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Abstract—In this paper, a novel structured pruning approach
for learning efficient long short-term memory (LSTM) network
architectures is proposed. More specifically, the eigenvalues
of the covariance matrix associated with the responses of
each LSTM layer are computed and utilized to quantify the
layers’ redundancy and automatically obtain an individual
pruning rate for each layer. Subsequently, a Geometric Median
based (GM-based) criterion is used to identify and prune in a
structured way the most redundant LSTM units, realizing the
pruning rates derived in the previous step. The experimental
evaluation on the Penn Treebank text corpus and the large-scale
YouTube-8M audio-video dataset for the tasks of word-level
prediction and visual concept detection, respectively, shows the
efficacy of the proposed approach1.

Keywords-deep learning; mobile multimedia; LSTM; auto-
matic structured pruning; eigenanalysis; geometric median

I. INTRODUCTION

Deep learning (DL) is currently becoming a game changer
in most industries, ranging from media and mobile commu-
nications to health care and security [1]–[5]. However, it
is well known that top-performing DL models consist of
millions or billions of parameters and their deployment to
resource-limited applications such as smartphones and other
mobile devices is challenging [1].

Structured network pruning has been identified as a rem-
edy to the above problem [6]–[9]. However, the structured
recurrent neural network (RNN) pruning techniques intro-
duced so far (i.e. [8], [9]) require the modification of the loss
function in order to impose sparsity constraints, which may
lead to numerical instabilities and performance reduction
when a high degree of sparseness is pursued [10]. In order
to address the above limitations, we follow a different
path, taking advantage of recent advances in structured
deep convolutional neural networks (DCNN) pruning [6],
[11]. Firstly, the eigenanalysis of the sample covariance
matrix computed using a LSTM layer’s responses is utilized
to quantify correlations among units in the same LSTM
layer and derive automatically the pruning rates at layer
level, as for instance it is done for convolutional layers in

1Source code is made publicly available at: https://github.com/bmezaris/
lstm structured pruning geometric median

[11]. Subsequently, a GM-based criterion, which has shown
superior performance in comparison to criteria exploiting
sparsity-inducing constraints in the domain of structured
DCNN pruning [6], is used to identify and prune the
most replaceable RNN structures according to the pruning
rates computed above. Experimental results show that the
proposed approach provides competitive performance on the
Penn Treebank text corpus [12] and the YouTube-8M audio-
video dataset [13] for the tasks of word-level prediction in
text and concept detection, respectively.

The rest of the paper is structured as follows: Section
II reviews related work on pruning. Section III details the
proposed method. The experimental evaluation is described
in Section IV and conclusions are drawn in Section V.

II. RELATED WORK

DNN compression and acceleration approaches can be
roughly categorized to quantization, low-rank approxima-
tions, knowledge distillation and pruning [1], [2], [14].
The latter is currently getting increasing attention mainly
because the methods falling in this category can achieve
high compression rates while maintaining a stable model
performance. In the following, we briefly review several
pruning approaches in order to put ours into context.

Pruning techniques typically consist of the definition of
the elementary network structures as candidates for prun-
ing, an importance estimation criterion to rank the above
structures, and a pruning strategy defining how pruning
is performed [6]–[9], [11], [15]. Depending on whether
a pruning approach removes individual network weights
or well-defined network components, is characterized as
unstructured or structured, respectively. Concerning pruning
strategies, most approaches either prune a pre-trained model
or incorporate pruning into the training procedure. Another
important aspect of pruning is whether the layers’ pruning
rates are fixed or obtained automatically [11]. The latter can
usually provide more efficient architectures and is closely
related with the network architecture search paradigm [16].

The major advantage of structured pruning techniques
over the unstructured ones is that the former do not require
the use of special-purpose accelerators [8], [15] and thus can
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take advantage of cheap, widely available devices such as
conventional GPUs. The structured pruning of DCNNs has
been studied extensively in the literature [6], [7], [11]. In
contrast, structured RNN pruning is a much less investigated
topic [8], [9]. More specifically, in [8] intrinsic sparse struc-
tures (ISSs) of LSTMs are defined and a Group Lasso-based
(GL-based) approach is used for ISS pruning. Similarly, the
authors in [9] utilize the L0 norm to constrain network pa-
rameters and subsequently prune the ISS components which
are close to zero, achieving higher pruning rates than [8].
Both the above works utilize sparsity-inducing regularizers
to modify the loss function, which may lead to numerical
instabilities and suboptimal solutions for certain network
architectures [10]. To this end, inspired from best practices
in the DCNN structured pruning domain, we quantify the
redundancy at layer level using the eigenanalysis of the
covariance matrix formed by the layer’s responses (e.g.
similar to the way it is done in [11] for DCNN filters), and
utilize a GM-based criterion [6] to rank and prune the most
replaceable LSTM structures in each layer.

III. PROPOSED METHOD

A. Formulation

Suppose an annotated training dataset X of N sequences
and C classes

X = {(Xκ,yκ)|κ = 1, . . . , N}, (1)

where, the matrix Xκ = [xκ,1, . . . ,xκ,T ] ∈ RF×T repre-
sents the κth sequence of length T (without loss of generality
it is assumed that all sequences have the same length),
yκ ∈ RC is its class indicator vector, whose ιth element
is 1 if Xκ belongs to class ι and zero otherwise, xκ,t is the
tth feature vector of the κth sequence, and F is the input
space dimensionality.

A DNN consisting of L LSTM layers is utilized for
learning the above classes. The computations in the lth
LSTM layer with respect to the κth input sequence at a
specified time step t are performed as [17]
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where, the superscript l is the layer index (i.e. l = 1, . . . , L);
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, are the layer’s weight matrices and vectors. Based
on the above formulation, the goal of structurally pruning
LSTM architectures can be stated as follows: given a target
pruning rate θ ∈ (0, 1) for the overall network, estimate the
pruning rate θ[l] and subsequently select the less significant
(in terms of their influence to the overall network classifi-
cation performance) θ[l]H [l] units to prune at layer l so that∑L

l=1 θ
[l]H[l]∑L

l=1H
[l] = θ.

B. Computation of layer’s pruning rate

Due to its high representational power, the hidden state
vector h

[l]
κ,T of any LSTM layer l at the last time step has

been often used for representing the overall sequence at the
output of the layer (e.g. see [18]). Based on this fact, the
whole training set at the output of the lth layer is represented
using the data matrix

Z[l] = [h
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= [z
[l]
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N ], (8)

where for simplicity we set z
[l]
κ = h

[l]
κ,T . Given Z[l], the

sample covariance matrix associated with the responses of
the lth layer can be computed using
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1

N
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κ −m[l])(z[l]
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where m[l] = 1
N

∑N
κ=1 z

[l]
κ is the sample mean vector.

The above matrix is symmetric positive semidefinite, thus,
with real nonnegative eigenvalues, which can be efficiently
computed using appropriate techniques [19]. Sorting S[l]’s
eigenvalues into descending order and normalizing them to
sum to one, we car represent them as

λ
[l]
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[l]

H[l] , (10)

where, λ[l]
1 ≥ · · · ≥ λ

[l]

H[l] ≥ 0 and
∑H[l]

i=1 λ
[l]
i = 1.

As explained in [11], the set of the eigenvalues provides
insight on the correlation of the responses produced by the
different units of the layer. An eigenvalue close to zero
implies that the variables along the corresponding principal
component of S[l] are linearly dependent. Therefore, the
situation where all the energy in the output of a layer
(represented by its hidden state vectors) is accumulated to
only a small fraction of eigenvalues indicates that there are
many redundant units in this layer. Based on the above
analysis, we proceed to express the layer pruning rate with
respect to the derived eigenvalues. We define the following
two sets of variables, ζ [l]

1 , . . . , ζ
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H[l] , δ
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0 else.

(11)
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In the equation above, α a is a parameter in [0, 1] defining
the amount of energy to keep at the output of a layer, and
thus closely related with layer’s pruning rate. The pruning
rate θ[l] for the lth layer can then be computed using

θ[l] = 1−
∑H[l]

i=1 δ
[l]
i

H [l]
. (12)

Thus, our goal is now to identify α by solving the following
single-variable optimization problem

argmin
α

∣∣∣∣∣ 1L
L∑
l=1

θ[l] − θ

∣∣∣∣∣ . (13)

Because α is bounded in [0,1], the above problem can be
efficiently solved using an appropriate iterative method.

C. Minibatch computation of sample covariance matrix

The computation of the sample covariance matrix for
each LSTM layer requires high memory storage space for
retaining the layer’s output along with all epoch steps, and
may be even infeasible when processing large-scale datasets
in devices with limited computational resources. To this end,
we propose a minibatch algorithm for the computation of
this matrix, as explained in the following. For simplicity of
illustration, let us consider the case that the dataset is split
into two partitions, with one partition consisting of the N̆
sequences processed so far, and the new minibatch of Ñ
sequences, i.e. N = N̆ + Ñ . Dropping the superscript layer
index [l] for simplicity, the data matrix at the output of any
layer can be then represented as

Z = [z1, . . . , zN̆ , zN̆+1, . . . , zN ]

= [z̆1, . . . , z̆N̆ , z̃1, . . . , z̃Ñ ]

= [Z̆, Z̃], (14)

where the block matrices Z̆, Z̃ contain the hidden state
vectors corresponding to the already processed sequences
and the minibatch of new sequences, respectively. The
sample mean vector can then be written as

m = 1
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∑Ñ
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hand, the sample covariance matrix (9) can be decomposed
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Algorithm 1: Minibatch computation of S (9)

Input: Current Σ, m, N ; new batch Z̃
Output: Updated S, Σ, m, N

1 Compute Σ̃, m̃, Ñ using Z̃
2 Update S, Σ, m, N using (15), (16), (17):
3 N̆ ← N ; N ← N̆ + Ñ

4 m← N̆
Nm + Ñ

N m̃; Σ← N̆
NΣ + Ñ

N Σ̃
5 S← Σ−mmT

where, Σ̆ = 1
N̆

∑N̆
κ=1 z̆κz̆

T
κ , Σ̃ = 1

Ñ

∑Ñ
κ=1 z̃κz̃

T
κ . Based

on the above formulation, the minibatch computation of
the sample covariance matrix for an arbitrary number of
minibatches is presented in Algorithm 1.

D. LSTM unit importance estimation and pruning

Without loss of generality we examine the unit selection
and pruning procedure for a popular LSTM architecture,
consisting of a biderectional LSTM (BLSTM) [20] with
layer indices l = (1, 1), (1, 2), for the forward and backward
LSTMs, respectively, and a regular LSTM with layer index
l = 2, as shown in Fig. 1. For each layer the weight matrices
can be stacked to form the following block matrices
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h ], (18)
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where, W
[l]
x ∈ RH[l]×4F [l]

, W
[l]
h ∈ RH[l]×4H[l]

and l =
(1, 1), (1, 2), 2. The block matrix W[l] can be then repre-
sented as

W[l] = [w
[l]
1 , . . . ,w

[l]

H[l] ]
T , (21)

where w
[l]
j ∈ RQ is the jth row of W[l], directly related

with the jth unit of the lth layer, and Q = 4(H [l] + F [l]).
Based on the above formulation, an importance score η[l]

j

for each unit in the lth layer can be derived using a GM-
based function, which has shown excellent performance in
DCNN pruning [6], [7],

η
[l]
j =

1

H [l]

H[l]∑
k=1

‖w[l]
j −w

[l]
k ‖2. (22)

The value η
[l]
j quantifies the dissimilarity between the jth

unit and all other units in the layer. Therefore, a small
η

[l]
j denotes that in average this unit is highly correlated

with the other units in the layer and thus can be discarded
safely without harming the classification performance of the
network.

Proceeding to the definition of weight structures for struc-
turally pruning the network, we learn ISSs for both LSTMs
and BLSTMs by extending the approach presented in [8],
as explained in the following. Let us suppose that the kth
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Figure 1: Applying ISSs in BLSTM.

and rth hidden states of the forward and backward LSTM,
respectively, have been selected to be removed, as shown in
Fig. 1. Then, the kth and rth row of W

[1,1]
x , W

[1,1]
h , and,

W
[1,2]
x , W

[1,2]
h , respectively, contributing to the generation

of these states should be removed as well, as shown by the
four white horizontal lines in the figure. Moreover, due to
their correspondence to the connections receiving the above
hidden states from the previous time step, the kth and rth
column of each matrix block of W

[1,1]
h and W

[1,2]
h , should

also be removed, as shown by the eight vertical lines in the
matrix blocks of the BLSTM in the figure. Finally, the kth
and rth columns of the four matrix blocks in W

[2]
x receiving

the above states are also set to zero, as shown by the eight
white vertical lines in the weight matrices of the second
layer LSTM in Fig. 1.

IV. EXPERIMENTS

A. Datasets

1) Penn Treebank (PTB): This is one of the most widely
used datasets for evaluating the performance of statistical
language models [12]. It consists of 1086k tokens in ASCII
format and 10k classes (i.e. unique tokens). It is partitioned
to training, validation, and testing sets with 930k, 74k and
82k tokens, respectively.

2) YouTube-8M (YT8M): The large-scale YT8M video
dataset is utilized to evaluate the proposed approach for
the task of audiovisual concept detection [13]. This dataset
consists of 3862 classes (semantic concepts) and 6134598
videos. Visual and audio feature vectors have been pre-
extracted and provided at frame-level (1 frame per second)
with dimensionality 1024 and 128, respectively.

Table I: Evaluation results on PTB (lower PPL values are
better).

Dropout
keep rate

ISS # in
(1st, 2nd)

PPL
(validate, test)

baseline [21] 0.35 (1500, 1500) (82.57, 78.57)
ISS-GL [8] 0.60 (373, 315) (82.59, 78.65)
ISS-L0 [9] 0.65 (296, 247) (81.62, 78.08)
ISS-GM (prop.) 0.50 (236, 297) (81.49, 77.97)

Table II: Evaluation results on YT8M (higher GAP@20
values are better).

GAP@20 Ttr
no pruning 84.33% 6.73
ISS-GL [8] (θ = 30%) 83.20% 7.82
ISS-GM (prop.) (θ = 30%) 84.12% 15.40
ISS-GL [8] (θ = 70%) 82.2% 7.43
ISS-GM (prop.) (θ = 70%) 83.10% 14.54

B. Setup

The proposed method, called hereafter ISS-GM, is evalu-
ated against ISS-GL [8] and ISS-L0 [9] in the PTB dataset.
In this experiment, a two-layer stacked LSTM model [21]
is utilized, and the training procedure described in [9] is
followed. For the evaluation in the YT8M, a variant of the
BLSTM architecture presented in Section III-D is utilized to
compare ISS-GM and ISS-GL (the software implementation
of ISS-L0 is not provided in [9] and for this reason ISS-
L0 is not included in this experiment). In more detail, the
forward and backward layers of the BLSTM consist of 512
units each, while 1024 units are used for the LSTM layer.
Each video is represented with a feature vector sequence
of T = 300 length. Both models are trained for 10 epochs
using CE loss with minibatch SGD, batch size of 256, an
exponential learning rate schedule with initial learning rate
of 0.0002, learning rate decay of 0.95 at every epoch, and
pruning is applied every 200 training steps.

The performance evaluation on the PTB and YT8M
datasets is performed using the per-word perplexity (PPL)
and the global average precision at 20 (GAP@20) [13],
respectively. ISS-GM is implemented in PyTorch and Ten-
sorflow for the evaluation in PTB and YT8M, respectively.
For the ISS-GL method, the Tensorflow code provided in
[8] is adapted for the YT8M experiments. The evaluation
is performed in an Intel i7-3770K PC with 32 GB RAM,
Windows 10, and Nvidia GeForce GPU (GTX 1080 Ti).

C. Results

The experimental results in terms of PPL on the PTB
dataset are shown in Table I. Table II depicts GAP@20
rates and training times in hours per epoch (Ttr) for the
evaluation on the YT8M dataset with pruning rates 30% and
70%. From the obtained results we conclude the following:
i) The proposed ISS-GM achieves the best performance
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in all experiments. More specifically, on the PTB dataset
a small but significant PPL gain is obtained using ISS-
GM (considering that ISS-L0 is the previous state-of-the-
art approach), while, on the YT8M dataset a quite large
GAP@20 improvement of approximately 1% is attained over
ISS-GL for both 30% and 70% pruning rates. ii) ISS-GM
exhibits a high degree of robustness against large pruning
rates, making it suitable for compressing deep networks and
allowing their deployment in mobile and other resource-
constrained environments. For instance, only 0.21% and
1.23% performance drop is observed on the YT8M dataset
for 30% and 70% pruning rates, respectively. iii) Concerning
training times, we observe that ISS-GM is approximately
two times slower than ISS-GL in the YT8M experiment,
mainly because ISS-GL computes the eigenvalues of the
covariance matrix for each layer every time the pruning
procedure is applied. However, concerning that the training
is performed off-line, this time overhead is considered
insignificant.

V. CONCLUSION

In this paper, a new LSTM structured pruning approach
was proposed that utilizes the sample covariance matrix of
layer’s responses and a GM-based criterion to automatically
derive pruning rates at layer level and compress the network,
to make it more suitable for deployment in mobile or other
resource-constrained environments. The proposed approach
was evaluated on two datasets for the tasks of word-level
prediction in text and concept detection in audiovisual se-
quences, providing competitive performance at high pruning
rates.
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