is required.

B. System Overview

An overview of the approach proposed in this work for
addressing the multi-modal analysis problem discussed above
is shown in Fig. 1. As can be seen in this figure, starting from
the audiovisual content on the far left, different techniques for
analyzing separately each individual modality (visual, audio,
text) are executed in parallel, resulting in an extended set
of uni-modal analysis results. These are represented with
the use of a domain ontology and a multimedia ontology,
that account for the domain knowledge (e.g. concepts) and
the low-level properties of the content (e.g. decompositions),
respectively. The independent processing of each modality
allows the use of modality-specific techniques and criteria for
identifying elementary temporal segments (e.g. visual shots,
audio segments, etc.) and for estimating degrees of confidence
for the association of each such temporal segment with the
different possible concepts. Following the generation of the
uni-modal analysis results, different possible associations be-
tween them (such as the overlapping of temporal segments,
the relation of different concept annotations according to the
concept hierarchy, etc.) are evaluated with the use of specific
functions, and all these are combined in a two-stage process
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for identifying the most plausible concept annotations for any
given temporal segment: at the first stage, the overall influence
of the various decompositions and the different concepts on
the association of the given segmentsj (of the reference
decomposition) with a top-level domain conceptck ∈ C ′ is
evaluated. At the second stage, the above top-level concept
annotation decision is propagated to the more specific (i.e.
less abstract) concepts ofC, to result in the selection of the
most plausible specific concept annotation ofsj .

IV. K NOWLEDGE REPRESENTATION

In a knowledge-assisted multimedia analysis system, such
as the proposed one, knowledge representation serves two
main purposes: the representation of prior knowledge for the
domain, and the representation of the analysis results. To serve
these goals, an ontology infrastructure has been built that com-
prises two main parts: a domain ontology, that represents the
prior knowledge for the domain, and a multimedia ontology.

The developed domain ontology is based on an extension of
the IPTC3 tree for the news domain and includes a hierarchy or
classes that range from rather abstract ones, such as “disaster
and accident” (i.e. the top-level concepts belonging toC ′),
to specific ones, such as “earthquake”, “flood”, etc. (Fig. 2).
The latter classes are the least abstract ones with which an
elementary news item can be associated. In terms of visual
analysis, these are at the same time the most abstract classes
to which attempting to directly classify any piece of visual
information based on its low-level visual properties would
make sense. Consequently, in order to support efficient visual
analysis, a set of even less abstract classes, i.e. region-level
conceptsV = {vz}Z

z=1 describing possible spatial regions of
an image rather than entire images, is also defined. Examples
of such region-level concepts include person, building, road,
sky, flames, water, foliage, mountain, etc. Contextual informa-
tion X in the form of concept frequency of appearance is also
included in this ontology, extending the ontology definition of
Eq. (1) as follows:

O = {C, ≤C , V, X} (5)

The multimedia ontology, on the other hand, is a knowledge
structure used for supporting the storage of information and
of analysis results about the content (e.g. its different decom-
positions). Its development represents a choice concerning the
practical implementation of the proposed system rather than
the algorithmic aspects of it and therefore this ontology does
not need to be discussed here; the interested reader is referred
to [23] for a detailed presentation.

V. SINGLE MODALITY ANALYSIS TECHNIQUES

A. Visual Classification

The analysis of the visual information involves several
processing steps that include basic ones, such as shot decom-
position and visual feature estimation, as well as knowledge-
assisted analysis techniques, such as global keyframe and

3International Press Telecommunications Council, http://www.iptc.org
/pages/index.php

region level classification and the fusion of these classification
results to a single hypothesis set about the concept membership
of each shot of the examined news item (Fig. 3).

Preprocessing starts with temporal video decomposition to
shots, which are the elementary video streams that can be
associated with one concept of the employed ontology. For
shot segmentation the algorithm of [24] is employed, which
works directly with frame histogram metrics computed over
low resolution images extracted from the compressed video
stream. Subsequently, a keyframe is identified for each shot
and a rich set of MPEG-7 visual descriptors [25] is extracted
for it, both at the global image level (Scalable Color, Homo-
geneous Texture and Edge Histogram descriptors) and at the
region level (Scalable Color, Homogeneous Texture and Re-
gion Shape), following spatial segmentation to homogeneous
regions using the method of [26]. As a final pre-processing
stage, face detection is performed using a variant of the method
of [27]; given a keyframe of the shot, the presence of one or
more human faces is detected and their locations on the image
grid are specified, allowing among others the evaluation of the
area of the image that is taken by the face(s).

Following preprocessing, a set of techniques aiming at the
association of pieces of visual information with classes of
the domain ontology is applied, starting with global image
classification. In order to perform classification of the exam-
ined visual content into one of the concepts defined in the
ontology using global-image descriptions, a compound visual
feature vector is initially formed from the previously specified
MPEG-7 descriptors. Then, a Support Vector Machine (SVM)
[28] structure is utilized to compute the class to which each
piece of visual information belongs. This comprisesL SVMs,
one for every selected concept. It must be noted that the set
of concepts for which visual classifiers are trained is typically
a subset ofC − C ′, due to lack of sufficient training data
for all concepts inC − C ′ and also the fact that many of
these concepts have no clear visual manifestation that would
make the training of visual classifiers possible (e.g. concept
“liberation”). Each SVM is trained under the “one-against-
all” approach, using an appropriate training set of images
that were manually classified to concepts. At the evaluation
stage, each SVM returns for every image of unknown concept
membership a numerical value in the range [0, 1]. This value
denotes the degree of confidence with which the corresponding
visual content is assigned to the concept represented by the
particular SVM, and is computed from the signed distance of
it from the corresponding SVM’s separating hyperplane using
a sigmoid function [29]. For each keyframe, the maximum of
the L calculated degrees of membership indicates its classifi-
cation based on global-level features, whereas all degrees of
confidence,Hl, l = 1, . . . , L, constitute its concept hypothesis
set.

Region-level classification follows, using a similar SVM
structure to compute an initial region-concept association for
every spatial region of the keyframe. As in the previous case,
an individual SVM is introduced for every region-level concept
vz of the employed ontology, in order to detect the correspond-
ing association. For training the SVMs, an appropriate training
set (made of regions generated by automatic segmentation and

EURASIP Journal on Advances in Signal Processing, vol. 2010, 2010.
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Fig. 1. Overview of the proposed approach for multi-modal analysis of news audio-visual content.

Fig. 2. Subset of concepts and their hierarchy in the employed ontology for news. Two of the 17 top-level concepts (“Disaster and accident”, “Unrest,
conflict and war”) and a few of their sub-concepts are depicted.
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Fig. 3. Overview of the visual classification process.

manually assigned to region-level concepts) is employed. As a
result, at the evaluation stage a degree of confidence is returned
for each regionr of unknown concept membership and each
region-level conceptvz in the domain ontology. These results
for all regions of the keyframe are subsequently employed for
inferring a new keyframe-concept association hypothesis set
H ′

l , as in [6].

Finally, a fusion mechanism in the form of a weighted
summationGl = λl · Hl + (1 − λl) · H ′

l is introduced for
deciding upon the final keyframe - global concept association.
The concept for whichGl is maximized is the most plausible
annotation of the respective video shot based on visual infor-
mation, whileGl, l = 1, . . . , L, is the final visual classification
hypothesis set. For optimizing the weightsλ for each concept,
a genetic algorithm is used, to account for the varying relevant
importance of global and local information for the detection
of different concepts [23]. Indicative examples of intermediate
and final visual classification results are shown in Fig. 4.

B. Visual Analysis for Text Extraction

Besides the association of video shots with semantic classes
(concepts) on the basis of the visual features of the corre-
sponding keyframes, visual information, i.e. the keyframes,
can also be used for extracting the text that is in some cases
superimposed to them. In news content, this text typically
encompasses in a very compact way semantic information such
as person names or event summaries, some of which can be
useful for analysis. To this end, text transcripts are generated
by application of software developed on top of a commercial
Optical Character Recognition (OCR) software development
kit 4 to keyframes of the video. All keyframes extracted as
discussed in the previous section are processed; the work flow
of this processing involves (a) text regions detection on the
keyframe, and (b) Optical Character Recognition, as depicted
in Fig. 5(a). Both these tasks are perfomed using functions
of the employed commercial software development kit. The
resulting text transcripts subsequently undergo linguistic anal-

4ABBYY FineReader Engine 8.1
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Smoke 0.77;Building 0.59; Road
0.56; Water 0.55; Mud 0.55; Per-
son 0.54; Flames 0.54.

Fire 0.6; Flood 0.45; Earthquake
0.44; Hurricane 0.44; War 0.4;
Civil unrest 0.38; Act of terror
0.13.

Military vehicle 0.68; Protest-
March 0.66; Road 0.64; Map
0.62; Foliage 0.62; Building 0.54;
Smoke 0.53.

Civil unrest 0.61; War 0.58;
Flood 0.45; Hurricane 0.43;
Earthquake 0.42; Fire 0.39; Act
of terror 0.13.

(a) (b) (c) (d)

Fig. 4. Visual classification examples: (a) keyframe, (b) segmentation mask, (c) results of region classification for the spatial region shown in white in the
mask (only a few region-level concepts, in descending order according to the estimated degree of confidence, are shown), (d) final keyframe classification
results (in descending order according to the estimated degree of confidence), generated by combining the region-level classification results for all regions and
the results of global classifiers. The concepts that are in agreement with the ground truth annotation are shown in bold. Taking into account all region-level
classification results rather than the single highest-ranking region-level concept for every region, when estimating the final keyframe classification results, is
motivated by the known imperfection of region classifiers (as seen in the second example).
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Fig. 5. Overview of (a) visual analysis for text extraction, (b) audio analysis. Both result in the generation of text transcripts.

ysis as discussed in section V-D.

C. Audio Analysis

The use of speech technology to exploit the linguistic
content that is available as spoken content in videos has proven
to be helpful in bridging the semantic gap between low-level
media features and conceptual information needs [30] and its
use has been advocated since many years. In this work, the
SHoUT large vocabulary speech recognition system is used to
this end.

The work flow of the system is depicted in Fig. 5(b).
Processing of an audio file starts with speech activity de-
tection (SAD) in order to filter out the audio parts that do
not contain speech [31]. After SAD, speaker diarization is
performed: the speech fragments are split into segments that
only contain speech from one single speaker with constant
audio conditions and each segment is labeled with a speaker
ID following speaker clustering [32]. Subsequently, automatic
speech recognition (ASR) is performed in four steps. First,
features are extracted from the segmented audio and are
normalized for speaker and audio variations. Next, a primary
decoding pass is run. The output of this pass is used for
adapting the acoustic model for each speaker cluster. Finally,
the secondary decoding pass uses the adapted models for

producing the final speech transcripts. For ASR decoding, a
time synchronous Viterbi search is used, implemented using
the token passing paradigm [33]. HMMs with three states
and GMMs for its probability density functions are used to
calculate acoustic likelihoods of context dependent phones.
The employed decoder is described in more detail in [34].

Output of the audio analysis process is a temporal decom-
position of the audio stream to speaker segments, and a textual
transcript for each such segment.

D. Linguistic Analysis

Textual information analysis of multimedia news-related
material may be applicable to textual information coming from
a number of different sources: textual annotations produced
manually by the content creators, when such information is
available; text extracted from the video frames by means of
OCR techniques (section V-B); and ASR transcripts produced
by audio analysis, as discussed above. In all three cases, textual
information analysis will exploit for its application a suitable
temporal decomposition, depending on the source of textual
information: for manual annotations, the temporal decomposi-
tion that has been manually defined for them; for text coming
from OCR, all text extracted from a single keyframe will
be analyzed together; finally, for ASR transcripts, it will be

EURASIP Journal on Advances in Signal Processing, vol. 2010, 2010.
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performedat the speaker level (i.e. exploiting the results of
speaker diarization performed as part of the audio processing),
independently processing each uninterrupted speech segment
of a single speaker.

In this work, the SProUT platform (Shallow Processing
with Unification and Typed Feature Structures) is used as
core annotation and information extraction engine. SProUT
combines finite state techniques with unification oftyped
feature structures(TFS) [35]. The TFS framework provides a
powerful device for representing and propagating information.
Rules are expressed by regular expressions over input TFSs
that get instantiated by the analysis. The reader is referred to
[36], [37] for more details on SProUT.

Output of linguistic analysis, regardless of the source of
the input, is a set of content-concept associations using the
concepts of setC of the employed ontology (section IV), and
additional information in the form of locations, person names
and other attributes. Linguistic analysis is applied separately
to the information coming from each of the possible input
sources (i.e. ASR, OCR, etc.), not only because of differences
in the content decompositions and in the way that linguistic
analysis needs to process the different inputs, but also because
the output of linguistic analysis for each information source
needs to be treated differently when combining the individual
modality analysis results, as discussed in the following sec-
tion. Indicative linguistic analysis results for ASR and OCR
transcripts are shown in Fig. 6.

VI. GENERALIZED CONCEPTOVERLAY FOR

MULTI -MODAL ANALYSIS

After having processed the individual modalities separately,
the objective is to combine their results, i.e. to remove ambi-
guities and contradictory outputs and produce a final semantic
interpretation of the multimedia content. A simple, yet crude
solution to the combination of individual modality analysis
results without using a manually annotated dataset for training
would be to disregard the concept hierarchy≤C of the ontol-
ogy, identify all segments ofS that temporally overlap in full
or in part with the examined temporal segmentsj of the refer-
ence decompositionDi, aggregate the corresponding degrees
dj(.) and select as most plausible annotation the conceptck for
which dj(ck) is maximized. This simple approach, however,
presents several important drawbacks. Firstly, ignoring the
concept hierarchy means that we choose not to consider the
semantic similarity or dissimilarity of the different possible
annotations; consequently, all possible annotations are treated
as contradictory, although this may not be the case (e.g. one
may simply be a sub-concept of the other). Secondly, we treat
the temporal overlapping of the segments ofS as a binary
variable, whereas the degree of this overlapping could in fact
be useful for determining the significance of an annotation
coming from segmentsm for the analysis of the reference
temporal segmentsj . Thirdly, we ignore the fact that the
semantic importance of all modalities is not necessarily equal
and may even vary with respect to the type of content; in news
video semantic analysis, for example, the visual and audio
modalities carry different weights when examining a studio

shot and when examining an external reporting shot. Finally,
we overlook that valuesdj(.) generated by different analysis
tools are not directly comparable in the general case.

To alleviate the identified drawbacks of the aforementioned
simplistic approach, we propose a method that is somewhat
related to the overlay technique, proposed in [8] for the
fusion of structured information on the basis of its tempo-
ral priority. In our approach however the decision criterion
cannot be the temporal priority of concept detection, since the
multimedia content is decomposed to segments (elementary
temporal units) instead of being treated as a single item
whose annotation may evolve in time. The order of execution
of the different uni-modal analysis techniques is clearly not
relevant. Instead, the aforementioned considerations about the
temporal overlapping of segments, semantic importance of the
modalities, etc. have to be taken into account.

Starting with the quantification of the temporal overlapping
of the segments ofS, we define functionτ : S2 → [0, 1] such
that

τ(sj , sm) =

{
min(tB

j ,tB
m)−max(tA

j ,tA
m)

tB
j −tA

j
if Γ > 0

0 otherwise
(6)

wheresj is the reference segment and

Γ = (tBj − tAm)(tBm − tAj ) (7)

The meaning of functionτ is illustrated with an example in
Fig. 7.

In order to take advantage of the concept hierarchy, we
define functionφ : C2 → [0, 1] such that

φ(ck, cn) =
{

1, if cn=ck or cn is a sub-concept ofck

0, otherwise
(8)

Note that≤C is used for evaluating if one concept is a sub-
concept of another and that, by definition, sub-concepts are
not limited to immediate children ofck.

In order to take into account the varying semantic im-
portance of the different modalities with respect to the type
of content, we define a domain-specific partitioningW of
the reference decompositionDi to a set of disjoint types of
segments,

W = {Wq}Q
q=1 (9)

In the experiments reported in this work, the decomposition
of the visual modality to shots was used as the reference
decomposition, and three content types (W1: Studio shots; W2:
External reporting with a dominant face on the video; W3:
External reporting with no dominant face on the video) were
defined. PartitioningW is used for definingµ : (W,D) →
[0, 1], a domain-specific function such thatµ(sj , sm), where
sj ∈ Wq and sm ∈ Di, indicates the relevant semantic
importance of the modality corresponding to decomposition
Di for the analysis of segments of typeWq. An example of
function µ(sj , sm) defined for News video is illustrated in
Fig. 8.

Finally, in order to account for valuesdj(.) generated by dif-
ferent analysis tools not being directly comparable, we define
a set of tool- and domain-specific functionsξi, i = 1, . . . , I,
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AS NIGHT FELL OVER BAGHDAD ON MONDAY COALITION WAR-
PLANES CARRIED OUT A NEW WAVE OF AIR ATTACKS

War 1.0
Location: Bagdad, Iraq; Day:
Monday

FIRESIN PORTUGAL Fire 1.0 Location:Portugal

(a) (b) (c)

Fig. 6. Linguistic analysis examples: (a) text transcripts (the first one coming from ASR and the second from OCR), (b) content-concept associations using
the concepts of setC, (c) additional information in the form of locations etc.
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2.2sec
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Fig. 7. An example illustrating the use of functionτ . For the depicted decompositions,τ(s3, s6) = 8−4
8−4

= 1, i.e. in performing multi-modal annotation
of s3, the visual analysis results ofs6 would be taken into account with a temporal weight of1 (since the only visual shot temporally overlapping with
s3 is s6). On the contrary,τ(s6, s3) = 8−4

11−2.4
= 0.47 < 1, sinces3 is not the only audio segment temporally overlapping withs6. Thus, in performing

multi-modal annotation ofs6, the audio analysis results ofs3 would be taken into account with a temporal weight of0.47 and using this weight they would
be combined (or would compete) with audio analysis results coming froms2 ands4 that also temporally overlap withs6; the sum of temporal weights for
s2, s3 ands4 would be equal to 1.

PartitioningW of reference decompositionD3.

DecompositionD1 (ASR) a3 a1 a3

DecompositionD2 (OCR) 1 1 1

DecompositionD3 (Visual Classification) 0 a2 a3

(W1) (W2) (W3)

Fig. 8. Example of functionµ(sj , sm) defined for News video, where0 < a2 < a1 < 1 and0 < a3 < 1, indicating the relevant semantic importance
of the modality corresponding to decompositionDi for the analysis of segments of typeWq . According to this example, when performing the multi-modal
analysis of a studio shot (columnW1), visual classification results are not taken into account, while ASR linguistic analysis results have lower importance
that OCR linguistic analysis results; similar knowledge is encoded for shots of typesW2 andW3, as discussed in more detail in the experimental evaluation
section.

one for each modality, that attempt to make valuesξ(dj(.))
comparable across modalities. This can be done by enforcing
them to have common statistics (e.g. the same mean value, or
the same distribution such as a uniform one) over a reasonably
large dataset. It must be noted that in this process no ground
truth annotation is required for the employed dataset. In the
sequel, the index toξ will be omitted for notational simplicity;
the use of functionξ that corresponds to the tool which
generated its argument valuedj(.) will be implied.

Using the above definitions, a two-stage process can be
defined for combining all the individual modality analysis
results. At the first stage, the overall influence of the various
decompositions and the different conceptscn ∈ C on the
association of a segmentsj (of the reference decomposition)
with a top-level domain conceptck ∈ C ′ is defined as follows:

ψ(sj , ck) =
K∑

n=1

[
φ(ck, cn) ·

( J∑
m=1

τ(sj , sm) · µ(sj , sm) · ξ(dm(cn))
)]

(10)

Then,

k∗ = arg max
k

(
ψ(sj , ck)

)
(11)

indicates the single most plausible top-level concept annotation
ck∗ of segmentsj . In case the application under consideration
allows for more than one top-level concept to be assigned
to a single segment, several strategies for retaining thex
most plausible top-level concepts by examining the values of
ψ(sj , ck) for all k can be defined, according to the specific
application needs.

At the second stage, in order to generate a more specific
annotation of segmentsj , the above top-level concept anno-
tation decision has to be propagated to the more specific (i.e.
less abstract) concepts ofC. This is performed by evaluating
which sub-concept ofck∗ contributed the most to its selection
in the previous processing step (similarly to Eq. (8), not being
limited to immediate children ofck∗). In particular, for every
cn that does not belong toC ′ and for whichφ(ck∗ , cn) = 1
the following value is calculated:

ρ(sj , cn) =
J∑

m=1

τ(sj , sm) · µ(sj , sm) · ξ(dm(cn)) (12)
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Then,
n∗ = arg max

n

(
ρ(sj , cn)

)
(13)

indicates the single most plausible specific concept annotation
cn∗ of segmentsj . Again, more than one such concepts could
also be assigned tosj by examining the values ofρ(sj , cn),
if desired.

A couple of examples of the above two-stage process for
assigning concept annotations to a visual shot are shown in
Fig. 9. For the first one (top row of the figure), the shot’s
actual subject is “war in Iraq” and the keyframe is shown on
the left side of the figure. The degrees of confidence with
which a concept is associated with this shot on the basis of
visual and audio information (taking into account all audio
segments that temporally overlap in full or in part with the
shot) are shown next to each concept in parenthesis and in
brackets, respectively. The solid arrows “(a)” indicate the first
stage of the Generalized Concept Overlay: all the evidence
(i.e. degrees of confidence) coming from the analysis of
the different modalities independently, are taken into account
according to Eq. (10) for estimating a score associating the
visual shot with each of the considered top-level domain
concepts. These scores are shown next to the two such top-
level concepts visible in this figure. The highest of these
scores, in this example equal to 0.67 and corresponding to the
“unrest, conflict and war” concept, is selected as dictated by
Eq. (11). Subsequently, at the second stage of the Generalized
Concept Overlay, the decision made on the top-level concept
annotation is propagated to the more specific concepts that
contributed to this decision, i.e. the sub-concepts of “unrest,
conflict and war”. This is illustrated by the dashed arrows
“(b)”. As a result of this, a new score is calculated for each
of these sub-concepts according to Eq. (12) (these scores are
not shown in this figure for readability purposes), and the
largest of these scores indicates the single most plausible
specific concept annotation of the shot, which in this example
is “war”. This result is in agreement with both visual and
audio information analysis, as well as with the actual subject
of the shot as identified during its manual annotation. In
the second example of the same figure, the same process is
shown for a “windstorms” shot. In this case, the visual and
audio information analysis results are not in agreement. ASR
linguistic analysis has identified the correct annotation; visual
classification does not support the “Windstorms” concept (no
such visual classifier has been trained), and identifies “war” as
the most plausible annotation and “hurricane” as the second
most plausible one. Combining these results and particularly
taking into account that both “hurricane” and “windstorms”
provide strong evidence in favor of the “disaster and accident”
top-level concept, the correct annotation is identified.

The motivation behind the Generalized Concept Overlay is
that it is difficult to directly combine the results of different
analysis tools for determining the least abstract concept that
should be used to annotate a temporal segment, considering
that each individual modality analysis tool defines its own
temporal content decomposition, takes into account its own
subset of concepts (as also shown in the second example
of Fig. 9), and has its own overall importance for analysis.

Instead, taking advantage of the concept hierarchy and the
fact that the results of concept detection at any level of this
hierarchy can be directly propagated to the higher levels of it,
we chose to make a decision on the classification of each
temporal segment to the top-level concepts first, where all
analysis results can be taken into account, and then at a
second stage to follow an inverse process in order to make
the final classification decision considering the less abstract
concepts as well. A significant advantage of the proposed
approach over learning-based ones (e.g. based on Bayesian
Networks, Supervised Rank Aggregation approaches [14],
etc.) is that no training is required for combining the individual
modality analysis results. As shown in Eqs. (10) and (12), the
proposed approach is based on evaluating functionsφ, τ , µ
and ξ, whose parameters are not determined from annotated
training samples. Only classification of the content to one of
the defined segment types (in our experiments,W1 to W3)
is needed, which is independent of the concepts inC and
can be realized by one or more generic classifiers (e.g. a
studio/non-studio visual classifier). In contrast to this, taking
into account all the above peculiarities of content (e.g. different
decompositions etc.) and that the number of concepts inC may
be in the order of hundreds of thousands, it is evident that a
learning-based approach would require a very large amount of
training data that is not generally available.

VII. E XPERIMENTAL EVALUATION

A. Dataset and System Setup

The proposed news semantic multi-modal analysis system
was experimentally evaluated on a test dataset of91 short
broadcast news videos from Deutsche Welle5, having a total
duration of approximately4 hours. These were selected from
a pool of 30 hours of video, on the basis of their relevance
with the two top-level concepts depicted in Fig. 2, that were
chosen for experimentation purposes. About81% of the videos
of the test dataset (74 out of 91) included audio, while very
few videos included some frames with captions or other text
that could be extracted by OCR techniques. Some of the videos
were composed of an anchor shot followed by several external
reporting shots; others included more than one sequences of
anchor plus external reporting shots, while some others had
no anchor shots at all. Shot segmentation of the test dataset,
as discussed in section V-A, resulted in a total of4576 shots.
For enabling objective evaluation of the automatic analysis
results, each shot was manually annotated with one concept of
the ontology. In addition to the shot-level manual annotations,
the annotators were asked to associate each entire video with a
single concept of the ontology, corresponding to the temporally
most dominant topic of the video. Manual annotation of each
piece of visual information was performed by two annotators
separately and, in case disagreement was observed in their
annotations, these were reviewed by a third one.

Three uni-modal analysis methods, discussed in section
V, were employed as the basis for multi-modal analysis:
automatic speech recognition (ASR) and linguistic analysis of

5http://www.dw-world.de/
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Fig. 9. Examples of the two-stage process for combining all the individual modality analysis results that is part of the Generalized Concept Overlay.

the ASR transcripts, resulting to decompositionD1; linguistic
analysis of optical character recognition (OCR) transcripts
(D2), and visual classification based on a combination of
global and local features (D3). For training the visual clas-
sifiers, a separate training set of Deutsche Welle videos was
employed and visual classifiers were trained for the first7 of
the concepts of Table I. These concepts were selected on the
basis of their frequency in the training and testing datasets. For
less frequent concepts, such as the remaining ones of Table
I, no visual classifiers were trained; therefore, these could
be associated with the multimedia content only by means of
linguistic analysis of ASR and OCR transcripts, which was
not restricted to a subset of the concepts inC. The audio and
linguistic analysis modules were developed with the use of
other suitable corpora, not related to the employed test dataset
of Deutsche Welle videos.

The decomposition of the visual modality to shots was
chosen for serving as the reference decomposition, and based
on this three types of content were defined as follows:W1:
Studio shots;W2: External reporting with a dominant face on
the video;W3: External reporting with no dominant face on
the video. A reliable studio/non-studio visual classifier and a
face detector [38] were employed for automatically assigning
each shot to one of these three types. Based on partitioning
W , function µ was heuristically defined as:

µ(sj , sm) =





1, if sm ∈ D2

a1, if sm ∈ D1 andsj ∈ W2)
a2, if sm ∈ D3 andsj ∈ W2)
0, if (sm ∈ D3 andsj ∈ W1)
a3, otherwise

(14)

where 0 < a2 < a1 < 1 and 0 < a3 < 1. Function µ
(also illustrated in Fig. 8) essentially encodes commonsense
knowledge about news analysis, such as that audio information
is more important than visual information when considering
studio shots, etc. For experimentation, valuesa1 = 0.7 and
a2 = a3 = 0.5 were chosen.

Functionsξi were defined asξi(dj(.)) = dj(.) for i = 1, 2

(i.e. for the ASR and OCR linguistic analysis results), whereas
for the visual classification results,ξ3 was defined such that
values ξ3(dj(.)) had a uniform distribution in[0, 1] over a
validation dataset.

B. Experimental Results

In Table II, results on the entire test dataset are presented
for each of the employed uni-modal analysis techniques as
well as for the Generalized Concept Overlay of section VI
and two variants of it, illustrating the effect of modeling
functionsµ(sj , sm) and τ(sj , sm) as constants. Comparison
with our earlier work on multi-modal analysis of news content
[39] and with the unsupervised Borda Count and Borda Fuse
methods [14] is also presented in this table. In [39], a multi-
modal analysis approach that neither exploited the concept
hierarchy nor took into account the variability of concept
subsets considered by the individual modality analysis tools
was proposed; only the concepts belonging to the intersec-
tion of the latter subsets were considered for combining the
individual modality analysis results. The unsupervised Borda
Count and Borda Fuse methods [14], [40] on the other hand
consider all concepts of the employed ontology. They both
treat the results of each uni-modal analysis technique as a
ranked list, thus taking into account the rank of every concept
in the list (i.e. first, second, etc.) rather than the actual values
dj(.). This can be perceived as imposing a normalization of
the uni-modal analysis results that is different than that of
functions ξi used in Eqs. (10) and (12). They then fuse the
ranked lists produced by the different uni-modal analysis tools.
The rank of each result serves as the sole criterion in Borda
Count, which averages the ranks of a given concept over
all ranked lists. In Borda Fuse, the rank and the weight of
each modality according to the type of the examined segment
(i.e. the values of functionµ used in Eqs. (10) and (12)) are
employed. Using the latter, Borda Fuse calculates a weighted
average of the ranks of a given concept over all ranked lists.
In both methods, the concept for which the estimated average
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TABLE I
EXAMINED CONCEPTS

Identifier 1 2 3 4 5 6 7
Conceptname Earthquake Fire Flood Hurricane War Act of terror Civil unrest

Identifier 8 9 10 11 12 13
Conceptname Windstorms Riots Massacre Demonstration Rebellions Genocide

rank indicates that this concept appears higher than all other
concepts in the fused list is selected as the final outcome of
fusion. It can be seen in Table II that the proposed Generalized
Concept Overlay approach outperforms the former approaches,
achieving a higher correct annotation rate for the specific
conceptscn∗ extracted by multi-modal analysis, and a higher
or equal correct annotation rate for the top-level conceptsck∗ .
The complete Generalized Concept Overlay also outperforms
simpler variants of it that model certain functions as constants
(i.e. they considerµ(sj , sm) = const andτ(sj , sm) = const,
respectively). It should be noted that the proposed approach
does not require training with the use of a manually annotated
dataset for combining the individual modality analysis results;
thus, it may be particularly suitable to the large-scale semantic
classification problem where training is difficult.

In Table III, similar results on a subset of the test dataset
are presented; this subset comprises the692 shots (out of the
4576 in total) for which at least two of the single modality
analysis tools have returned an analysis result (e.g. shots for
which at least one partially overlapping, in terms of time,
audio segment exists and has been assigned to a semantic class
by means of ASR and linguistic analysis). The motivation
behind presenting results for this subset of the dataset is to
illustrate more clearly the effect of different approaches in the
way the different uni-modal analysis results are combined. It
can be seen in Table III that, for this subset of the dataset,
the majority of the results have been produced by visual
classification and by linguistic analysis of ASR transcripts;
due to the nature of the employed dataset (it is not rich in text
that could be extracted by means of OCR), OCR linguistic
analysis results are scarce. Concerning the multi-modal anal-
ysis techniques, it can be seen that the proposed approach
significantly outperforms, in terms of the specific conceptscn∗

extracted by multi-modal analysis, our earlier work [39] (Chi
Square=24.05, df=1, p< .05) and the Borda Count method
(Chi Square=22.0, df=1, p< .05). The impact of function
τ(sj , sm), in comparison to definingτ(sj , sm) = const, is
also shown to be significant (Chi Square=4.96, df=1, p< .05).
Less pronounced differences (thus also of lower statistical
significance) in favor of the proposed approach are observed
when comparing with the Borda Fuse method and when
considering the annotation rates for the top-level concepts
ck∗ . In evaluating the statistical significance of annotation
performance differences in the above pairwise comparisons of
approaches, the null hypothesis was defined as the annotation
performance being the same for both approaches in each pair.

Corresponding confusion matrices for the the692 shots and
the13 most frequent concepts of the dataset (in the order they
are listed in Table I) are shown in Fig. 10. For visualization
purposes, only the shots that were actually annotated with a

concept are taken into account in each of these confusion
matrices (thus, the “no result” outcomes of each analysis
method were ignored when calculating the corresponding
percentages, ranging from 0% to 100%). This was necessary
for effectively visualizing e.g. the OCR linguistic analysis
results that are scarce; consequently, the colors in Fig. 10 are
not comparable between Fig. 10(b) and (c), and between any
of these two and any of the remaining confusion matrices
of the same figure. It can be seen in Fig. 10 that visual
classification is most susceptible to annotation errors; ASR
linguistic analysis is considerably more reliable overall but
still consistently confuses between certain pairs of concepts
(e.g. 3:Flood and 4:Hurricane; 5:War and 7:Civil Unrest); OCR
linguistic analysis is very reliable. The Borda Count method
as well as the method of [39] are shown to be moderately
successful in combing the different uni-modal analysis results,
since they are strongly affected by errors coming primarily
from visual analysis. The Borda Fuse method and the proposed
one are shown to be more successful, with the Borda Fuse
method being affected a bit more by errors coming from ASR
linguistic analysis (e.g. consistently confusing between con-
cepts 5:War and 7:Civil Unrest), while the proposed approach
is shown to handle better some of the errors coming from ASR
linguistic analysis at the expense of being somewhat more
sensitive to erroneous visual analysis results.

In order to examine how visual classification accuracy,
which can clearly vary significantly depending on the choice of
visual classifiers, the available training data, etc., affects the
overall multi-modal analysis, an experiment was carried out
where only subsets of the previously trained classifiers rather
than all of them were considered. In particular, the7 visual
classifiers were ordered according to the prevalence of their
corresponding concepts in the test set, in ascending order, and
experiments were carried out by excluding the first of them,
the first two, the first three, etc. In the last experiment of
this series, only one visual classifier that corresponds to the
single most prevalent concept in our test set was considered.
The results are presented in Fig. 11, indicating that when the
number of visual classifiers is reduced and consequently lower
correct annotation rates are achieved by visual classification,
the proposed multi-modal analysis approach succeeds to com-
pensate this loss to a significant extent by exploiting the results
of the other modalities, providing that such results exist. Still,
it is evident from the same figure that visual classification does
contribute to the final outcome of multi-modal analysis; this
contribution is small, in the portion of the dataset for which
other modality analysis results exist, and far more significant
when considering the entire dataset.

Another experiment was subsequently carried out, making
the assumption that each entire video (rather than each in-
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TABLE II
MULTI -MODAL ANALYSIS RESULTS IN THE NEWS DOMAIN - ENTIRE DATASET

Process cn∗ cn∗ cn∗ ck∗ ck∗ ck∗
correct incorrect no result correct incorrect no result

Visual classification 43.4% 56.6% 0% 81.6% 18.4% 0%
ASR linguistic analysis 8.5% 3.2% 88.3% 11.6% 2.9% 85.5%
OCR linguistic analysis 0.4% 0% 99.6% 0.6% 0.2% 99.2%

Generalized Concept Overlay withµ(sj , sm) = const 46.5% 53.5% 0% 82.8% 17.2% 0%
Generalized Concept Overlay withτ(sj , sm) = const 46.2% 53.8% 0% 82.9% 17.1% 0%

Generalized Concept Overlay 47.1% 52.9% 0% 82.9% 17.1% 0%
Multi-modal analysis method of [39] 45.1% 54.9% 0% 82.6% 17.4% 0%

Borda Count method [14] 45.2% 54.8% 0% 82.8% 17.2% 0%
Borda Fuse method [14] 46.9% 53.1% 0% 82.9% 17.1% 0%

TABLE III
MULTI -MODAL ANALYSIS RESULTS IN THE NEWS DOMAIN - DATASET RESTRICTED TO SHOTS FOR WHICH MORE THAT ONE SINGLE MODALITY ANALYSIS

RESULTS EXIST

Process cn∗ cn∗ cn∗ ck∗ ck∗ ck∗
correct incorrect no result correct incorrect no result

Visual classification 35.4% 64.6% 0% 73.1% 26.9% 0%
ASR linguistic analysis 56.5% 39.6% 3.9% 76.9% 19.2% 3.9%
OCR linguistic analysis 2.3% 0% 97.7% 3.8% 0% 96.2%

Generalized Concept Overlay withµ(sj , sm) = const 56.4% 43.6% 0% 80.8% 19.2% 0%
Generalized Concept Overlay withτ(sj , sm) = const 54.2% 45.8% 0% 81.8% 18.2% 0%

Generalized Concept Overlay 60.1% 39.9% 0% 81.2% 18.8% 0%
Multi-modal analysis method of [39] 47% 53% 0% 79.8% 20.2% 0%

Borda Count method [14] 47.5% 52.5% 0% 80.9% 19.1% 0%
Borda Fuse method [14] 58.8% 41.2% 0% 81.6% 18.4% 0%

dividual shot) is about a single subject, thus all shots of it
can and should be associated with a single concept of the
employed ontology. The motivation behind this experiment
was to test the influence of the selected content decomposition
to the performance of multi-modal analysis, and in particular
the possible improvement of analysis results when considering
larger story-telling units (“scenes”) rather than visual shots
as the elementary pieces of video information; taking the
whole video as a scene is clearly the extreme case. In this
experiment, the manually-generated video-level annotations
discussed at the beginning of this section were used as ground
truth annotation for evaluation purposes, in place of the
shot-level ones. The Generalized Concept Overlay technique
was adapted to this scenario by being applied at the shot
level, as in all previous experiments, and its results being
subsequently evaluated by a simple voting mechanism which
selected the single most dominant concept across all shots as
the final annotation for the entire video. As a result, the correct
classification rates of the Generalized Concept Overlay rose to
75.3% and 93.1% for cn∗ and ck∗ respectively on the entire
dataset, showing a significant increase compared to the results
of Table II.

Finally, it should be noted that besides the annotation of
each shot or other temporal segment with one concept of
the ontology expressing the thematic categorization of the
news item, the result of multi-modal analysis can also include
additional semantic information such as location names, per-
son names, etc. These are extracted as part of the linguistic
analysis of ASR and OCR transcripts. Although elaborate
techniques for combining such additional information can be
envisaged (e.g. similar to the one presented in this work
for the thematic categorization results), in practice a simple
unification approach was adopted in our experiments; more

specifically, the additional information coming from ASR and
OCR analysis was accumulated and in case of contradictory
information, the OCR results prevailed. As a result, over one
third of the shots in our dataset was automatically annotated
with information that is in addition toc∗n, c∗k; out of this,
approximately55% concerned location names,22% person
names, and6% dates. The evaluation of the correctness of
these results is beyond the scope of this work, since the
focus is on the thematic categorization results discussed above,
but these clearly indicate the added value of using multiple
specialized individual modality analysis tools in a multi-modal
analysis scheme, rather than attempting to jointly process at a
single stage all low-level features that come from the different
modalities.

VIII. C ONCLUSIONS

The detailed analysis of the results in the previous section,
where the corresponding confusion matrices where presented,
revealed that multi-modal analysis using the proposed Gener-
alized Concept Overlay approach succeeds in improving the
results of any of the employed uni-modal analysis methods.
Nevertheless, it is evident that the breadth of this improvement
is greatly dependent upon the individual modality analysis
results that serve as input to multi-modal analysis. These, in
turn, depend not only on the performance of the employed
single-modality analysis methods but also (and maybe even
to a greater degree) on the specifics of the content itself,
i.e. whether it contains audio or not, whether news-related
legends are typically projected or not on the screen by the
news agency producing the content or by the broadcaster,
etc. In the case of the employed Deutsche Welle dataset, it
was shown that although ASR and OCR linguistic analysis
can provide valuable and very accurate information about

EURASIP Journal on Advances in Signal Processing, vol. 2010, 2010.
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Fig. 10. Confusion Matrices for the13 concepts of Table I - dataset restricted to shots for which more that one single modality analysis results exist. (a)
Visual Classification, (b) ASR linguistic analysis, (c) OCR linguistic analysis, (d) Borda Count method [14], (e) Borda Fuse method [14], (f) method of [39],
(g) Generalized Concept Overlay withµ(sj , sm) = const, (h) Generalized Concept Overlay withτ(sj , sm) = const, (i) Generalized Concept Overlay.

the semantics of the content, treating the video at the shot
level results in relatively few shots being annotated by these
components with anything other than “no result”. This is
consistent with the nature of broadcast news, where one of
the prevailing journalistic rules in preparing the presentation
of news can be summarized as “let the images tell their own
story”. Consequently, the exact type of the incident in question
(e.g. a “fire”) is not verbally repeated in every visual shot; it is
more often announced by an anchorperson during a “studio”
shot, followed by several shots where the visual modality
prevails and few, if any, semantics are conveyed by speech
or legends on the screen. This is the reason why when larger
story-telling units are considered as the elementary pieces of
news information (e.g. as in our last experiment, where the
entire video was treated as a single story-telling unit), con-
siderable increase in the correct semantic annotation rates can
be achieved. On the other hand, though, linguistic analysis of

ASR and OCR transcripts is invaluable in extracting additional
semantic metadata such as location names, person names, etc.,
which are beyond the reach of any visual analysis technique
unless considering very restricted application scenarios (e.g.
involving a limited number of people that appear on the video
and for which appropriate face recognition models can be
trained, etc.). These conclusions provide the guidelines for the
use of the analysis techniques presented in this work as well
as of other similar techniques in real-life multimedia news
management applications.
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