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A learning approach to knowledge-assisted image analysis and classification is proposed that combines global and local informa-
tion with explicitly defined knowledge in the form of an ontology. The ontology specifies the domain of interest, its subdomains,
the concepts related to each subdomain as well as contextual information. Support vector machines (SVMs) are employed in or-
der to provide image classification to the ontology subdomains based on global image descriptions. In parallel, a segmentation
algorithm is applied to segment the image into regions and SVMs are again employed, this time for performing an initial mapping
between region low-level visual features and the concepts in the ontology. Then, a decision function, that receives as input the com-
puted region-concept associations together with contextual information in the form of concept frequency of appearance, realizes
image classification based on local information. A fusion mechanism subsequently combines the intermediate classification results,
provided by the local- and global-level information processing, to decide on the final image classification. Once the image sub-
domain is selected, final region-concept association is performed using again SVMs and a genetic algorithm (GA) for optimizing
the mapping between the image regions and the selected subdomain concepts taking into account contextual information in the
form of spatial relations. Application of the proposed approach to images of the selected domain results in their classification (i.e.,
their assignment to one of the defined subdomains) and the generation of a fine granularity semantic representation of them (i.e.,
a segmentation map with semantic concepts attached to each segment). Experiments with images from the personal collection
domain, as well as comparative evaluation with other approaches of the literature, demonstrate the performance of the proposed
approach.
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cited.

1. INTRODUCTION

Recent advances in both hardware and software technolo-
gies have resulted in an enormous increase of the num-
ber of images that are available in multimedia databases or
over the internet. As a consequence, the need for techniques
and tools supporting their effective and efficient manipula-
tion has emerged. To this end, several approaches have been
proposed in the literature regarding the tasks of indexing,
searching, classification, and retrieval of images [1, 2].

The very first attempts to address these issues concen-
trated on visual similarity assessment via the definition of
appropriate quantitative image descriptions, which could be
automatically extracted, and suitable metrics in the result-
ing feature space [1]. Whilst low-level descriptors and met-
rics are fundamental building blocks of any image manipu-
lation technique, they evidently fail to fully capture by them-
selves the semantics of the visual medium. Achieving the lat-

ter is a prerequisite for reaching the desired level of efficiency
in image manipulation tasks. To this end, research efforts
have concentrated on the semantic analysis and classifica-
tion of images, often combining the aforementioned tech-
niques with a priori domain specific knowledge, so as to re-
sult in a high-level representation of them [2]. Domain spe-
cific knowledge, when utilized, guides low-level feature ex-
traction, higher-level descriptor derivation, and symbolic in-
ference.

Image classification is an important component of se-
mantic image manipulation attempts. Several approaches
have been proposed in the relevant literature regarding the
task of the categorization of images in a number of prede-
fined classes. In [3], SVMs are utilized for discriminating
between indoor/outdoor images, while a graph decompo-
sition technique and probabilistic neural networks (PNN)
are adopted for the task of supervised image classification
in [4]. In [5], multicategory image classification is realized



2 EURASIP Journal on Advances in Signal Processing

Global
image

classification

Region-based
image

classification

Information
fusion

Final image
classification

Region
reclassification

Final
region-concept

association

Figure 1: General system architecture.

based on an employed parametric mixture model (PMM),
which is adopted from the corresponding multicategory text-
classification task, and the exploitation of the image color
histogram. In [6], classification of images is performed on
the basis of maximum cross correlation estimations and re-
trieval of images from an existing database against a given
query image.

The aforementioned methods are based on global visual
descriptions that are automatically extracted for every im-
age. However, image manipulation based solely on global de-
scriptors does not always lead to the best results [7]. Coming
one step closer to treating images the way humans do, im-
age analysis tasks (including classification) shifted to treat-
ing images at a finer level of granularity, that is, at the re-
gion or local level, taking advantage of image segmentation
techniques. More specifically, in [8], an image classification
method is proposed, which uses a set of computed multiple-
level association rules based on the detected image objects.
In [9], it is demonstrated through several applications how
segmentation and object-based methods improve on pixel-
based image analysis/classification methods, while in [10], a
region-based binary tree representation incorporating with
adaptive processing of data structures is proposed to address
the problem of image classification.

Incorporating knowledge into classification techniques
emerges as a promising approach for improving classifica-
tion efficiency. Such an approach provides a coherent se-
mantic domain model to support “visual” inference in the
specified context [11, 12]. In [13], a framework for learning
intermediate-level visual descriptors of objects organized in
an ontology is presented to support the detection of them. In
[14], a priori knowledge representation models are used as a
knowledge base that assists semantic-based classification and
clustering. Moreover, in [15], semantic entities, in the con-
text of the MPEG-7 standard, are used for knowledge assisted
multimedia analysis and object detection, thus allowing for
semantic level indexing.

In this paper, a learning approach to knowledge-assisted
image analysis and classification is proposed that combines
global and local information with explicitly defined knowl-
edge in the form of an ontology. The ontology specifies the
domain of interest, its subdomains, the concepts related to
each subdomain as well as contextual information. SVMs are
employed in order to provide image classification to the on-
tology subdomains based on global image descriptions. In
parallel, a segmentation algorithm is applied to segment the
image into regions and SVMs are again employed, this time
for performing an initial mapping between region low-level
visual features and the concepts in the ontology. Then, a de-
cision function, that receives as input the computed region
to concepts associations together with contextual informa-
tion in the form of frequency of appearance of each con-
cept, realizes image classification based on local informa-
tion. A fusion mechanism combines the intermediate clas-
sification results, provided by the local- and global-level in-
formation processing, and decides on the final classifica-
tion. Once the image subdomain is selected, final region-
concept association is performed using again SVMs and a
genetic algorithm (GA) for optimizing the mapping between
the image regions and the selected subdomain concepts tak-
ing into account contextual information in the form of spa-
tial relations. The values of the parameters used in the fi-
nal image classification and final region-concept associa-
tion processes are computed according to a parameter op-
timization procedure. The general architecture of the pro-
posed system for semantic image analysis and classification
is illustrated in Figure 1. Application of the proposed ap-
proach to images of the selected domain results in their clas-
sification (i.e., their assignment to one of the defined sub-
domains) and the generation of a fine granularity seman-
tic representation of them (i.e., a segmentation map with
semantic concepts attached to each segment). Experiments
with images from the personal collection domain, as well
as comparative evaluation with other approaches of the lit-
erature, demonstrate the performance of the proposed ap-
proach.

As will be seen by the experimental evaluation of the pro-
posed approach, the elegant combination of global and lo-
cal information as well as contextual and ontology informa-
tion leads to improved image classification performance, as
compared to classification based solely on either global or lo-
cal information. Furthermore, this image to subdomain as-
sociation is used to further improve the accuracy of region
to concept association, as compared to region-concept asso-
ciation performed without using knowledge about the for-
mer.

The paper is organized as follows: Section 2 presents the
overall system architecture. Sections 3 and 4 describe the
low-level information extraction and the employed high-
level knowledge, respectively. Section 5 details the image clas-
sification process and Section 6 presents the region-concept
association procedure. Section 7 describes the methodol-
ogy followed for the optimization of the proposed system
parameters. Experimental results and comparisons are pre-
sented in Section 8 and conclusions are drawn in Section 9.
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2. SYSTEM OVERVIEW

The first step in the development of the proposed knowledge-
assisted image analysis and classification architecture is the
definition of an appropriate knowledge infrastructure. This
is defined in the form of an ontology suitable for describing
the semantics of the selected domain. The proposed ontology
comprises of a set of subdomains, to which images of the do-
main can be classified, and a set of concepts, each associated
with at least one of the aforementioned subdomains. The lat-
ter represent objects of interest that may be depicted in the
images. In addition to the above, the proposed ontology also
defines contextual information in the form of the frequency
of appearance of each concept in the images of each sub-
domain, as well as in the form of spatial relations between
the defined concepts. The defined ontology is discussed in
Section 4 and the subdomains and concepts it includes are
shown in Figure 4.

At the signal level, low-level global image descriptors are
extracted for every image and form an image feature vector.
This is utilized for performing image classification to one of
the defined subdomains based on global-level descriptions.
More specifically, the computed vector is supplied as input
to a set of SVMs, each trained to detect images that belong to
a certain subdomain. Every SVM returns a numerical value
which denotes the degree of confidence to which the corre-
sponding image is assigned to the subdomain associated with
the particular SVM; the maximum of the degrees of confi-
dence over all subdomains indicates the image classification
using global-level information.

In parallel to this process, a segmentation algorithm is
applied to the image in order to divide it into regions, which
are likely to represent meaningful semantic objects. Then,
for every resulting segment, low-level descriptions and spa-
tial relations are estimated, the latter according to the rela-
tions supported by the ontology. The estimated low-level de-
scriptions for each region are employed for generating initial
hypotheses regarding the region’s association to an ontology
concept. This is realized by evaluating the respective low-level
region feature vector and using a second set of SVMs, where
each SVM is trained to identify instances of a single concept
defined in the ontology. SVMs were selected for the afore-
mentioned tasks due to their reported generalization abil-
ity and their efficiency in solving high-dimensionality pat-
tern recognition problems [16, 17]. Subsequently, a decision
function, that receives as input the computed region to con-
cept association hypothesis sets together with the ontology-
provided contextual information in the form of frequency
of concept appearance, realizes image classification based
on local-level information. The domain ontology drives this
process by controlling which concepts are associated with a
specific subdomain.

The computed hypothesis sets for the image-subdomain
association based on both global- and local-level informa-
tion are subsequently introduced to a fusion mechanism,
which combines the supplied intermediate global- and local-
based classification information and decides on the final im-
age classification. Fusion is introduced since, depending on

the nature of the examined subdomain, global-level descrip-
tions may represent more efficiently the semantics of the im-
age or local-level information may be advantageous. Thus,
the fusion mechanism is used for adjusting the weight of the
global features against the local ones for every individual sub-
domain to reach a final image classification decision.

After the image subdomain is selected, generation of re-
fined region-concept association hypotheses is performed.
The procedure is similar to the one described at the previous
stage, the difference being that at this stage only the SVMs
that correspond to concepts of the estimated subdomain are
employed and thus subdomain-specific hypothesis sets are
computed. The refined hypothesis sets for every image region
along with the spatial relations computed for each region,
are subsequently employed for estimating a globally optimal
region-concept assignment by introducing them to a genetic
algorithm. The GA is employed in order to decide upon the
most plausible image interpretation and compute the final
region semantic annotation. The choice of a GA for these
tasks is based on its extensive use in a wide variety of global
optimization problems [18], where they have been shown
to outperform other traditional methods, and is further en-
dorsed by the authors’ previous experience [19, 20], which
showed promising results. The values of the proposed sys-
tem parameters used in the aforementioned final image clas-
sification and final region-concept association processes are
computed according to a parameter optimization procedure.
The detailed architecture of the proposed system for seman-
tic image analysis and classification is illustrated in Figure 2.

Regarding the tasks of SVMs training, computation of
the required contextual information, parameter optimiza-
tion and evaluation of the proposed system performance,
a number of image sets needs to be formed. More specif-
ically, a collection of images, B, belonging to the domain
of interest was assembled. Each image in this collection was
manually annotated (i.e., assigned to a subdomain and, af-
ter segmentation is applied, each of the resulting image re-
gions associated with a concept in the ontology). The collec-
tion was initially divided into two sets: Btr, which is made of
approximately 30% of the images of B, and Bte, which com-
prises the remaining 70%. Btr is used for training the SVMs
framework and computing the required contextual informa-
tion. On the other hand, Bte is used for evaluating the pro-
posed system performance. For the case of the parameter op-
timization procedure, Btr is equally divided into two subsets,
namely B2

tr and B2
v . B2

tr is again used for training the SVMs
framework and computing the required contextual informa-
tion, while B2

v serves in estimating the optimal values of the
aforementioned parameters. The usage and the notation of
all image sets utilized in this work are illustrated in Table 1.
The main symbols used in the remainder of the manuscript
are outlined in Table 2.

3. LOW-LEVEL VISUAL INFORMATION PROCESSING

3.1. Global features extraction

The image classification procedure based on global-level fea-
tures, as will be described in detail in the sequel, requires that
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Figure 2: Detailed system architecture.

Table 1: Table of training and test sets.

B Entire image set used for training and evaluation.

Btr
Subset of B, used for training the SVMs and computing
contextual information. Subdivided to B2

tr and B2
v .

Bte Subset of B, used for evaluation.

B2
tr

Subset of Btr, used for training the SVMs and computing
contextual information during the parameter
optimization procedure.

B2
v

Subset of Btr, used for estimating the parameter
values during parameter optimization.

appropriate low-level descriptions are extracted at the image
level for every examined image and form an image feature
vector. The image feature vector employed in this work com-
prises of three different descriptors of the MPEG-7 standard,
namely the Scalable Color, Homogeneous Texture, and Edge
Histogram descriptors. Their extraction is performed accord-
ing to the guidelines provided by the MPEG-7 experimenta-
tion model (XM) [21]. Following their extraction, the image
feature vector is produced by stacking all extracted MPEG-7
descriptors in a single vector. This vector constitutes the in-
put to the SVMs structure which realizes the global image
classification, as described in Section 5.1.

3.2. Segmentation and local features extraction

In order to implement the initial hypothesis generation pro-
cedure, the examined image has to be segmented into regions
and suitable low-level descriptions have to be extracted for
every resulting segment. In the current implementation, an
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Figure 3: Fuzzy directional relations definition.

extension of the recursive shortest spanning tree (RSST) al-
gorithm has been used for segmenting the image [22]. Out-
put of this segmentation algorithm is a segmentation mask S,
S = {si, i = 1, . . . ,N}, where si, i = 1, . . . ,N , are the created
spatial regions.

For every generated image segment, the following
MPEG-7 descriptors are extracted, according to the guide-
lines provided by the MPEG-7 experimentation model (XM)
[21]: Scalable Color, Homogeneous Texture, Region Shape, and
Edge Histogram. The above descriptors are then combined to
form a single region feature vector. This vector constitutes the
input to the SVMs structure which computes the initial hy-
pothesis sets for every region, as described in Section 5.2.
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Table 2: Legend of main symbols.

Symbol Description

si, S = {si, i = 1, . . . ,N} Image regions after segmentation, set of regions for an image

cj , C = {cj , j = 1, . . . , J} Concept defined in the ontology, the set of all concepts

Dl , l = 1, . . . ,L Subdomains defined in the ontology

rk , R = {rk , k = 1, . . . ,K} Spatial relation, set of all spatial relations defined in the ontology

HD = {hDl , l = 1, . . . ,L} Hypothesis set for global image classification

HC
i = {hCi j , j = 1, . . . , J} Hypothesis set for region-concept association, for region si

g(Dl) Result of local-based image classification for subdomain Dl

G(Dl) Result of final image classification for subdomain Dl

freq(cj ,Dl) Frequency of appearance of concept cj with respect to subdomain Dl

gi j Assignment of concept cj to region si
IM(gi j) Degree of confidence, based on visual similarity, for gi j assignment

Q Genetic algorithm’s chromosome

f (Q) Genetic algorithm’s fitness function

area(si) Area of region si
v Region compactness value

Irk (si, s j) Degree to which relation rk is satisfied for the (si, s j) pair of regions

IS(gi j , gpq)
Degree to which the spatial constraint between the gi j , gpq concept to
region mappings is satisfied

3.3. Fuzzy spatial relations extraction

Exploiting domain-specific spatial knowledge in image anal-
ysis constitutes an elegant way for removing ambiguities in
region-concept associations. More specifically, it is generally
observed that objects tend to be present in a scene within a
particular spatial context and thus spatial information can
substantially assist in discriminating between concepts ex-
hibiting similar visual characteristics. Among the most com-
monly adopted spatial relations, directional ones have re-
ceived particular interest. They are used to denote the or-
der of objects in space. In the present analysis framework,
eight fuzzy directional relations are supported, namely North
(N), East (E), South (S), West (W), South-East (SE), South-
West (SW), North-East (NE), and North-West (NW). These
relations are utilized for computing part of the contextual in-
formation stored in the ontology, as described in detail in
Section 4, and further used for the final region-concept asso-
ciation of Section 6.

Fuzzy directional relations extraction in the proposed
analysis approach builds on the principles of projection-
and angle-based methodologies [23, 24] and consists of the
following steps. First, a reduced box is computed from the
ground region’s (the region used as reference and is painted in
dark grey in Figure 3) minimum bounding rectangle (MBR),
so as to include the region in a more representative way. The
computation of this reduced box is performed in terms of the
MBR compactness value v, which is defined as the fraction
of the region’s area to the area of the respective MBR: if the
initially computed v is below a threshold T, the ground re-
gion’s MBR is reduced repeatedly until the desired threshold
is satisfied. Then, eight cone-shaped regions are formed on
top of this reduced box, as illustrated in Figure 3, each cor-
responding to one of the defined directional relations. The

percentage of the figure region (whose relative position is to
be estimated and is painted in light grey in Figure 3) points
that are included in each of the cone-shaped regions deter-
mines the degree to which the corresponding directional re-
lation is satisfied. After extensive experimentations, the value
of threshold T was set equal to 0.85.

4. KNOWLEDGE INFRASTRUCTURE

Among the possible domain knowledge representations, on-
tologies [25] present a number of advantages, the most im-
portant being that they provide a formal framework for sup-
porting explicit, machine-processable semantics definition
and they enable the derivation of new knowledge through au-
tomated inference. Thus, ontologies are suitable for express-
ing multimedia content semantics so that automatic seman-
tic analysis and further processing of the extracted seman-
tic descriptions are allowed [12]. Following these considera-
tions, an ontology was developed for representing the knowl-
edge components that need to be explicitly defined under the
proposed approach. More specifically, the images of concern
belong to the personal collection domain. Consequently, in
the developed ontology, a number of subdomains, related to
the broader domain of interest, are defined (such as Build-
ings, Rockyside, etc.), denoted by Dl, l = 1, . . . ,L. For every
subdomain, the particular semantic concepts of interest are
also defined in the domain ontology (e.g., in the seaside sub-
domain the defined concepts include Sea, Sand, Person, etc.),
denoted by cj , C = {cj , j = 1, . . . , J} being the set of all
concepts defined in the ontology. Contextual information in
the form of spatial relations between the concepts, as well as
contextual information in the form of frequency of appear-
ance of each concept in every subdomain, are also included.
The subdomains and concepts of the ontology employed in
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Figure 4: Subdomains and concepts of the ontology developed for the personal collection domain.

this work are presented in Figure 4, where can be seen that
the developed ontology includes 6 subdomains and 24 indi-
vidual concepts. It must be noted that the employed ontology
can easily be extended so as to include additional concepts
and subdomains, as well as any additional information that
could be used for the analysis.

The values of the spatial relations (spatial-related contex-
tual information) between the concepts for every particular
subdomain, as opposed to the concepts themselves that are
manually defined, are estimated according to the following
ontology population procedure.

Let R,

R = {rk, k = 1, . . . ,K
} = {N, NW, NE, S, SW, SE, W, E},

(1)

denote the set of the supported spatial relations. Then, the
degree to which region si satisfies relation rk with respect to
region s j can be denoted as Irk (si, s j). The values of function
Irk , for a specific couple of regions, are estimated according to
the procedure of Section 3.3 and belong to [0, 1]. To populate
the ontology, this function needs to be evaluated over a set of
segmented images with ground truth classification and an-
notations, that serves as a training set. For that purpose, the
subset Btr is employed as discussed in Section 2. Then, using
this training set the ontology population procedure is per-
formed by estimating the mean values, Irk mean, of Irk for every
k over all pairs of regions assigned to concepts (ci, cj), i �= j,
and storing them in the ontology. These constitute the con-
straints input to the optimization problem which is solved by
the genetic algorithm, as will be described in Section 6.

Regarding the contextual information in the form of fre-
quency of appearance, the reported frequency of each con-
cept cj with respect to the subdomain Dl, freq(cj ,Dl), is de-
fined as the fraction of the number of appearances of con-
cept cj in images of the training set that belong to subdomain
Dl to the total number of the images of the afore-mentioned
training set that belong to subdomain Dl.

5. IMAGE CLASSIFICATION AND INITIAL
REGION-CONCEPT ASSOCIATION

5.1. Image classification using global features

In order to perform the classification of the examined im-
ages to one of the subdomains defined in the ontology using
global image descriptions, a compound image feature vec-
tor is initially formed, as described in Section 3.1. Then, an
SVMs structure is utilized to compute the class to which ev-
ery image belongs. This comprises L SVMs, one for every de-
fined subdomain Dl, each trained under the “one-against-all”
approach. For the purpose of training the SVMs, the subdo-
main membership of the images belonging to the training set
Btr, assembled in Section 2, is employed. The image feature
vector discussed in Section 3.1 constitutes the input to each
SVM, which at the evaluation stage returns for every image of
unknown subdomain membership a numerical value in the
range [0, 1]. This value denotes the degree of confidence to
which the corresponding image is assigned to the subdomain
associated with the particular SVM. The metric adopted is
defined as follows: for every input feature vector the distance
zl from the corresponding SVM’s separating hyperplane is
initially calculated. This distance is positive in case of correct
classification and negative otherwise. Then, a sigmoid func-
tion [26] is employed to compute the respective degree of
confidence, hDl , as follows:

hDl =
1

1 + e−t·zl
, (2)

where the slope parameter t is experimentally set. For each
image, the maximum of the L calculated degrees of member-
ship indicates its classification based on global-level features,
whereas all degrees of confidence, hDl , constitute its subdo-
main hypotheses set HD, where HD = {hDl , l = 1, . . . ,L}.
The SVM structure employed for image classification based
on global features, as well as for the region-concept associ-
ation tasks described in the following sections, was realized
using the SVM software libraries of [27].
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5.2. Image classification using local features and
initial region-concept association

As already described in Section 2, the SVMs structure used
in the previous section for global image classification is also
utilized to compute an initial region-concept association for
every image segment. Similarly to the global case, at this finer
level of granularity an individual SVM is introduced for every
concept cj of the employed ontology, in order to detect the
corresponding association. Each SVM is again trained under
the “one-against-all” approach. For that purpose, the train-
ing set Btr, assembled in Section 2, is again employed and
the region feature vector, as defined in Section 3.2, constitutes
the input to each SVM. For the purpose of initial region-
concept association, every SVM again returns a numerical
value in the range [0, 1], which in this case denotes the degree
of confidence to which the corresponding region is assigned
to the concept associated with the particular SVM. The met-
ric adopted for expressing the aforementioned degree of con-
fidence is similar to the one adopted for the global image
classification case, defined in the previous section. Specifi-
cally, let hCi j = IM(gi j) denote the degree to which the visual
descriptors extracted for region si match the ones of concept
cj , where gi j represents the particular assignment of cj to si.
Then, IM(gi j) is defined as

IM
(
gi j
) = 1

1 + e−t·zi j
, (3)

where zi j is the distance from the corresponding SVM’s sepa-
rating hyperplane for the input feature vector used for evalu-
ating the gi j assignment. The pairs of all supported concepts
and their respective degree of confidence hCi j computed for

segment si comprise the region’s concept hypothesis set HC
i ,

where HC
i = {hCi j , j = 1, . . . , J}.

The estimated concept hypotheses sets, HC
i , generated for

every image region si, can provide valuable cues for perform-
ing image classification based on local-level information. To
this end, a decision function for estimating the subdomain
membership of the examined image on the basis of the con-
cept hypotheses sets of its constituent regions and the on-
tology provided contextual information in the form of fre-
quency of concept appearance (i.e., effecting image classifica-
tion based on local-level information) is defined as follows:

g
(
Dl
) =

∑

si, where cj∈Dl

IM
(
gi j
) · E(si, cj , al,Dl

)

E
(
si, cj , al,Dl

) = al · freq
(
cj ,Dl

)
+
(
1− al

) · area
(
si
)
,

(4)

where freq(cj ,Dl) is the concept frequency of appearance de-
fined in Section 4 and area(si) is the percentage of the to-
tal image area captured by region si. Parameters al, where
alε[0, 1], are introduced for adjusting the importance of the
aforementioned frequencies against the regions’ areas for ev-
ery supported subdomain. Their values are estimated accord-
ing to the parameter optimization procedure described in
Section 7.1. As can be seen in (4), the constructed domain
ontology drives the estimation of the respective subdomain
membership of the image by controlling which concepts are

associated with a specific subdomain and thus can contribute
to the summation of (4). The latter is essentially a weighted
summation of region-concept association degrees of confi-
dence, the weights being controlled by both contextual infor-
mation (concept frequency of appearance) as well as region
visual importance, here approximated by the relative region
area.

5.3. Information fusion for image classification

After image classification has been performed using solely
global and solely local information, respectively, a fusion
mechanism is employed for deciding upon the final image
classification. Fusion is introduced since, depending on the
nature of the examined subdomain, global-level descriptions
may represent more efficiently the semantics of the image or
local-level information may be advantageous. Thus, adjust-
ing the weights of both image classification results leads to
more accurate final classification decisions. More specifically,
the computed hypothesis sets for the image-subdomain as-
sociation based on both global-(hDl ) and local-(g(Dl)) level
information are introduced to a mechanism which has the
form of a weighted summation, based on the following equa-
tion:

G
(
Dl
) = μl · g

(
Dl
)

+
(
1− μl

) · hDl , (5)

where μl, l = 1, . . . ,L and μlε[0, 1], are subdomain-specific
normalization parameters, which adjust the magnitude of
the global features against the local ones upon the final out-
come and their values are estimated according to the proce-
dure described in Section 7.1. The subdomain with the high-
est G(Dl) value constitutes the final image classification deci-
sion.

6. FINAL REGION-CONCEPT ASSOCIATION

6.1. Hypotheses refinement and fuzzy spatial
constraints verification factor

After the final image classification decision is made, a re-
fined region-concept association procedure is performed.
This procedure is similar to the one described in Section 5.2,
the difference being that only the SVMs that correspond to
concepts associated with the estimated subdomain are em-
ployed at this stage and thus subdomain-specific concept hy-
pothesis sets are computed for every image segment. Sub-
sequently, a genetic algorithm is introduced to decide on
the optimal image interpretation, as outlined in Section 2.
The GA is employed to solve a global optimization prob-
lem, while exploiting the available subdomain-specific spa-
tial knowledge, thus overcoming the inherent visual infor-
mation ambiguity. Spatial knowledge is obtained for every
subdomain as described in Section 4 and the resulting learnt
fuzzy spatial relations serve as constraints denoting the “al-
lowed” subdomain concepts spatial topology.

Let IS(gi j , gpq) be defined as a function that returns the
degree to which the spatial constraint between the gi j , gpq
concept to region mappings is satisfied. IS(gi j , gpq) is set to
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receive values in the interval [0, 1], where “1” denotes an al-
lowable relation and “0” denotes an unacceptable one, based
on the learnt spatial constraints. To calculate this value the
following procedure is used: let Irk (si, sp) denote the de-
grees to which each spatial relation is verified for a certain
pair of regions si, sp of the examined image (as defined in
Section 4) and cj , cq denote the subdomain defined concepts
assigned to them, respectively. A normalized Euclidean dis-
tance d(gi j , gpq) is calculated, with respect to the correspond-
ing spatial constraint, as introduced in Section 4, based on
the following equation:

d
(
gi j , gpq

) =
√∑8

k=1

(
Irk mean

(
cj , cq

)− Irk
(
si, sp

))2

√
8

, (6)

which receives values in the interval [0, 1]. The function
IS(gi j , gpq) is then defined as

IS
(
gi j , gpq

) = 1− d
(
gi j , gpq

)
(7)

and takes values in the interval [0, 1] as well.

6.2. Implementation of genetic algorithm

As already described, the employed genetic algorithm uses
as input the refined hypotheses sets (i.e., the subdomain-
specific hypothesis sets), which are generated by the same
SVMs structure as the initial hypotheses sets, the fuzzy spa-
tial relations extracted between the examined image regions,
and the spatial-related subdomain-specific contextual infor-
mation as produced by the particular training process. Under
the proposed approach, each chromosome represents a pos-
sible solution. Consequently, the number of the genes com-
prising each chromosome equals the number N of the re-
gions si produced by the segmentation algorithm and each
gene assigns a defined subdomain concept to an image seg-
ment.

A population of 200 randomly generated chromosomes
is employed. An appropriate fitness function is introduced to
provide a quantitative measure of each solution fitness for
the estimated subdomain, that is, to determine the degree to
which each interpretation is plausible:

f (Q) = λl · FSnorm +
(
1− λl

) · SCnorm, (8)

where Q denotes a particular chromosome, FSnorm refers
to the degree of low-level descriptors matching, and SCnorm

stands for the degree of consistency with respect to the pro-
vided spatial subdomain-specific knowledge. The set of vari-
ables λl, l = 1, . . . ,L, and λlε[0, 1], are introduced to adjust
the degree to which visual feature matching and spatial re-
lation consistency should affect the final outcome for every
particular subdomain. Their values are estimated according
to an optimization procedure, as described in Section 7.2.

The values of SCnorm and FSnorm are computed as follows:

FSnorm =
∑N

i=1 IM
(
gi j
)− Imin

Imax − Imin
, (9)

where Imin =
∑N

i=1 min j Im(gi j) is the sum of the minimum
degrees of confidence assigned to each region hypotheses set
and Imax =

∑N
i=1 max j Im(gi j) is the sum of the maximum

degrees of confidence values, respectively,

SCnorm =
∑W

l=1 ISl
(
gi j , gpq

)

W
, (10)

where W denotes the number of the constraints that had to
be examined.

After the population initialization, new generations are
iteratively produced until the optimal solution is reached.
Each generation results from the current one through the ap-
plication of the following operators:

(i) selection: a pair of chromosomes from the current
generation are selected to serve as parents for the next
generation. In the proposed framework, the tourna-
ment selection operator [28] with replacement is used;

(ii) crossover: two selected chromosomes serve as parents
for the computation of two new offsprings. Uniform
crossover with probability of 0.7 is used;

(iii) mutation: every gene of the processed offspring chro-
mosome is likely to be mutated with probability of
0.008. If mutation occurs for a particular gene, then its
corresponding value is modified, while updating the
respective degree of confidence to the one of the new
concept that is associated to it.

To ensure that chromosomes with high fitness will con-
tribute to the next generation, the overlapping populations
approach was adopted. More specifically, assuming a popu-
lation of m chromosomes, ms chromosomes are selected ac-
cording to the employed selection method, and by applica-
tion of the crossover and mutation operators, ms new chro-
mosomes are produced. Upon the resulting m + ms chromo-
somes, the selection operator is applied once again in order
to select the m chromosomes that will comprise the new gen-
eration. After experimentation, it was shown that choosing
ms = 0.4 m resulted in higher performance and faster conver-
gence. The above iterative procedure continues until the di-
versity of the current generation is equal to/less than 0.001 or
the number of generations exceeds 50. The above GA-based
final region-concept association procedure was realized us-
ing the GA software libraries of [29].

7. PARAMETER OPTIMIZATION

In Sections 5.2 and 5.3, parameters al (4) and μl (5) are
introduced for adjusting the importance of the frequency
of appearance against the region’s area and the global ver-
sus local information on the final image classification deci-
sion for every particular ontology defined subdomain, re-
spectively. Additionally, in Section 6.2 parameters λl (8) are
introduced for adjusting the degree to which visual feature
matching and spatial relation consistency should affect the
final region-concept association outcome for every individ-
ual subdomain. In this section, we describe the methodol-
ogy followed to estimate the values for the afore-mentioned
parameters. This methodology is based on the use of a GA,
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previously introduced for final region-concept association
(Section 6.2). For the purpose of parameter value optimiza-
tion, the chromosomes and the respective fitness function are
defined accordingly.

Subject to the problem of concern is the computation of
the values of

(i) parameters al and μl that lead to the highest correct
image classification rate,

(ii) parameters λl that lead to the highest correct concept
association rate.

For that purpose, Classification Accuracy, CiA, is used as a
quantitative performance measure and is defined as the frac-
tion of the number of the correctly classified images to the to-
tal number of images to be classified, for the first case. More-
over, Concept Accuracy, CoA, which is defined as the fraction
of the number of the correctly assigned concepts to the total
number of image regions to be examined, is used for the sec-
ond case. Then, for each problem the GA’s chromosome, Q,
is suitably formed, so as to represent a corresponding pos-
sible solution, and is further provided with an appropriate
fitness function, f (Q), for estimating each solution fitness,
as described in the sequel.

7.1. Optimization of image classification parameters

For the case of optimizing parameters al and μl, each chro-
mosome Q represents a possible solution, that is, a candidate
set of values for the parameters. In the current implementa-
tion, the number of genes of each chromosome is set equal to
2·l·2 = 4·l. The genes represent the decimal coded values of
parameters al and μl assigned to the respective chromosome,
according to the following equation:

Q =
[
q1 q2 · · · q4·l

]

=
[
μ1

1 μ2
1 · · · μ1

l μ2
l a1

1 a2
1 · · · a1

l a2
l

]
,

(11)

where qiε{0, 1, . . . , 9} represents the value of gene i and μtl ,
atl represent the tth decimal digits of parameters μl, al, re-
spectively. Furthermore, the genetic algorithm is provided
with an appropriate fitness function, which is used for eval-
uating the suitability of each solution. In this case, the fit-
ness function is defined as equal to the CiA metric already
defined, where CiA is calculated over all images that com-
prise the validation set B2

v , after applying the fusion mecha-
nism (Section 5.3) using for parameters al and μl the values
denoted by the genes of chromosome Q.

Regarding the GA’s implementation details, an initial
population of 100 randomly generated chromosomes is em-
ployed. New generations are successively produced based on
the same evolution mechanism as described in Section 6.2.
The differences are that the maximum number of genera-
tions is set equal to 30 and the probabilities of mutation and
crossover are set equal to 0.4 and 0.2, respectively. The diver-
gence in the value of the probability of the mutation operator
denotes its increased importance in this particular optimiza-
tion problem. The final outcome of this optimization proce-

dure are the optimal values of parameters al and μl, used in
(4) and (5).

7.2. Optimization of region-concept association
parameters

For the case of optimizing parameters λl, the methodology
described in this section is followed for every individual sub-
domain defined in the ontology. More specifically, under the
proposed approach, each chromosome Q represents a pos-
sible solution, that is, a candidate λl value. The number of
genes of each chromosome is set equal to 5. The genes rep-
resent the binary coded value of parameter λl assigned to the
respective chromosome, according to the following equation:

Q =
[
q1 q2 · · · q5

]
where

5∑

i=1

qi · 2−i = λl, (12)

where qiε{0, 1} represents the value of gene i. The corre-
sponding fitness function is defined as equal to the CoA met-
ric already defined, where CoA is calculated over all images
that belong to the Dl subdomain and are included in the
validation set B2

v , after applying the genetic algorithm of
Section 6.2 with λl =

∑5
i=1 qi ·2−i. Regarding the GA’s imple-

mentation details, these are identical to the ones discussed in
Section 7.1.

8. EXPERIMENTAL RESULTS

In this section, experimental results of the application of
the proposed approach to images belonging to the personal
collection domain, as well as comparative evaluation results
with other approaches of the literature, are presented. The
first step to the experimental evaluation was the develop-
ment of an appropriate ontology in order to represent the
selected domain, that is, the personal image collection do-
main, defining its subdomains, the concepts of interest asso-
ciated with every subdomain and the supported contextual
information. The developed ontology was described in detail
in Section 4 and the subdomains and concepts of it can be
seen in Figure 4.

Then, a set of 1800 randomly selected images belong-
ing to the aforementioned domain were used to assemble
the image collection B and its constituent subsets used for
training the different system components and for evaluation,
as described in Section 2. Each image was manually anno-
tated (i.e., manually generated image classification and, af-
ter segmentation is applied, region-concept associations) ac-
cording to the ontology definitions. The content used was
mainly obtained from the Flickr online photo management
and sharing application [30] and includes images that de-
pict cityscape, seaside, mountain, roadside, landscape, and
sport-side locations. For content acquisition, the keyword-
based search functionalities of [30] were employed. For every
ontology defined subdomain, a corresponding set of suitable
keywords was formed (e.g., regarding the Rockyside subdo-
main, the keywords Rock, Rockyside, Mountain were adopted)
and used to drive the content acquisition process. Thus, the
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Global image classification

Buildings: 0.44 Buildings: 0.62 Buildings: 0.22 Buildings: 0.21

Rockyside: 0.58 Rockyside: 0.33 Rockyside: 0.29 Rockyside: 0.34

Forest: 0.56 Forest: 0.32 Forest: 0.84 Forest: 0.54

Seaside: 0.30 Seaside: 0.21 Seaside: 0.31 Seaside: 0.12

Roadside: 0.51 Roadside: 0.27 Roadside: 0.27 Roadside: 0.37

Sports: 0.22 Sports: 0.14 Sports: 0.05 Sports: 0.11

Local (i.e., region-based)
image classification

Buildings: 0.64 Buildings: 0.23 Buildings: 0.32 Buildings: 0.24

Rockyside: 0.32 Rockyside: 0.29 Rockyside: 0.29 Rockyside: 0.28

Forest: 0.24 Forest: 0.12 Forest: 0.31 Forest: 0.33

Seaside: 0.18 Seaside: 0.14 Seaside: 0.39 Seaside: 0.27

Roadside: 0.34 Roadside: 0.34 Roadside: 0.24 Roadside: 0.39

Sports: 0.21 Sports: 0.11 Sports: 0.18 Sports: 0.11

Final image classification
using information fusion

Buildings Roadside Forest Forest

Figure 5: Indicative image-subdomain association results.

developed ontology concepts are compatible with concepts
that are defined by a large number of users, which renders
the whole evaluation framework more realistic.

Following the creation of the image sets, image set Btr

was utilized for SVMs training. The training procedure for
both the global image classification and the region-concept
association cases was performed as described in Sections 5.1
and 5.2. The Gaussian radial basis function was used as a ker-
nel function by each SVM, to allow for nonlinear discrimi-
nation of the samples. The low-level image feature vector, as
described in detail in Section 3.1, is composed of 398 values,
while the low-level region feature vector is composed of 433
values, calculated as described in Section 3.2. The values of
both vectors are normalized in the interval [−1, 1]. On the
other hand, for the acquisition of the required contextual in-
formation, the procedure described in Section 4 was followed
for every subdomain.

Based on the trained SVMs structure, global image classi-
fication is performed as described in Section 5.1. Then, after
the segmentation algorithm is applied and initial hypotheses
are generated for every resulting image segment, the decision
function is introduced that realizes image classification based
on local-level as well as contextual information in the form of
concept frequency of appearance, as outlined in Section 5.2.
Afterwards, the fusion mechanism is employed which im-
plements the fusion of the intermediate classification results
based solely on global- and solely on local-level information
and computes the final image classification (Section 5.3). In
Figures 5 and 6 indicative classification results are presented,
showing the input image, the image classification effected
using only global (row 2) and only local (row 3) informa-
tion, as indicated by the maximum of the hDl and of g(Dl),
l = 1, . . . ,L, respectively, and the final classification after the

evaluation of the fusion mechanism, G(Dl). It can be seen in
these figures that the final classification result, produced by
the fusion mechanism, may differ from the one that is im-
plied by the overall maximum of hDl and g(Dl) (e.g., second
image of Figure 5).

In Table 3, quantitative performance measures of the im-
age classification algorithms are given in terms of accuracy
for each subdomain and overall. Accuracy is defined as the
percentage of the images, belonging to a particular subdo-
main, that are correctly classified. The results presented in
Table 3 show that the global classification method generally
leads to better results than the local one. For the image clas-
sification based on local information, (4) is used to com-
bine region-concept associations and contextual information
in an ontology-driven manner as discussed in Section 5.2. It
must be noted that the performance of both algorithms is
subdomain dependent, that is, some subdomains are more
suitable for classification based on global features (e.g., Rock-
yside and Forest), whereas for other subdomains the applica-
tion of a region-based image classification approach is ad-
vantageous. For example, in the Rockyside subdomain the
presented color distribution and texture characteristics are
very similar among the corresponding images. Thus, image
classification based on global features performs better than
the local-level case. On the other hand, for subdomains like
Buildings, where the color distribution and the texture char-
acteristics of the depicted real-world objects may vary signif-
icantly (i.e., buildings are likely to have many different col-
ors and shapes), the image classification based on local-level
information presents increased classification rate. Further-
more, it can be verified that the proposed global and local
classification information fusion approach leads to a signif-
icant performance improvement. Moreover, in Table 3 the
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Input image

Global image classification

Buildings: 0.31 Buildings: 0.17 Buildings: 0.38 Buildings: 0.12

Rockyside: 0.84 Rockyside: 0.32 Rockyside: 0.18 Rockyside: 0.21

Forest: 0.41 Forest: 0.56 Forest: 0.61 Forest: 0.25

Seaside: 0.37 Seaside: 0.45 Seaside: 0.22 Seaside: 0.28

Roadside: 0.21 Roadside: 0.31 Roadside: 0.17 Roadside: 0.21

Sports: 0.19 Sports: 0.22 Sports: 0.12 Sports: 0.91

local (i.e., region-based)
image classification

Buildings: 0.21 Buildings: 0.22 Buildings: 0.81 Buildings: 0.14

Rockyside: 0.19 Rockyside: 0.19 Rockyside: 0.19 Rockyside: 0.12

Forest: 0.22 Forest: 0.27 Forest: 0.29 Forest: 0.12

Seaside: 0.17 Seaside: 0.52 Seaside: 0.24 Seaside: 0.21

Roadside: 0.12 Roadside: 0.19 Roadside: 0.12 Roadside: 0.11

Sports: 0.09 Sports: 0.17 Sports: 0.09 Sports: 0.37

Final image classification
using information fusion

Rockyside Seaside Building Sports

Figure 6: Indicative image-subdomain association results.

Table 3: Subdomain detection accuracy.

Accuracy

Method Buildings Rockyside Forest Seaside Roadside Sports Overall

Global image classification 38.00% 68.63% 76.67% 85.71% 68.42% 92.00% 71.91%

Local (i.e., region-based) image classification 78.00% 50.98% 35.00% 60.71% 47.01% 94.00% 58.77%

Final image classification using information fusion 84.00% 72.55% 70.00% 85.71% 68.15% 95.00% 78.70%

SVM classifier proposed in [31] 56.00% 72.05% 73.33% 82.14% 63.15% 98.50% 74.07%

K-NN classifier proposed in [32] 62.00% 58.83% 81.67% 73.21% 42.85% 97.50% 69.13%

performance of the proposed approach is compared with the
algorithms presented in [31], where an SVM-based multi-
class classifier is used for image classification based on global
features, and in [32], where a K-NN classifier combined with
an appropriately trained feed-forward neural network real-
izes image categorization based on global-level descriptions.
It can be easily observed that the proposed approach outper-
forms the aforementioned algorithms in most subdomains as
well as in overall classification accuracy.

Using the final image classification decision, a concept
hypothesis refinement procedure is performed (Section 6.1).
The results are then passed to a genetic algorithm along with
the subdomain-specific contextual knowledge in the form
of spatial relations, in order to determine the globally op-
timal image interpretation (Section 6.2). In Figures 7 and 8
representative concept detection results are illustrated show-
ing the original image, the annotation resulting from the
initial hypotheses set, considering for each image segment
si the hypothesis with the highest degree of confidence hCi j ,
j = 1, . . . , J , and the final interpretation after the subdomain
specification and the exploitation of the provided spatial
related information. In Table 4, performance measures are

given for the concept detection task along the sequential steps
of the proposed approach in terms of accuracy, similarly to
the ones defined in Table 3. It must be noted that for the
numerical evaluation of the concept detection accuracy, any
concept present in the examined image test set that was not
included in the ontology subdomain concepts definitions, for
example, umbrella in the seaside subdomain, was not taken
into account. From the results presented in Table 4, an in-
crease in the performance introduced by the proposed ap-
proach can be observed. More specifically, the overall as well
as most subdomain specific concept detection accuracies are
improved after the implementation of the proposed classifi-
cation algorithm, compared to the performance which corre-
sponds to the initial region-concept association (derived by
the initial hypotheses generation step). This increase in per-
formance justifies the assumption that the reduction of the
total number of concepts to be detected, after image classifi-
cation is performed, leads to better concept detection results.
Moreover, the use of the genetic algorithm, which is provided
with the particular subdomain spatial constraints, introduces
a further performance increase in most subdomains as well
as overall. The latter demonstrates the effectiveness of using
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Figure 7: Indicative region-concept association results.

a genetic algorithm to reach an optimal image interpretation
given degrees of confidence for visual similarity and spatial
consistency against the domain definitions. The values of the
parameters used in the final image classification and region-
concept association process are computed according to the
parameter optimization procedure described in Section 7.

Regarding the computational complexity of the proposed
system, the times along the sequential steps of the algorithm
for a 600 × 800 pixels image are illustrated in Table 5. For
the experimental evaluation we used a Pentium IV PC with
3 GHz CPU and 1 GB RAM. It must be noted that during the
global classification step, the time needed for global descrip-
tions extraction was considered. Similarly, for the region-
based classification case, the time needed for segmentation
and region-level descriptions extraction was also taken into
account.

9. CONCLUSIONS

In this paper, an approach to knowledge-assisted image anal-
ysis and classification that combines global and local infor-
mation with explicitly defined knowledge in the form of
an ontology was presented. The proposed system was tested
for the domain of personal collection images and produced
promising results in this relatively broad domain. The ef-
fect of the different components of the proposed system in
classification and analysis efficiency was clearly illustrated,
documenting their usefulness in a knowledge-assisted im-
age analysis and classification framework. As shown by the
experimental evaluation of the proposed approach, the ele-
gant combination of global and local information as well as
contextual information leads to improved image classifica-
tion performance, as compared to classification based solely
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Table 4: Concept detection accuracy.

Accuracy

Algorithm stage Buildings Rockyside Forest Seaside Roadside Sports Overall

Initial region-concept association 48.55% 47.45% 47.66% 63.33% 50.18% 74.55% 55.05%

Refined region-concept association 50.92% 49.68% 51.46% 65.19% 50.18% 79.04% 57.60%

Final region-concept association 50.39% 50.00% 52.33% 67.77% 54.44% 76.94% 58.33%

Table 5: Processing time for 800× 600 pixels image.

Global classification Region-based classification Information fusion Final region-concept association

Time (s) 8.77 42.89 0.001 24.46
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on either global or local information. Furthermore, this im-
age to subdomain association is used to further improve the
accuracy of region to concept association, as compared to re-
gion to concept association performed without using knowl-
edge about the former. The proposed framework is not re-
stricted to the domain used in this work for evaluation pur-
poses, but can easily be extended by including additional sub-
domains and concepts, providing that the employed knowl-
edge representation is appropriately extended so as to ac-
count for these additional subdomains and concepts, and
that the employed training set is enriched with suitable train-
ing samples.
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