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Abstract—In this paper we propose a method for explaining
video summarization. We start by formulating the problem as
the creation of an explanation mask which indicates the parts
of the video that influenced the most the estimates of a video
summarization network, about the frames’ importance. Then, we
explain how the typical analysis pipeline of attention-based net-
works for video summarization can be used to define explanation
signals, and we examine various attention-based signals that have
been studied as explanations in the NLP domain. We evaluate
the performance of these signals by investigating the video
summarization network’s input-output relationship according
to different replacement functions, and utilizing measures that
quantify the capability of explanations to spot the most and
least influential parts of a video. We run experiments using an
attention-based network (CA-SUM) and two datasets (SumMe
and TVSum) for video summarization. Our evaluations indicate
the advanced performance of explanations formed using the
inherent attention weights, and demonstrate the ability of our
method to explain the video summarization results using clues
about the focus of the attention mechanism.

Index Terms—Explainable AI, Video summarization, Attention
mechanism, Evaluation measures

I. INTRODUCTION

Video summarization is a problem in the domain of video
analysis and understanding, that increasingly gains attention
over the last years [1]. Technologies for video summarization
aim to generate a short synopsis by selecting the most infor-
mative and important parts of the video. As the production
of a video summary is time-consuming, the use of such tech-
nologies can drastically reduce the needed resources in terms
of both time and human effort. Nevertheless, the outcome of
theses technologies needs to be curated by a video editor,
to ensure that all the needed parts have been included in
the summary. This content production step could be further
facilitated, if the editor is provided with explanations about
the suggestions of the used technology. The provision of such
explanations would allow a level of understanding about the
functionality of this technology, thus increasing the editor’s
trust in it and reducing the needed time for content curation.

A few attempts have been made for explaining the outcomes
of deep networks processing video data. However, they are
related with networks for action/event recognition [2]–[5] and
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video classification [6]–[8], and their application on networks
for video summarization is not a straightforward task. To the
best of our knowledge, our work is the first on explainable
video summarization. Our contributions are as follows:

• We introduce the problem of explaining video summa-
rization and formulate it as the production of an expla-
nation mask indicating the most influential parts of the
video, for the output of a video summarization network.

• We describe how the typical processing pipeline of
attention-based video summarization networks can be
used to extract attention-based explanation signals, and
examine various relevant signals from the NLP domain.

• We propose evaluation measures that quantify the ability
of explanations to spot the most and least influential
parts of a video, and evaluate the considered explanation
signals using an attention-based network and two datasets
for video summarization.

II. RELATED WORK

Nowadays there is a growing interest on methods pro-
viding explanations about the working mechanism or the
predictions of neural networks. A lot of progress has been
made in the domains of pattern recognition [9] and natural
language processing [10]. However, only a few works deal
with network architectures processing video data. Aakur et
al. [2] built a framework for producing inherently explainable
and semantically coherent representations for video activity
interpretation. Zhuo et al. [3], defined a spatio-temporal graph
of semantic-level video states and applied state transition
analysis for video action reasoning. Stergiou et al. [4], formed
explanations of deep networks for action classification and
recognition, using cylindrical heatmaps that visualize the fo-
cus of attention. Gkalelis et al. [5], used the weighted in-
degrees of graph attention networks’ adjacency matrices to
provide explanations of video event recognition, in terms
of salient objects and frames. Mänttäri et al. [6] extended
the concept of meaningful perturbation, to spot the video
fragment with the greatest impact on the video classification
results. Bargal et al. [7], visualized the spatio-temporal cues
contributing to a network’s classification/captioning output
using internal representations, and employed these cues to
localize video fragments corresponding to a specific action
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Fig. 1. Overview of our concept for obtaining attention-based explanations of the video summarization results. The different video fragments are illustrated
using their most representative frame and appear in a “left-to-right then top-to-bottom” order. The number of highlighted video fragments M in the produced
explanation mask equals to five. The video summary is formed by stitching the top-5 fragments (according to their importance) in chronological order.

or phrase from the caption. Finally, Li et al. [8], extended
a generic perturbation-based explanation method for video
classification networks, by introducing a loss function that
constraints the smoothness of explanations in both spatial and
temporal dimensions. Differently to the above, in this work
we focus on networks for video summarization. To the best
of our knowledge, this is the first work that does so. In terms
of methodology, our method is mostly closely related with
the approaches in [6], [8], which obtain explanations via a
perturbation-based investigation of the network’s input-output
relationship. However, contrary to these approaches, we form
explanations using several attention-based signals used in the
NLP domain [11]–[16], and we examine the network’s input-
output relationship based on various replacement functions.

III. EXPLAINING VIDEO SUMMARIZATION

A. Problem formulation

Let’s assume a video summarization network that gets as
input a set of deep feature vectors X = {xt}Tt=1 representing
the T frames of a video, and produces in the output a set of
frame-level scores y = {yt}Tt=1 that lie in the range I = [0, 1]
and quantify the visual importance of each video frame. The
goal of an explanation method is to derive a frame-based
visualization of the video content at the fragment-level (called
video-fragment-level explanation mask in the following), high-
lighting the top-M video fragments that influenced the most the
decisions of a video summarization network about the frames’
importance, and thus the generation of the video summary. To
avoid the influence of video fragmentation and key-fragment
selection steps to the created video summary (discussed in
[1]), in this work we adopt a more straightforward approach
to form the summary; we split the video into consecutive and
non-overlapping fragments of fixed-size L, we compute each
fragment’s importance by averaging the scores of the frames
in it, and we pick the M top-scoring video fragments.

B. Attention-based explainable video summarization
1) Preliminaries and assumptions: In this study we as-

sume video summarization networks that rely on a self-
attention mechanism, such as the ones in [17]–[19]. The
typical processing pipeline of these networks is depicted in
the upper part of Fig. 1. Given a video of T frames and
a pre-trained CNN model for deep feature extraction, the
attention mechanism gets as input the frames’ feature repre-
sentations X = {xi}Ti=1. Following, it produces the Query-
and Key-based transformations of them (Q = {qi}Ti=1 and
K = {ki}Ti=1, respectively), performs a matrix multiplication
(Q×K−1, where K−1 is the transposed version of K), and
applies a softmax conversion on the computed values. Through
this process, it forms a T × T matrix of attention weights
A = {ai,j}Ti,j=1, with ai,j ∈ I. Each row of this matrix
corresponds to a different frame of the video and the values in
each row represent the significance of the associated frame for
each frame of the video based on the context modeled by the
attention mechanism. This matrix is multiplied with the Value-
based transformation of the input feature representations (V =
{vi}Ti=1) and forms the output of the attention mechanism;
i.e., a new set of representations (Z = {zt}Tt=1) that convey
information about the relevance of each video frame with the
modeled video context. This output goes through a Regressor
Network, which produces the frames’ importance scores y
that are finally used to compute fragment-level importance and
select the most important fragments for inclusion in the video
summary. As also shown in Fig. 1, the attention matrix is
the basis for producing an attention-based explanation signal,
which is used to spot the most influential video fragments for
the network’s predictions and construct the explanation mask.

2) Explanation signals: Inspired by existing works on
attention-based explanation of NLP models [11]–[15], we take
into account the following explanation signals:

• Inherent Attention (IA) is formed using the weights in
the main diagonal of the attention matrix {ai,i}Ti=1.
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• Gradient of Attention (GoA) is formed using the gradi-
ents of the final layer with respect to the weights in the
main diagonal of the attention matrix {∇ai,i}Ti=1.

• Grad Attention (GA) is formed using a gradient-based
weighted version of the weights in the main diagonal of
the attention matrix {ai,i ⊙∇ai,i}Ti=1.

• Input Norm Attention (NA) is formed using a weighted
version of the weights in the main diagonal of the
attention matrix, according to the norm of the Value-
based transformed input vectors {ai,i ⊙ ||vi||}Ti=1.

• Input Norm Grad Attention (NGA) is a combination
of GA and NA, as it is formed using a gradient- and
norm-based weighted version of the weights in the main
diagonal of the attention matrix {ai,i⊙∇ai,i⊙||vi||}Ti=1).

The above define frame-level explanation signals; then, the
explanation masks are constructed by computing fragment-
level explanation scores (by averaging the relevant frames’
scores) and selecting the M fragments with the highest scores.

3) Replacement functions: Based on works from the NLP
domain [12], [15], to investigate the network’s input-output
relationship we apply the following replacement functions on
parts of the input corresponding to different video fragments:

• Slice-out completely removes the specified part.
• Input Mask replaces the specified part with a mask

composed of black/white frames’ feature representations.
• Randomization replaces 50% of the elements of each

feature representation within the specified part, using the
corresponding elements from randomly-selected feature
representations from the remaining part of the input.

• Attention Mask sets the attention weights associated
with the specified part equal to zero, such that this part
will not be forwarded in the network anymore.

4) Evaluation measures: For each replacement function, we
measure the influence of each video fragment in the network’s
output, by computing the difference of estimates ∆E:

∆E(X, X̂k) = τ(y,yk) (1)

where, X is the original set of feature representations, X̂k

is the updated set after replacing the features of the frames
belonging to the kth fragment, y and yk are the outputs
of the summarization network for X and X̂k, respectively,
and τ is the Kendall’s τ correlation coefficient. Based on the
difference of estimates ∆E, we assess the performance of each
explanation signal using the following evaluation measures.

Discoverability+ (D+) evaluates if fragments with higher
explanation scores have a significant influence to the estimated
importance scores, and thus are necessary for the network’s
predictions. Following an approach similar to the one applied
in [15] for measuring Sufficiency and Comprehensiveness of
explanations, we calculate D+ as the mean of the obtained
∆E values after sequentially replacing parts of the input corre-
sponding to the top-1%, 5%, 10%, 15%, 20% of the fragments
with the highest explanation scores (i.e., we affect multiple
parts in a batch manner). Moreover, since the explanation mask
focuses on the top-M most influential fragments of the video,

we compute this measure also as the mean of the obtained
∆E values after sequentially replacing parts of the input
corresponding to the M fragments with the highest explanation
scores (i.e., we affect parts in a one-by-one manner).

Discoverability- (D−) evaluates if fragments with lower
explanation scores have small influence to the estimated im-
portance scores, and thus are less necessary for the network’s
predictions. In analogous to D+, we compute D− as the mean
of the obtained ∆E values after sequentially replacing parts of
the input corresponding to the top-1%, 5%, 10%, 15%, 20% of
the fragments with the lowest explanation scores. Moreover,
we compute D− as the mean of the obtained ∆E values after
sequentially replacing parts of the input corresponding to the
M fragments with the lowest explanation scores.

Sanity Violation (SV ) quantifies the ability of explanations
to correctly discriminate important from unimportant video
fragments. We compute SV by counting the number of cases
where the condition (D+ > D−) is violated after sequentially
replacing parts of the input corresponding to the top-1%, 5%,
10%, 15%, 20% of the fragments with the highest and lowest
explanation scores, and expressing the computed value as a
fraction of the total number of replacements. Moreover, we
compute SV after sequentially replacing parts of the input
corresponding to the M top- and less-scoring fragments in a
pair-wise manner (e.g., the 1st top- and less-scoring fragment).

Rank Correlation (RC) measures the correlation between
the assigned explanation scores to the video fragments and
the obtained ∆E values after sequentially replacing each one
of them. Following [11], we quantify RC by computing the
Spearman’s ρ rank correlation coefficient. Since a negative
correlation can be observed in some cases, to measure the
average RC score over different pre-trained models and re-
placement functions, first we apply a Fisher transformation
on the computed ρ values, then we average them in the new
space, and finally we apply a reverse Fisher transformation.

IV. EXPERIMENTS

A. Datasets and implementation details

Our evaluations are made on two datasets for video summa-
rization. SumMe [20] contains 25 videos (1-6 min.) covering
multiple events from both first-person and third-person view.
TVSum [21] is composed of 50 videos (1-11 min.) from
10 categories of the TRECVid MED dataset. Videos are
downsampled to 2 fps and the sampled frames are represented
using the output of the pool5 layer of GoogleNet trained on
ImageNet. The parameter M , that indicates the number of
highlighted video fragments in the explanation mask, is set
equal to five. The size L of the video fragments is set equal to
10 sec. The explanation signals are evaluated using pre-trained
models (available at: https://zenodo.org/record/6562992) of the
CA-SUM method for video summarization [17]. In the follow-
ing, we report the average scores over these runs. To allow
the reproduction of our results, the PyTorch code is publicly-
available at: https://github.com/e-apostolidis/XAI-SUM.
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TABLE I
PERFORMANCE OF THE CONSIDERED EXPLANATION SIGNALS ON THE SUMME AND TVSUM DATASETS, AFTER REPLACING PARTS OF THE INPUT IN A

BATCH AND IN A ONE-BY-ONE MANNER. THE ARROWS INDICATE THE OPTIMAL (MINIMUM OR MAXIMUM) VALUE FOR EACH MEASURE

Slice Out
SumMe TVSum

Batch One-by-One Batch One-by-One
IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA

D− (↓) 0.193 0.198 0.144 0.133 0.145 0.173 0.170 0.163 0.163 0.161 0.098 0.099 0.113 0.107 0.113 0.075 0.075 0.097 0.095 0.098
D+ (↑) 0.204 0.193 0.192 0.192 0.192 0.178 0.177 0.183 0.182 0.185 0.127 0.126 0.083 0.082 0.082 0.102 0.103 0.071 0.071 0.071
SV (↓) 0.440 0.480 0.360 0.360 0.360 0.520 0.440 0.240 0.280 0.160 0.260 0.300 0.820 0.780 0.820 0.160 0.160 0.820 0.760 0.800
RC (↑) N/A N/A N/A N/A N/A 0.056 0.058 -0.278 -0.313 -0.285 N/A N/A N/A N/A N/A 0.216 0.228 -0.174 -0.217 -0.171

Input Mask (black frame)
SumMe TVSum

Batch One-by-One Batch One-by-One
IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA

D− (↓) 0.224 0.230 0.289 0.279 0.292 0.163 0.164 0.207 0.207 0.206 0.134 0.138 0.337 0.334 0.336 0.088 0.088 0.152 0.151 0.151
D+ (↑) 0.345 0.321 0.211 0.208 0.210 0.211 0.205 0.179 0.178 0.177 0.266 0.263 0.100 0.101 0.100 0.130 0.130 0.070 0.070 0.070
SV (↓) 0.160 0.200 0.720 0.760 0.760 0.120 0.240 0.760 0.720 0.800 0.180 0.220 0.980 0.980 0.980 0.160 0.220 0.960 0.960 0.960
RC (↑) N/A N/A N/A N/A N/A 0.369 0.296 0.083 0.036 0.050 N/A N/A N/A N/A N/A 0.397 0.382 -0.103 -0.218 -0.110

Input Mask (white frame)
SumMe TVSum

Batch One-by-One Batch One-by-One
IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA

D− (↓) 0.208 0.214 0.260 0.256 0.262 0.142 0.143 0.174 0.174 0.172 0.126 0.130 0.351 0.347 0.350 0.083 0.083 0.156 0.154 0.155
D+ (↑) 0.286 0.279 0.189 0.186 0.188 0.177 0.172 0.150 0.150 0.149 0.289 0.287 0.094 0.092 0.094 0.137 0.136 0.067 0.067 0.067
SV (↓) 0.280 0.240 0.640 0.640 0.680 0.280 0.280 0.680 0.640 0.680 0.100 0.140 0.980 0.980 0.980 0.140 0.140 0.980 1.000 0.980
RC (↑) N/A N/A N/A N/A N/A 0.273 0.199 0.027 -0.008 0.010 N/A N/A N/A N/A N/A 0.455 0.439 -0.162 -0.289 -0.166

Randomization
SumMe TVSum

Batch One-by-One Batch One-by-One
IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA

D− (↓) 0.131 0.125 0.140 0.134 0.136 0.077 0.079 0.081 0.082 0.080 0.079 0.078 0.115 0.108 0.116 0.040 0.041 0.051 0.051 0.052
D+ (↑) 0.149 0.141 0.134 0.135 0.137 0.084 0.084 0.077 0.076 0.076 0.111 0.109 0.079 0.081 0.078 0.052 0.053 0.040 0.041 0.042
SV (↓) 0.440 0.440 0.440 0.440 0.440 0.400 0.400 0.520 0.560 0.520 0.160 0.200 0.880 0.760 0.860 0.280 0.240 0.760 0.740 0.700
RC (↑) N/A N/A N/A N/A N/A 0.138 -0.014 0.102 -0.066 -0.003 N/A N/A N/A N/A N/A 0.306 0.324 -0.029 -0.087 0.037

Attention Mask
SumMe TVSum

Batch One-by-One Batch One-by-One
IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA

D− (↓) 0.256 0.258 0.258 0.258 0.259 0.251 0.252 0.255 0.255 0.255 0.270 0.271 0.288 0.285 0.287 0.272 0.272 0.284 0.285 0.284
D+ (↑) 0.261 0.259 0.250 0.250 0.250 0.256 0.256 0.246 0.246 0.247 0.291 0.290 0.259 0.259 0.259 0.287 0.286 0.272 0.272 0.272
SV (↓) 0.360 0.400 0.600 0.600 0.600 0.440 0.400 0.680 0.680 0.640 0.340 0.400 0.620 0.620 0.620 0.300 0.300 0.580 0.520 0.600
RC (↑) N/A N/A N/A N/A N/A 0.029 -0.009 0.023 0.027 0.019 N/A N/A N/A N/A N/A 0.116 0.111 -0.041 -0.076 -0.044

Overall (average)
SumMe TVSum

Batch One-by-One Batch One-by-One
IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA IA NA GA GoA NGA

D− (↓) 0.202 0.205 0.218 0.212 0.219 0.161 0.162 0.176 0.176 0.175 0.141 0.143 0.241 0.236 0.241 0.112 0.112 0.148 0.147 0.148
D+ (↑) 0.249 0.239 0.195 0.194 0.195 0.181 0.179 0.167 0.166 0.167 0.217 0.215 0.123 0.123 0.123 0.142 0.142 0.104 0.104 0.104
SV (↓) 0.336 0.352 0.552 0.560 0.568 0.352 0.352 0.576 0.576 0.560 0.208 0.252 0.856 0.824 0.852 0.208 0.212 0.820 0.796 0.808
RC (↑) N/A N/A N/A N/A N/A 0.176 0.108 -0.010 -0.067 -0.043 N/A N/A N/A N/A N/A 0.303 0.301 -0.102 -0.179 -0.091

Fig. 2. The explanation mask and the five top-scoring fragments (in blue bounding boxes) for a TVSum video, titled “Pet Joy Spa Grooming Services”.

Fig. 3. The explanation mask and the five top-scoring fragments (in blue bounding boxes) for a TVSum video, titled “Smage Bros. Motorcycle Stunt Show”.
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B. Quantitative analysis

The performance of each explanation signal on the SumMe
and TVSum dataset is presented in Table I. The results for
batch replacement show the advanced performance of expla-
nations formed using the inherent attention weights (IA). Such
explanations exhibit the best performance for all replacement
functions on TVSum, and for most of them on SumMe.
On average, they achieve the lowest/highest D−/D+ scores
and, in most cases (approx. 66% on SumMe and 80% on
TVSum), correctly discriminate the most and least influential
fragments of the video. Explanations formed using the norm-
based weighted version of the inherent attention weights (NA)
also perform good in terms of D− and D+, but are less
effective in terms of SV . Finally, explanations formed using
the gradients of the attention weights (GA, GoA, NGA)
are by far the worst-performing ones. For most replacement
functions, these explanations result in higher/lower D−/D+

scores than the ones obtained for non-gradient-based signals
(IA, NA). Moreover, on average, they fail to distinguish the
most and least influential video fragments in more than 56%
and 82% of the cases on SumMe and TVSum, respectively.

The outcomes for one-by-one replacement indicate once
again the effectiveness of explanations formed using the
inherent attention weights (IA), and the competitiveness of
explanations formed by combining these weights with the
norm of Value-based transformed input vectors (NA). On
average, the former explanations successfully pass the sanity
violation test in approx. 65% and 80% of cases on SumMe and
TVSum, respectively. Moreover, based on the computed rank
correlation scores, they are capable of assigning fragment-
level explanation scores that are more representative of each
fragment’s influence to the network’s output. On the contrary,
gradient-based explanation signals (GA, GoA, NGA) perform
systematically worse. On average, they violate the sanity
test in approx. 57% and 80% of the cases on SumMe and
TVSum, respectively. Furthermore, they assign fragment-level
explanation scores that are neutrally or negatively correlated
with the influence of each fragment to the network’s output.

The above indicate the use of inherent attention weights to
form explanations for the CA-SUM model, as the best option;
thus, such explanations were used in our qualitative analysis.

C. Qualitative analysis

Our qualitative analysis relies on the created explanation
masks for two indicative videos of the TVSum dataset. In
Fig. 2, we observe that the attention mechanism of CA-SUM
pays more attention to video parts showing the dog, and less
attention to speaking persons, dog products, and the pet store.
So, it seems to focus on the dog and models the video’s context
based on it. Building on this knowledge, CA-SUM promotes
parts of the video that are mainly associated with the dog,
as 4 out of 5 top-scoring fragments contain instances of it.
In Fig. 3, the attention mechanism concentrates mainly on
parts of the video showing the tricks made by the riders of
the motorbikes, and other video parts showing the logo of
the TV-show and the interview, are less attractive. Based on

this focus of attention, CA-SUM indicates the parts of the
video showing the riders of the motorbikes doing tricks, as the
most important ones. These paradigms show that extracting
explanations using the proposed method and the inherent
attention weights, could allow to get insights about the focus
of the attention mechanism and assist the explanation of video
summarization networks similar to CA-SUM.

V. CONCLUSIONS

In this work, we presented a method for explaining video
summarization. After formulating the task, we described how
attention-based video summarization networks can be used
to extract explanations. Following, we considered various
explanation signals used in the NLP domain, and introduced
evaluation measures for assessing their ability to identify
the most and least influential parts of the video, for the
network’s predictions. Using these measures and based on
different replacement functions for investigating the network’s
input-output relationship, we assessed the performance of the
considered explanations with the help of the CA-SUM network
and the SumMe and TVSum datasets for video summarization.
Our findings show that, using the proposed method to form
explanations based on the inherent attention weights can lead
to useful clues about the focus of the attention mechanism,
which can assist the explanation of the summarization results.
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