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Region-based Image Retrieval using an Object
Ontology and Relevance Feedback
Vasileios Mezaris, Ioannis Kompatsiaris, and Michael G. Strintzis

Abstract— In this paper, an image retrieval methodol-
ogy suited for search in large collections of heterogeneous
images is presented. The proposed approach employs a
fully unsupervised segmentation algorithm to divide im-
ages into regions and endow the indexing and retrieval sys-
tem with content-based functionalities. Low-level descrip-
tors for the color, position, size and shape of each region
are subsequently extracted. These arithmetic descriptors
are automatically associated with appropriate qualitative
intermediate-level descriptors, which form a simple vocab-
ulary termed object ontology. The object ontology is used
to allow the qualitative definition of the high-level concepts
the user queries for (semantic objects, each represented by
a keyword) and their relations in a human-centered fash-
ion. When querying for a specific semantic object (or ob-
jects), the intermediate-level descriptor values associated
with both the semantic object and all image regions in the
collection are initially compared, resulting in the rejection of
most image regions as irrelevant. Following that, a relevance
feedback mechanism, based on support vector machines and
using the low-level descriptors, is invoked to rank the re-
maining, potentially relevant image regions and produce the
final query results. Experimental results and comparisons
demonstrate in practice the effectiveness of our approach.

Keywords : image retrieval; image databases; image seg-
mentation; ontology; relevance feedback; support vector ma-
chines; digital libraries

I. Introduction

In recent years, the accelerated growth of digital media
collections and in particular still image collections, both
proprietary and on the Web, has established the need for
the development of human-centered tools for the efficient
access and retrieval of visual information. As the amount
of information available in the form of still images continu-
ously increases, the necessity of efficient methods for the re-
trieval of the visual information becomes evident [1]. Addi-
tionally, the continuously increasing number of people with
access to such image collections further dictates that more
emphasis be put on attributes such as the user-friendliness
and flexibility of any image retrieval scheme. These facts,
along with the diversity of available image collections, vary-
ing from restricted, e.g. medical image databases and satel-
lite photo collections, to general purpose collections, which
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contain heterogeneous images, and the diversity of require-
ments regarding the amount of knowledge about the images
that should be used for indexing, have led to the develop-
ment of a wide range of solutions [2].

The very first attempts for image retrieval were based on
exploiting existing image captions to classify images to pre-
determined classes or to create a restricted vocabulary [3].
Although relatively simple and computationally efficient,
this approach has several restrictions mainly deriving from
the use of a restricted vocabulary that neither allows for
unanticipated queries nor can be extended without reeval-
uating the possible connection between each image in the
database and each new addition to the vocabulary. Ad-
ditionally, such keyword-based approaches assume either
the preexistence of textual image annotations (e.g. cap-
tions) or that annotation using the predetermined vocab-
ulary is performed manually. In the latter case, inconsis-
tency of the keyword assignments among different indexers
can also hamper performance. Recently, a methodology
for computer-assisted annotation of image collections was
presented [4].

To overcome the limitations of the keyword-based ap-
proach, the use of the image visual contents has been pro-
posed. This category of approaches utilizes the visual con-
tents by extracting low-level indexing features for each im-
age or image segment (region). Then, relevant images are
retrieved by comparing the low-level features of each item
in the database with those of a user-supplied sketch [5]
or, more often, a key-image that is either selected from a
restricted image set or is supplied by the user (query-by-
example). One of the first attempts to realize this scheme is
the Query by Image Content system [6], [7]. Newer contri-
butions to query-by-example (QbE) include systems such
as Netra [8], [9], Mars [10], Photobook [11], VisualSEEK
[12] and Istorama [13]. They all employ the general frame-
work of query-by-example, demonstrating the use of vari-
ous indexing feature-sets either in the image or in the region
domain.

A recent addition to this group, Berkeley’s Blobworld
[14], [15], proposes segmentation using the Expectation-
Maximization algorithm and clearly demonstrates the im-
provement in query results attained by querying using
region-based indexing features rather than global image
properties, under the query-by-example scheme. Other
works on segmentation, that can be of use in content-
based retrieval, include segmentation by Anisotropic Dif-
fusion [16], the RSST algorithm [17], the Watershed trans-
formation [18], the Normalized Cut [19], and the Mean
Shift approach [20]. While such segmentation algorithms
can endow an indexing and retrieval system with exten-



2 EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, VOL. 2004, NO. 6, PP. 886-901, JUNE 2004

sive content-based functionalities, these are limited by the
main drawback of query-by-example approaches: the need
for the availability of an appropriate key-image in order
to start a query. Occasionally, satisfying this condition is
not feasible, particularly for image classes that are under-
represented in the database.

Hybrid methods exploiting both keywords and the image
visual contents have also been proposed [21], [22], [23]. In
[21], the use of probabilistic multimedia objects (Multijects)
is proposed; these are built using Hidden Markov Mod-
els and necessary training data. Significant work was re-
cently presented on unifying keywords and visual contents
in image retrieval. The method of [23] performs semantic
grouping of keywords based on user relevance feedback to
effectively address issues such as word similarity and al-
low for more efficient queries; nevertheless, it still relies
on preexisting or manually added textual annotations. In
well-structured specific domain applications (e.g sports and
news broadcasting) domain-specific features that facilitate
the modelling of higher level semantics can be extracted
[24], [25]. A priori knowledge representation models are
used as a knowledge base that assists semantic-based clas-
sification and clustering. In [26], semantic entities, in the
context of the MPEG-7 standard, are used for knowledge-
assisted video analysis and object detection, thus allowing
for semantic-level indexing. However, the need for accu-
rate definition of semantic entities using low-level features
restricts this kind of approaches to domain-specific applica-
tions and prohibits non-experts from defining new semantic
entities.

This paper attempts to address the problem of retrieval
in generic image collections, where no possibility of struc-
turing a domain-specific knowledge base exists, without im-
posing restrictions such as the availability of key-images or
image captions. The adopted region-based approach em-
ploys still-image segmentation tools that enable the time-
efficient and unsupervised analysis of still images to re-
gions, thus allowing the “content-based” access and manip-
ulation of visual data via the extraction of low-level index-
ing features for each region. To take further advantage of
the human-friendly aspects of the region-based approach,
the low-level indexing features for the spatial regions can be
associated with higher-level concepts that humans are more
familiar with. This is achieved with the use of an ontology
and a relevance feedback mechanism [27], [28]. Ontologies
[29], [30], [31] define a formal language for the structuring
and storage of the high-level features, facilitate the map-
ping of low-level to high-level features and allow the defini-
tion of relationships between pieces of multimedia informa-
tion; their potential applications range from text retrieval
[32] to facial expression recognition [33]. The resulting im-
age indexing and retrieval scheme provides flexibility in
defining the desired semantic object/keyword and bridges
the gap between keyword-based approaches and query-by-
example approaches (figure 1).

The paper is organized as follows: The employed im-
age segmentation algorithm is presented in section II. Sec-
tion III presents in detail the components of the retrieval

scheme. Section IV contains an experimental evaluation
and comparisons of the developed methods, and finally,
conclusions are drawn in section V.

II. Color Image Segmentation

A. Segmentation Algorithm Overview

A region-based approach to image retrieval has been
adopted; thus, the process of inserting an image into the
database starts by applying a color image segmentation al-
gorithm to it, so as to break it down to a number of regions.
The segmentation algorithm employed for the analysis of
images to regions is based on a variant of the K-Means-
with-connectivity-constraint algorithm (KMCC), a mem-
ber of the popular K-Means family [34]. The KMCC algo-
rithm classifies the pixels into regions sk, k = 1, . . . ,K tak-
ing into account not only the intensity of each pixel but also
its position, thus producing connected regions rather than
sets of chromatically similar pixels. In the past, KMCC
has been successfully used for model-based image sequence
coding [35] and content-based watermarking [36]. The vari-
ant used for the purpose of still image segmentation [37]
additionally uses texture features in combination with the
intensity and position features.

The overall segmentation algorithm consists of the fol-
lowing stages:
• Stage 1. Extraction of the intensity and texture feature
vectors corresponding to each pixel. These will be used
along with the spatial features in the following stages.
• Stage 2. Estimation of the initial number of regions and
their spatial, intensity and texture centers, using an initial
clustering procedure. These values are to be used by the
KMCC algorithm.
• Stage 3. Conditional filtering using a moving average
filter.
• Stage 4. Final classification of the pixels, using the
KMCC algorithm.

The result of the application of the segmentation algo-
rithm to a color image is a segmentation mask M , i.e.
a grayscale image comprising the spatial regions formed
by the segmentation algorithm, M = {s1, s2, . . . , sK}, in
which different gray values 1, 2, . . . ,K correspond to dif-
ferent regions: M(p ∈ sk) = k, where p = [px py]T ,
px = 1, . . . , xmax, py = 1, . . . , ymax are the image pixels
and xmax, ymax are the image dimensions. This mask is
used for extracting the region low-level indexing features
described in section III-A.

B. Color and Texture Features

For every pixel p a color feature vector and a texture
feature vector are calculated. The three intensity compo-
nents of the CIE L*a*b* color space are used as intensity
features, I(p) = [IL(p) Ia(p) Ib(p)]T , since it has been
shown that L*a*b* is more suitable for segmentation than
the widely used RGB color space, due to its being approx-
imately perceptually uniform [38].

In order to detect and characterize texture properties
in the neighborhood of each pixel, the Discrete Wavelet
Frames (DWF) [39] decomposition of two levels is used.
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Fig. 1. Overview of image retrieval techniques. Techniques exploiting pre-existing textual information (e.g. captions) associated with the
images would lie in the same location on the diagram as the proposed approach, but are limited to applications where such a priori
knowledge is available.

The employed filter bank used is based on the lowpass Haar
filter H(z) = 1

2 (1 + z−1), which satisfies the lowpass con-
dition H(z)|z=1 = 1. The complementary highpass filter
G(z) is defined by G(z) = zH(−z−1). The filters of the fil-
ter bank are then generated by the prototypes H(z), G(z),
as described in [39]. Despite its simplicity, the above filter
bank has been demonstrated to perform surprisingly well
for texture segmentation, while featuring reduced computa-
tional complexity. The texture feature vector T(p) is then
made of the standard deviations of all detail components,
calculated in a square neighborhood Φ of pixel p.

C. Initial Clustering

An initial estimation of the number of regions in the
image and their spatial, intensity and texture centers is
required for the initialization of the KMCC algorithm. In
order to compute these initial values, the image is broken
down to square, non-overlapping blocks of dimension f×f .
In this way, a reduced image composed of a total of L
blocks, bl, l = 1, . . . , L, is created. A color feature vector
Ib(bl) = [Ib

L(bl) Ib
a(bl) Ib

b (bl)]T and a texture feature vector
Tb(bl) are then assigned to each block; their values are
estimated as the averages of the corresponding features for
all pixels belonging to the block. The distance between two
blocks is defined as follows:

Db(bl, bn) = ‖Ib(bl) − Ib(bn)‖ + λ1‖Tb(bl) − Tb(bn)‖, (1)

where ‖Ib(bl)−Ib(bn)‖, ‖Tb(bl)−Tb(bn)‖ are the Euclidean
distances between the block feature vectors. In our exper-
iments, λ1 = 1, since experimentation showed that using a
different weight λ1 for the texture difference would result
in erroneous segmentation of textured images if λ1 � 1,
respectively non-textured images if λ1 	 1. As shown in
the experimental results section, the value λ1 = 1 is appro-
priate for a variety of textured and non-textured images.

The number of regions of the image is initially esti-
mated by applying a variant of the maximin algorithm

[40] to this set of blocks. The distance C between the
first two centers identified by the maximin algorithm is
indicative of the intensity and texture contrast of the par-
ticular image. Subsequently, a simple K-Means algorithm
is applied to the set of blocks, using the information pro-
duced by the maximin algorithm for its initialization. Upon
convergence, a recursive four-connectivity component la-
belling algorithm [41] is applied, so that a total of K ′

connected regions sk, k = 1, . . . ,K ′ are identified. Their
intensity, texture and spatial centers, Is(sk), Ts(sk) and
S(sk) = [Sx(sk) Sy(sk)]T , k = 1, . . . ,K ′, are calculated as
follows:

Is(sk) = 1
Ak

∑
p∈sk

I(p), Ts(sk) = 1
Ak

∑
p∈sk

T(p),
S(sk) = 1

Ak

∑
p∈sk

p,

(2)
where Ak is the number of pixels belonging to region sk:
sk = {p1,p2, . . . ,pAk

}.

D. Conditional Filtering

Images may contain parts in which intensity fluctuations
are particularly pronounced, even when all pixels in these
parts of the image belong to a single object (Fig. 2). In or-
der to facilitate the grouping of all these pixels in a single
region based on their texture similarity, a moving average
filter is employed. The decision of whether the filter should
be applied to a particular pixel p or not is made by evaluat-
ing the norm of the texture feature vector T(p) (Sec. II-B);
the filter is not applied if that norm is below a threshold
τ . The output of the conditional filtering module can thus
be expressed as:

J(p) =
{

I(p) if ‖T(p)‖ < τ
1
f2

∑
I(p) if ‖T(p)‖ ≥ τ

(3)

Correspondingly, region intensity centers calculated sim-
ilarly to Eq. (2) using the filtered intensities J(p) instead
of I(p) are symbolized Js(sk).
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An appropriate value of threshold τ was experimentally
found to be

τ = max{0.65 · Tmax, 14} (4)

where Tmax is the maximum value of the norm ‖T(p)‖ in
the image. The term 0.65 · Tmax in the threshold defini-
tion serves to prevent the filter from being applied outside
the borders of textured objects, so that their boundaries
are not corrupted. The constant bound 14, on the other
hand, is used to prevent the filtering of images composed
of chromatically uniform objects; in such images, the value
of Tmax is expected to be relatively small and would cor-
respond to pixels on edges between objects, where filtering
is obviously undesirable.

E. The K-Means with Connectivity Constraint Algorithm

The KMCC algorithm applied to the pixels of the image
consists of the following steps:
• Step 1. The region number and the region centers are ini-
tialized, using the output of the initial clustering procedure
described in Sec. II-C.
• Step 2. For every pixel p, the distance between p and
all region centers is calculated. The pixel is then assigned
to the region for which the distance is minimized. A gen-
eralized distance of a pixel p from a region sk is defined as
follows:

D(p, sk) = ‖J(p) − Js(sk)‖ + λ1‖T(p) − Ts(sk)‖
+λ2

Ā
Ak

‖p − S(sk)‖, (5)

where ‖J(p)−Js(sk)‖, ‖T(p)−Ts(sk)‖ and ‖p−S(sk)‖ are
the Euclidean distances between the pixel feature vectors
and the corresponding region centers; pixel number Ak of
region sk is a measure of the area of region sk, and Ā is the
average area of all regions, Ā = 1

K

∑K
k=1Ak. The regular-

ization parameter λ2 is defined as λ2 = 0.4 · C√
x2

max+y2
max

,

while the choice of the parameter λ1 has been discussed in
Sec. II-C.
In (5), normalization of the spatial distance, ‖p−S(sk)‖ by
division by the area of each region Ak

Ā
, is necessary in order

to encourage the creation of large connected regions; oth-
erwise, pixels would tend to be assigned to smaller rather
than larger regions due to greater spatial proximity to their
centers. The regularization parameter λ2 is used to en-
sure that a pixel is assigned to a region primarily due
to their similarity in intensity and texture characteristics,
even in low-contrast images, where intensity and texture
differences are small compared to spatial distances.
• Step 3. The connectivity of the formed regions is eval-
uated; those which are not connected are broken down to
the minimum number of connected regions using a recur-
sive four-connectivity component labelling algorithm [41].
• Step 4. Region centers are recalculated (Eq. (2)). Re-
gions whose area size lies below a threshold ξ are dropped.
In our experiments, the threshold ξ was equal to 0.5% of
the total image area. The number of regions K is then re-
calculated, taking into account only the remaining regions.
• Step 5. Two regions are merged if they are neighbors and
if their intensity and texture distance is not greater than

an appropriate merging threshold:

Ds(sk1 , sk2) =
‖Js(sk1) − Js(sk2)‖ + λ1‖Ts(sk1) − Ts(sk2)‖ ≤ µ

(6)

Threshold µ is image-specific, defined in our experiments
by

µ =




7.5 if C < 25
15 if C > 75
10 otherwise

(7)

where C is an approximation of the intensity and texture
contrast of the particular image, as defined in Sec. II-C
• Step 6. Region number K and region centers are reeval-
uated.
• Step 7. If the region number K is equal to the one calcu-
lated in Step 6 of the previous iteration and the difference
between the new centers and those in Step 6 of the previ-
ous iteration is below the corresponding threshold for all
centers, then stop, else goto Step 2. If index “old” charac-
terizes the region number and region centers calculated in
Step 6 of the previous iteration, the convergence condition
can be expressed as K = Kold and

‖Js(sk) − Js(sold
k )‖ ≤ cI ,

‖Ts(sk) − Ts(sold
k )‖ ≤ cT ,

‖S(sk) − S(sold
k )‖ ≤ cS ,

for k = 1, . . . ,K. Since there is no certainty that the
KMCC algorithm will converge for any given image, the
maximum allowed number of iterations was chosen to be
20; if this is exceeded, the method proceeds as though the
KMCC algorithm had converged.

III. Region-based Retrieval Scheme

A. Low-level Indexing Descriptors

As soon as the segmentation mask is produced, a set
of descriptors that will be useful in querying the database
are calculated for each region. These region descriptors
compactly characterize each region’s color, position and
shape. All descriptors are normalized so as to range from
0 to 1.

The color and position descriptors of a region are the
normalized intensity and spatial centers of the region. In
particular, the color descriptors of region sk, F1, F2, F3,
corresponding to the L, a, b components, are defined as
follows:

F1 =
1

100 · Ak

∑
p∈sk

IL(p),

F2 =
1

Ak

∑
p∈sk

Ia(p) + 80

200
, F3 =

1
Ak

∑
p∈sk

Ib(p) + 80

200
where Ak is the number of pixels belonging to region sk.
Similarly, the position descriptors F4, F5 are defined as:

F4 =
1

Ak · xmax

∑
p∈sk

px, F5 =
1

Ak · ymax

∑
p∈sk

py,

Although quantized color histograms are considered to pro-
vide a more detailed description of a region’s colors than
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Fig. 2. Segmentation process: starting from the original image (a), initial clustering (b) and conditional filtering (c) are performed and final
results (d) are produced.

intensity centers, they were not chosen as color descriptors,
since this would significantly increase the dimensionality of
the feature space, thus increasing the time-complexity of
the query execution.

The shape descriptors F6, F7 of a region are its nor-
malized area and eccentricity. We chose not to take into ac-
count the orientation of regions, since orientation is hardly
characteristic of an object. The normalized area F6 is ex-
pressed by the number of pixels Ak that belong to region
sk, divided by the total number of pixels of the image:

F6 =
Ak

xmax · ymax

The eccentricity is calculated using the covariance or scat-
ter matrix Ck of the region. This is defined as:

Ck =
1

Ak

∑
p∈sk

(p − S(sk))(p − S(sk))T .

where S(sk) = [Sx(sk) Sy(sk)]T is the region spatial cen-
ter. Let ρi, ui, i = 1, 2 be its eigenvalues and eigenvectors:
Ck ui = ρi ui with uT

i ui = 1, uT
i uj = 0, i �= j

and ρ1 ≥ ρ2. According to Principal Component Analysis
(PCA), the principal eigenvector u1 defines the orientation
of the region and u2 is perpendicular to u1. The two eigen-
values provide an approximate measure of the two domi-
nant directions of the shape. Using these quantities, an
approximation of the eccentricity εk of the region is calcu-
lated, as follows:

εk = 1 − ρ1
ρ2

The normalized eccentricity descriptor F7 is then defined
as F7 = eεk .

The seven region descriptors defined above form a region
descriptor vector F,

F = [F1 . . . F7], (8)

This region descriptor vector will be used in the sequel
both for assigning intermediate-level qualitative descrip-
tors to the region and as input to the relevance feedback
mechanism. In both cases the existence of these low-level
descriptors is not apparent to the end user.

B. Object Ontology

In this work, an ontology is employed to allow the user
to query an image collection using semantically meaningful
concepts (semantic objects), as in [42]. As opposed to [42],
though, no manual annotation of images is performed. In-
stead, a simple object ontology is used to enable the user
to describe semantic objects, like “tiger”, and relations be-
tween semantic objects, using a set of intermediate-level de-
scriptors and relation identifiers (Fig. 3). The architecture
of this indexing scheme is illustrated in Fig. 4. The sim-
plicity of the employed object ontology serves the purpose
of it being applicable to generic image collections without
requiring the correspondence between image regions and
relevant identifiers be defined manually. The object ontol-
ogy can be expanded so as to include additional descriptors
and relation identifiers corresponding either to low-level re-
gion properties (e.g. texture) or to higher-level semantics
which, in domain-specific applications, could be inferred
either from the visual information itself or from associated
information (e.g. text), should there be any. Similarly to
[43], an ontology is defined as follows.

Definition. An object ontology is a structure (Fig. 3)

O := (D,≤D,R, σ,≤R)



6 EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, VOL. 2004, NO. 6, PP. 886-901, JUNE 2004

intensity position size shape
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axis

vertical
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red low,
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red high}

{blue high,
blue medium,
blue low,
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yellow low,
yellow medium,
yellow high}
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oblong,
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oblong,
very
oblong}

relative position

horizontal
axis rel.

vertical
axis rel.

{higher
than,
lower
than}

{left of,
right of}

intermediate-level
descriptors

relation
identifiers

intermediate-level
descriptor values

relation identifier
values

Low-level descriptor vector F= [ F1 F2 F3 F4 F5 F6 F7 ]

Fig. 3. Object ontology. The intermediate-level descriptors are the elements of set D, whereas the relation identifiers are the elements of set
R.

consisting of: (i) Two disjoint sets D and R whose ele-
ments d and r are called respectively, intermediate level
descriptors (e.g. “intensity”, “position”, etc.) and relation
identifiers (e.g. “relative position”). To simplify the termi-
nology, relation identifiers will often be called relations in
the sequel. The elements of set D are often called concept
identifiers or concepts in the literature. (ii) A partial order
≤D on D, called concept hierarchy or taxonomy (e.g. “lu-
minance” is a subconcept of “intensity”). (iii) A function
σ : R → D+ called signature; σ(r) = (σ1,r, σ2,r, . . . σΣ,r),
σi,r ∈ D and |σ(r)| ≡ Σ denotes the number of elements
of D on which σ(r) depends. (iv) A partial order ≤R
on R, called relation hierarchy, where r1 ≤R r2 implies
|σ(r1)| = |σ(r2)| and σi,r1 ≤D σi,r2 for each 1 ≤ i ≤ |σ(r1)|.

For example, the signature of relation r “relative posi-
tion” is by definition σ(r) = (“position”, “position”), in-
dicating that it relates a position to a position; |σ(r)| = 2
denotes that r involves two elements of set D. Both the
intermediate-level “position” descriptor values and the un-
derlying low-level descriptor values can be employed by the
“relative position” relation.

In figure 3, the possible intermediate-level descriptors
and descriptor values are shown. Each value of these
intermediate-level descriptors is mapped to an appropriate
range of values of the corresponding low-level, arithmetic
descriptor. The various value ranges for every low-level
descriptor are chosen so that the resulting intervals are
equally populated. This is pursued so as to prevent an
intermediate-level descriptor value from being associated
with a majority of image regions in the database, because
this would render it useless in restricting a query to the po-
tentially most relevant ones. Overlapping, up to a point,
of adjacent value ranges, is used to introduce a degree of
fuzzyness to the descriptors; for example, both “low lumi-
nance” and “medium luminance” values may be used to
describe a single region.

Let dq,z be the q-th descriptor value (e.g. “low lumi-
nance”) of intermediate-level descriptor dz (e.g. “lumi-
nance”) and Rq,z = [Lq,z,Hq,z] be the range of values of the
corresponding arithmetic descriptor Fm (Eq. (8)). Given
the probability density function pdf(Fm), the overlapping
factor V expressing the degree of overlapping of adjacent
value ranges, and given that value ranges should be equally
populated, lower and upper bounds Lq,z, Hq,z can be easily
calculated according to equations (9), (10) and (11).

L1,z = Lm,
∫ Lq,z

Lq−1,z
pdf(Fm)dFm = 1−V

Qz−V ·(Qz−1) ,
q = 2, . . . , Qz,

(9)∫ H1,z

L1,z

pdf(Fm)dFm =
1

Qz − V · (Qz − 1)
, (10)

∫ Hq,z

Hq−1,z

pdf(Fm)dFm =
1 − V

Qz − V · (Qz − 1)
, q = 2, . . . , Qz,

(11)
where Qz is the number of descriptor values defined for de-
scriptor dz (for example, for “luminance”, Qz = 5), and Lm

is the lower bound of the values of Fm. Note that for de-
scriptors “green-red” and “blue-yellow”, the above process
is performed twice: once for each of the two complemen-
tary colors described by each descriptor, taking into ac-
count each time the appropriate range of values of the cor-
responding low-level descriptor. Lower and upper bounds
for value “none” of descriptor “green-red” are chosen so
as to associate with this value a fraction V of the popula-
tion of descriptor value “green low” and a fraction V of the
population of descriptor value “red low”; bounds for value
“none” of descriptor “blue-yellow” are defined accordingly.
The overlapping factor V is defined as V = 0.25 in our ex-
periments. The boundaries calculated by the above method
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Fig. 5. Correspondence of low-level and intermediate-level descriptor values for the “luminance” descriptor.

for the “luminance” descriptor, using the image database
defined in section IV, are presented in figure 5.

C. Query Process

A query is formulated using the object ontology to pro-
vide a qualitative definition of the sought object or ob-
jects (using the intermediate-level descriptors) and the re-
lations between them. Definitions previously imported to
the system by the same or other users can also be em-
ployed, as discussed in the sequel. As soon as a query
is formulated, the intermediate-level descriptor values as-
sociated with each desired object/keyword are compared
to those of each image region contained in the database.
Descriptors for which no values have been associated with
the desired object (e.g. “shape” for object “tiger”, defined
in Fig. 6) are ignored; for each remaining descriptor, re-
gions not sharing at least one descriptor value with those
assigned to the desired object are deemed irrelevant (e.g.
a region with “size”: “large” is not a potentially relevant
region for a “tiger” query, as opposed to a region assigned
both “large” and “medium” values for its “size” descrip-
tor). In the case of dual-keyword queries, the above process
is performed for each keyword separately and only images
containing at least two distinct potentially relevant regions,
one for each keyword, are returned; if desired spatial rela-
tions between the queried objects have been defined, com-
pliance with them is checked using the corresponding region
intermediate-level and low-level descriptors, to further re-
duce the number of potentially relevant images returned to
the user.

After narrowing down the search to a set of potentially
relevant image regions, relevance feedback is employed to
produce a quantitative evaluation of the degree of rele-
vance of each region. The employed mechanism is based
on a method proposed in [44], where it is used for image
retrieval using global image properties under the query-
by-example scheme. This combines support vector ma-
chines (SVMs) [45], [46] with a constrained similarity mea-
sure (CSM) [44]. SVMs employ the user-supplied feedback
(training samples) to learn the boundary separating the
two classes (positive and negative samples, respectively).
Each sample (in our case, image region) is represented by
its low-level descriptor vector F (section III-A). Following
the boundary estimation, the CSM is employed to provide
a ranking; in [44], the CSM employs the Euclidean distance
from the key-image used for initiating the query for images
inside the boundary (images classified as relevant) and the
distance from the boundary for those classified as irrele-
vant. Under the proposed scheme, no key-image is used
for query initiation; the CSM is therefore modified so as to
assign to each image region classified as relevant the mini-
mum of the Euclidean distances between it and all positive
training samples (i.e. image regions marked as relevant by
the user during relevance feedback). The query procedure
is graphically illustrated in Fig. 7.

The relevance feedback process can be repeated as many
times as necessary, each time using all previously sup-
plied training samples. Furthermore, it is possible to store
the parameters of the trained SVM and the corresponding
training set for every keyword that has already been used in
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a query at least once. This endows the system with the ca-
pability to respond to anticipated queries without initially
requiring any feedback; in a multiuser (e.g. web-based) en-
vironment, it additionally enables different users to share
knowledge, either in the form of semantic object descrip-
tions or in the form of results retrieved from the database.
In either case, further refinement of retrieval results is pos-
sible by additional rounds of relevance feedback.

IV. Experimental Results

The proposed algorithms were tested on a collection of
5000 images from the Corel gallery [47]. Application of
the segmentation algorithm of section II to these images
resulted to the creation of a database containing 34433 re-
gions, each represented by a low-level descriptor vector,
as discussed in section III-A. The segmentation and low-
level feature extraction required on the average 27.15 sec.
and 0.011 sec. respectively, on an 2 GHz Pentium IV PC.
The proposed algorithm was compared with the Blobworld
segmentation algorithm [15]. Segmentation results demon-
strating the performance of the proposed and the Blob-
world algorithms are presented in figures 8 and 9. Although
segmentation results are imperfect, as is generally the case
with segmentation algorithms, most regions created by the
proposed algorithm correspond to a semantic object or a
part of one; even in the latter case, most indexing features
(e.g. luminance, color) describing the semantic object ap-
pearing in the image can be reliably extracted.

Objective evaluation of segmentation quality was per-
formed using images belonging to various classes and man-
ually generated reference masks (figures 8 and 9). The em-
ployed evaluation criterion is based on the measure of spa-
tial accuracy proposed in [48] for foreground/background
masks. For the purpose of evaluating still image segmen-
tation results, each reference region gκ, κ = 1, . . . ,Kg of
the reference mask (ground truth) is associated with a dif-
ferent region sk of the created segmentation mask on the
basis of region overlapping considerations (i.e. sk is chosen
so that gκ ∩ sk is maximized). Then, the spatial accuracy
of the segmentation is evaluated by separately consider-
ing each reference region as a foreground reference region
and applying the criterion of [48] for the pair of {gκ, sk};
during this process, all other reference regions are treated
as background. A weighted sum of misclassified pixels for
each reference region is the output of this process. The
sum of these error measures for all reference regions is used
for the objective evaluation of segmentation accuracy; val-
ues of the sum closer to zero indicate better segmentation.
Numerical evaluation results and comparison using the seg-
mentation masks of figures 8 and 9 are reported in table
I.

Following the creation of the region low-level-descriptor
database, the mapping between these low-level descriptors
and the intermediate-level descriptors defined by the ob-
ject ontology was performed; this was done by estimating
the low-level-descriptor lower and upper boundaries corre-
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Fig. 8. Segmentation results for images belonging to classes “eagles”, “tigers”, and “cars”. Images are shown in the first column, followed by
reference masks (second column), results of the Blobworld segmentation algorithm (third column) and results of the proposed algorithm
(fourth column).

sponding to each intermediate-level descriptor value, as dis-
cussed in section III-B. Since a large number of heteroge-
neous images was used for the initial boundary calculation,

future insertion of heterogeneous images to the database is
not expected to significantly alter the proportion of image
regions associated with each descriptor. Thus, the mapping
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Fig. 9. Segmentation results for images belonging to classes “roses” and “horses”. Images are shown in the first column, followed by reference
masks (second column), results of the Blobworld segmentation algorithm (third column) and results of the proposed algorithm (fourth
column).

TABLE I

Numerical evaluation of segmentation results of Figs. 8 and 9

Image 1 Image 2 Image 3

Blobworld Proposed Blobworld Proposed Blobworld Proposed

eagle 163.311871 44.238528 16.513599 7.145284 11.664597 2.346432

tiger 90.405821 12.104017 47.266126 57.582892 86.336678 12.979979

car 133.295750 54.643714 54.580259 27.884972 122.057933 4.730332

rose 37.524702 2.853145 184.257505 1.341963 22.743732 53.501481

horse 65.303681 17.350378 22.099393 12.115678 233.303729 120.862361

between low-level and intermediate-level descriptors is not
to be repeated, unless the database drastically changes.

The next step in experimenting with the proposed sys-
tem was to use the object ontology to define, using the
available intermediate-level descriptors/ descriptor values,
high-level concepts, i.e. real-life objects. Since the pur-
pose of the first phase of each query is to employ these
definitions to reduce the data set by excluding obviously
irrelevant regions, the definitions of semantic objects need

not be particularly restrictive (figure 6). This is convenient
from the users’ point of view, since the user can not be ex-
pected to have perfect knowledge of the color, size, shape
and position characteristics of the sought object.

Subsequently, several experiments were conducted us-
ing single-keyword or dual-keyword queries, to retrieve im-
ages belonging to particular classes, e.g. images containing
tigers, fireworks, roses, etc. In most experiments class pop-
ulation was 100 images; under-represented classes were also
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TABLE II

Average number of image region pages evaluated for the first round of relevance feedback

Query Pages

tiger + grass 2.8

brown horse + grass 2

bald eagle + blue sky 2.8

fireworks + black sky 2

rose 2.2

sunset 2.2

red car 2

yellow car 5.8

used, with population ranging from 6 to 44 images. Per-
forming ontology-based querying resulted in initial query
results being produced by excluding the majority of regions
in the database, that were found to be clearly irrelevant.
As a result, one or more pages of twenty randomly-selected,
potentially relevant image regions were presented to the
user to be manually evaluated; this resulted in the “rele-
vant” check-box being checked for those that were actually
relevant. Usually, evaluating two pages of image regions
was found to be sufficient; the average number of image re-
gion pages evaluated, when querying for each object class,
is presented in table II. Note that in all experiments, each
query was submitted five times, to accommodate for vary-
ing performance due to different randomly chosen image
sets being presented to the user. The average time required
for the SVM training and the subsequent region ranking
was 0.12 seconds for single-keyword and 0.3 seconds for
dual-keyword queries, on an 2 GHz Pentium IV PC. Rele-
vance feedback was then repeated, by manually evaluating
the regions contained in the first page of the output of the
first relevance feedback round. On the average, 0.13 sec-
onds for single-keyword and 0.33 seconds for dual-keyword
queries were required for this round. Results after the sec-
ond round of relevance feedback are presented in figure 10;
precision-recall diagrams for each class of queries after one
and two rounds of relevance feedback are presented in fig-
ures 11, 12. The term precision is defined as the fraction
of retrieved images which are relevant, and the term recall
as the fraction of relevant images which are retrieved [15].

In order to further evaluate the above results, exper-
iments were also conducted using the query by example
paradigm and global image histograms, that were intro-
duced in [49] and used widely ever since. The histograms
were based on bins of width 20 in each dimension of the
L*a*b* color space. Again, each query was submitted five
times, each time using a different, randomly selected key-
image belonging to the desired class. Comparison (figures
11 and 12) reveals that even after a single stage of relevance
feedback the proposed method generally yields significantly
better results; a second round of relevance feedback leads
to further improvement. In figure 12, results are presented,
among others, for a query for a severely under-represented
class of objects: yellow cars, only 6 images of which are
contained in the collection of 5000 images. It can be seen

that after the second round of relevance feedback the pro-
posed scheme performs better than global histograms and
manages to rank highly at least one such image, whereas
the global histogram method [49] retrieves nothing but the
key-image used for initiating the query, which already was
at the users disposal. Additionally, the diagram calculated
for the global histogram method relies on the assumption
that it is possible to provide the user with such a key-
image, so as to enable initiation of the query; this is at
least debatable when it comes to such under-represented
classes.

V. Conclusions

A methodology was presented in this paper for the flex-
ible and user-friendly retrieval of color images, combining
a number of image processing and machine learning tools,
such as a time-efficient and unsupervised segmentation al-
gorithm, a simple ontology defining intermediate-level de-
scriptors and a relevance feedback mechanism based on
support vector machines. The resulting methodology is
applicable to generic image collections, where no possibil-
ity of structuring a domain-specific knowledge base exists.
The proposed scheme overcomes the restrictions of conven-
tional methods, such as the need for the availability of key-
images or image captions, and requires no manual tuning of
weights, thus offering flexibility and user-friendliness. Ex-
periments conducted on a large collection of images demon-
strate the effectiveness of our approach in terms of precision
versus recall.
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