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Still Image Segmentation Tools for Object-based
Multimedia Applications

Vasileios Mezaris, Ioannis Kompatsiaris, and Michael G. Strintzis.

Abstract— In this paper, a color image segmentation al-
gorithm and an approach to large-format image segmen-
tation are presented, both focused on breaking down im-
ages to semantic objects for object-based multimedia ap-
plications. The proposed color image segmentation algo-
rithm performs the segmentation in the combined intensity–
texture–position feature space in order to produce con-
nected regions that correspond to the real-life objects shown
in the image. A preprocessing stage of conditional image fil-
tering and a modified K-Means-with-connectivity-constraint
pixel classification algorithm are used to allow for seamless
integration of the different pixel features. Unsupervised op-
eration of the segmentation algorithm is enabled by means of
an initial clustering procedure. The large-format image seg-
mentation scheme employs the aforementioned segmenta-
tion algorithm, providing an elegant framework for the fast
segmentation of relatively large images. In this framework,
the segmentation algorithm is applied to reduced versions
of the original images, in order to speed-up the completion
of the segmentation, resulting in a coarse-grained segmen-
tation mask. The final fine-grained segmentation mask is
produced with partial reclassification of the pixels of the
original image to the already formed regions, using a Bayes
classifier. As shown by experimental evaluation, this novel
scheme provides fast segmentation with high perceptual seg-
mentation quality.

Keywords : image segmentation; image analysis; large-
format image segmentation; Bayes classifier

I. Introduction

In recent years, the proliferation of digital media has
established the need for the development of tools for the
efficient representation, access and retrieval of visual in-
formation. These tools, targeted at applications of large
image and video collections as well as the Web, become in-
creasingly important as the amount of digital media both
on the Web and in proprietary collections increases. While
several approaches have been proposed to address these is-
sues, most recent approaches rely on the analysis of the con-
tent of the medium in semantic objects. This is true both
for still image manipulation (image indexing [2], [4], [7],
[19], region-of-interest coding using the JPEG2000 stan-
dard [35]) and for video representation [23], coding [14],
[44] and indexing using the MPEG-4 [38] and recently in-
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troduced MPEG-7 [29] standards. In still image indexing,
for example, state of the art systems are based on the seg-
mentation of images into regions corresponding to objects
and the use of a separate set of indexing features for each
object [2], [7].
The cornerstone of any such object-based multimedia ap-

plication is the segmentation algorithm, which for every
still image or every frame of an image sequence produces
a corresponding segmentation mask: a gray-scale image in
which different gray levels denote different regions iden-
tified by the algorithm. The segmentation mask is then
used, depending on the specific application, for extracting
region-specific indexing features or for identifying regions
of interest. The present work concentrates on addressing
the issue of effective segmentation of still color images, aim-
ing to applications requiring the automatic segmentation of
heterogeneous images, thus excluding the availability of a
priori knowledge about the objects contained in each im-
age. Content-based indexing and retrieval of images is a
typical application of this category.
Segmentation methods for 2D images may be divided

primarily into region-based and boundary-based methods
[39], [40], [10], [15]. Region-based approaches [13], [22],
[21] rely on the homogeneity of spatially localized features
such as intensity. The K-means algorithm [26] and evolved
variants of it (KMCC [22]) have been used as the basis of
several region-based approaches. Region-growing and split
and merge techniques also belong to the same category.
On the other hand, boundary-based methods use primar-
ily gradient information to locate object boundaries. De-
formable whole boundary methods [17], [41], rely on the
values of gradients in parts of an image near an object
boundary. Hybrid techniques which integrate the results
of boundary detection and region growing have also been
proposed [9].
Other techniques include the segmentation using the

Expectation-Maximization (EM) algorithm [2], [4] and the
segmentation by anisotropic diffusion [31], [1]. The EM al-
gorithm is used for finding maximum likelihood estimates
when there is missing or incomplete data; the cluster mem-
bership for each pixel can be seen as such. Anisotropic
diffusion can be seen as a robust procedure which esti-
mates a piecewise smooth image from a noisy input image.
The “edge-stopping” function in the anisotropic diffusion
equation, allows the preservation of edges while diffusing
the rest of the image. The Recursive Shortest Spanning
Tree (RSST) algorithm [28], [43], starting from a very fine
partitioning of the image, performs merging of neighbor-
ing nodes while considering the minimum of a cost func-
tion. Mathematical morphology [25], [37], [34] methods,
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including in particular the watershed transformation [47],
[12], have also received considerable attention for use in
image segmentation. The watershed transformation de-
termines the minima of the gradients of the image to be
segmented, and associates a segment to each minimum.
Conventional gradient operators generally produce many
local minima which are caused by noise or quantization
errors, and hence, the watershed transformation with a
conventional gradient operator usually results in overseg-
mentation. To alleviate this problem, the use of multiscale
morphological gradient operators has been proposed [48].
In this paper, a region-based approach is adopted. An

unsupervised segmentation algorithm is presented using a
combination of conditional image filtering by a moving av-
erage filter and pixel classification by means of a novel vari-
ant of the K-Means-with-connectivity-constraint algorithm
(KMCC), in order to form connected regions that corre-
spond to the objects contained in the image. Perform-
ing the segmentation in the combined intensity–texture–
position feature space allows for effective handling of tex-
tured objects, as opposed to most previous algorithms,
including those based on K-means-family pixel classifiers,
which do not utilize texture information.
Although this segmentation algorithm is quite fast when

applied to images of relatively small dimensions, its effi-
ciency degrades quickly as the dimensions of the image in-
crease. This is in fact the case for any segmentation algo-
rithm with computational complexity proportional to the
number of pixels of the image to be segmented. Since large-
format images are becoming increasingly popular, partly as
a result of recent advances in storage and communication
technologies, time-efficient methods for their segmentation
become essential. For this reason, a novel framework for
the fast segmentation of relatively large images employing
a Bayes classifier is proposed. This effectively addresses
the issues of time efficiency and perceptual segmentation
quality and, as will be seen, can also be combined with
most segmentation algorithms found in the literature.
The paper is organized as follows: The proposed seg-

mentation algorithm is presented in Sec. II. In Sec. III, the
framework for the fast segmentation of large-format images
using the segmentation algorithm presented in the previous
section is developed, and the issues of time efficiency and
perceptual segmentation quality are discussed. Section IV
contains experimental evaluation and comparisons of the
developed methods, and finally, conclusions are drawn in
Sec. V.

II. Color Image Segmentation

A. Segmentation System Overview

The segmentation system described in this section is
based on a novel variant of the K-Means-with-connectivity-
constraint algorithm (KMCC) [21], [22], a member of the
popular K-Means family. The KMCC algorithm is an al-
gorithm that classifies the pixels into regions taking into
account not only the intensity information associated with
each pixel but also the position of the pixel, thus producing

connected regions rather than sets of chromatically simi-
lar pixels. The novel variant presented in this paper in-
troduces the use of texture features in combination with
the intensity and position features; this, along with the
texture-dependent filtering of pixel intensities (conditional
filtering), endow the segmentation algorithm with the ca-
pability to handle textured objects effectively, by forming
large, chromatically non-uniform regions instead of break-
ing down the objects to a large number of chromatically
uniform regions, as was the case in a previous preliminary
version of the algorithm [22], [3]. In addition, in the pro-
posed algorithm the required initial values are estimated
using a novel initial clustering procedure, based on break-
ing down the image to square blocks and assigning an in-
tensity feature vector and a texture feature vector to each
block. This automated initial clustering procedure makes
any user intervention at this stage unnecessary, thus facil-
itating the processing of large image collections.
The overall segmentation algorithm consists of the fol-

lowing stages:
• Stage 1. Extraction of the intensity and texture feature
vectors corresponding to each pixel. These will be used
along with the spatial features in the following stages.
• Stage 2. Estimation of the initial number of regions and
their spatial, intensity and texture centers, using a novel
initial clustering procedure. These values are to be used
by the KMCC algorithm.
• Stage 3. Conditional filtering using a moving average
filter.
• Stage 4. Final classification of the pixels, using the
KMCC algorithm.
The result of the application of the segmentation algo-

rithm to a color image is the segmentation mask, i.e. a
grayscale image in which different gray values correspond
to different regions formed by the KMCC algorithm.

B. Color and Texture Features

For every pixel p = [px py], px = 1, . . . , xmax, py =
1, . . . , ymax, where xmax, ymax are the image dimensions
in pixels, a color feature vector and a texture feature vec-
tor are calculated. The color features used are the three
intensity coordinates of the CIE L*a*b* color space. What
makes CIE L*a*b* more suitable for the proposed algo-
rithm than the widely used RGB color space is perceptual
uniformity: the CIE L*a*b* is approximately perceptually
uniform, i.e. the numerical distance in this color space
is approximately proportional to the perceived color dif-
ference [24]. The color feature vector of pixel p, I(p) is
defined as

I(p) = [IL(p) Ia(p) Ib(p)] (1)

In order to detect and characterize texture properties
in the neighborhood of each pixel, the Discrete Wavelet
Frames (DWF) decomposition, proposed by [45], is used.
This is a method similar to the Discrete Wavelet Transform
(DWT), that uses a filter bank to decompose each inten-
sity component of the image to a set of subbands (Fig. 1).
The main difference between the two methods is that in
the DWF decomposition the output of the filter bank is
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not subsampled. The DWF approach has been proven to
decrease the variability of the estimated texture features,
thus improving classification performance [45].
The filter bank used is based on the lowpass Haar fil-

ter H(z) = 1
2 (1 + z−1), which satisfies the lowpass con-

dition H(z)|z=1 = 1. The complementary highpass fil-
ter G(z) is defined with respect to the lowpass H(z)
as G(z) = zH(−z−1). The filters of the filter bank,
HV (z), Gi(z), i = 1, . . . , V are generated by the prototypes
H(z), G(z), according to equations presented in [45]. De-
spite its simplicity, the above filter bank has been demon-
strated to perform surprisingly well for texture segmenta-
tion in [45] and is, for this reason, a good choice for our
system. The use of such simple filters has the additional
advantage of correspondingly reduced computational com-
plexity. The texture of pixel p is then characterized by the
standard deviations of all detail components, calculated in
a square neighborhood Φ of pixel p.
For images of relatively small dimensions, e.g. 150 ×

100 pixels, a two-dimensional DWF decomposition of two
levels has been chosen, thus V = 2. Since three detail
components are produced for each level of decomposition
and each one of the three intensity components, this results
in a 9× V = 18-component texture feature vector T(p):

T(p) = [σ1(p) σ2(p) . . . σ9×V (p)] (2)

Moving towards larger images, or large-format versions
of the same image, any given texture becomes coarser-
grained, in terms of the size of its basic structural ele-
ment, calculated in pixels. Thus, for images of significantly
larger dimensions, more levels of decomposition may be
required to effectively characterize texture. In the exper-
iments where the segmentation algorithm of this section
was applied directly to large-format images, four levels of
decomposition were used instead of two, resulting in a 36-
component texture feature vector.

C. Initial Clustering

Similarly to any other variant of the K-Means algorithm,
the KMCC algorithm requires initial values: an initial es-
timation of the number of regions in the image and their
spatial, intensity and texture centers (all these initial val-
ues can and are expected to be altered during the execution
of the algorithm). In order to compute them, the image is
broken down to square, non-overlapping blocks of dimen-
sion f × f . In this way, a reduced image composed of
a total of L blocks, bl, l = 1, . . . , L, is created. A color
feature vector Ib(bl) = [Ib

L(bl) I
b
a(bl) I

b
b (bl)] and a texture

feature vector Tb(bl) are then assigned to each block, as
follows:

Ib(bl) =
1
f2

∑
p∈bl

I(p), (3)

Tb(bl) =
1
f2

∑
p∈bl

T(p), (4)

The distance between two blocks is defined as follows:

Db(bl, bn) = ‖Ib(bl)− Ib(bn)‖+ λ1‖Tb(bl)− Tb(bn)‖, (5)

where ‖Ib(bl)−Ib(bn)‖, ‖Tb(bl)−Tb(bn)‖ are the Euclidean
distances between the block feature vectors. In our exper-
iments, λ1 = 1, since experimentation showed that using a
different weight λ1 for the texture difference would result
in erroneous segmentation of textured images if λ1 � 1,
respectively non-textured images if λ1 � 1. As shown in
the experimental results section, the value λ1 = 1 is appro-
priate for a variety of textured and non-textured images;
small deviations from this value have little effect on the
segmentation results.
The number of regions of the image is initially estimated

by applying a variant of the maximin algorithm to this set
of blocks. This algorithm consists of the following steps:

• Step 1. The block in the upper left corner of the image
is chosen to be the first intensity and texture center.
• Step 2. For each block bl, l = 1, . . . , L, the distance be-
tween bl and the first center is calculated; the block for
which the distance is maximized is chosen to be the second
intensity and texture center. The distance C between the
first two centers is indicative of the intensity and texture
contrast of the particular image.
• Step 3. For each block bl, the distances between bl and
all centers are calculated and the minimum of those dis-
tances is assigned to block bl. The block that was assigned
the maximum of the distances assigned to blocks is a new
candidate center.
• Step 4. If the distance that was assigned to the candidate
center is greater than γ ·C, where γ is a predefined param-
eter (γ ∈ [0, 1]; γ = 0 results to all non-identical blocks
being identified as region centers, while γ = 1 restricts re-
gion centers to the two already identified in step 2), the
candidate center is accepted as a new center and step 3 is
repeated; otherwise, the candidate center is rejected and
the maximin algorithm is terminated.

In the experimental results section, the values of param-
eters L, γ that were used throughout the experiments and
the effect of using values deviating from the employed ones
are presented.
The number of centers estimated by the maximin algo-

rithm constitutes an estimate of the number of regions in
the image. Nevertheless, it is not possible to directly deter-
mine whether these regions are connected or not. Further-
more, there is no information regarding their spatial cen-
ters. In order to solve these problems, a simple K-Means
algorithm is applied to the set of blocks, using the informa-
tion produced by the maximin algorithm for its initializa-
tion. When the K-Means algorithm converges, the connec-
tivity of the regions that were formed is evaluated; those
that are not connected are easily broken down to the min-
imum number of connected regions using a recursive four-
connectivity component labelling algorithm [16], so that a
total of K ′ connected regions sk, k = 1, . . . ,K ′ are identi-
fied. Their intensity, texture and spatial centers, Is(sk) =
[Is

L(sk) I
s
a(sk) I

s
b (sk)], T

s(sk) = [T s
1 (sk) . . . T

s
9×V (sk)] and

S(sk) = [Sx(sk) Sy(sk)], k = 1, . . . ,K ′, must now be calcu-
lated. Let Mk be the number of pixels belonging to region
sk: sk = {p1,p2, . . . ,pMk

}; the region centers to be used
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for the initialization of the KMCC are calculated as follows:

Is(sk) =
1
Mk

∑
p∈sk

I(p), (6)

Ts(sk) =
1
Mk

∑
p∈sk

T(p), (7)

S(sk) =
1
Mk

∑
p∈sk

p, (8)

D. Conditional Filtering

Images may contain parts in which intensity fluctuations
are particularly pronounced, even when all pixels in these
parts of the image belong to a single object (Fig. 2a). In
order to facilitate the grouping of all these pixels in a sin-
gle region based on their texture similarity, it is useful to
reduce their intensity differences. This is achieved by ap-
plying a moving average filter to the appropriate parts of
the image, thus altering the intensity information of the
corresponding pixels.
The decision of whether the filter should be applied to a

particular pixel p or not is made by evaluating the norm of
the texture feature vector T(p) (Sec. II-B); the filter is not
applied if that norm is below a threshold τ . The output of
the conditional filtering module can thus be expressed as:

J(p) =
{

I(p) if ‖T(p)‖ < τ
1
f2

∑
I(p) if ‖T(p)‖ ≥ τ (9)

Correspondingly, region intensity centers calculated sim-
ilarly to Eq. (6) using the filtered intensities J(p) instead
of I(p) are symbolized Js(sk).
An appropriate value of threshold τ was experimentally

found to be
τ = max{0.65 · Tmax, 14} (10)

where Tmax is the maximum value of the norm ‖T(p)‖ in
the image. The term 0.65 · Tmax in the threshold defini-
tion serves to prevent the filter from being applied outside
the borders of textured objects, so that their boundaries
are not corrupted. The constant bound 14, on the other
hand, is used to prevent the filtering of images composed
of chromatically uniform objects; in such images, the value
of Tmax is expected to be relatively small and would cor-
respond to pixels on edges between objects, where filtering
is obviously undesirable.
The output of the conditional filtering stage (e.g.

Fig. 2b) is used as input by the KMCC algorithm.

E. The K-Means with Connectivity Constraint Algorithm

Clustering based on the K-Means algorithm, originally
proposed by McQueen [26], is a widely used region seg-
mentation method [36], [33], [20] which, however, tends to
produce unconnected regions. This is due to the propensity
of the classical K-Means algorithm to ignore spatial infor-
mation about the intensity values in an image, since it only
takes into account the global intensity or color information.
Furthermore, previous pixel classification algorithms of the

K-Means family do not take into account texture informa-
tion. In order to alleviate these problems, we propose the
use of a novel variant of the KMCC algorithm. In this algo-
rithm the spatial proximity of each region is also taken into
account by defining a new center for the K-Means algo-
rithm and by integrating the K-Means with a component
labeling procedure. In addition to that, texture features
are combined with the intensity and position information
to permit efficient handling of textured objects.
The KMCC algorithm applied to the pixels of the image

consists of the following steps:
• Step 1. The region number and the region centers are ini-
tialized, using the output of the initial clustering procedure
described in Sec. II-C.
• Step 2. For every pixel p, the distance between p and
all region centers is calculated. The pixel is then assigned
to the region for which the distance is minimized. A gen-
eralized distance of a pixel p from a region sk is defined as
follows:

D(p, sk) = ‖J(p)− Js(sk)‖+ λ1‖T(p)− Ts(sk)‖
+λ2

M̄
Mk

‖p − S(sk)‖, (11)

where ‖J(p)−Js(sk)‖, ‖T(p)−Ts(sk)‖ and ‖p−S(sk)‖ are
the Euclidean distances between the pixel feature vectors
and the corresponding region centers; pixel number Mk

of region sk is a measure of the area of region sk, and
M̄ is the average area of all regions, M̄ = 1

K

∑K
k=1Mk.

The regularization parameter λ2 is defined as λ2 = 0.4 ·
C√

x2
max+y2

max

, while the choice of the parameter λ1 has been

discussed in Sec. II-C.
In (11), normalization of the spatial distance, ‖p− S(sk)‖
by division by the area of each region Mk

M̄
, is necessary in

order to encourage the creation of large connected regions;
otherwise, pixels would tend to be assigned to smaller
rather than larger regions due to greater spatial proxim-
ity to their centers. In this case, large objects would be
broken down to more than one neighboring smaller regions
instead of forming one single, larger region. The regulariza-
tion parameter λ2 is used to ensure that a pixel is assigned
to a region primarily due to their similarity in intensity
and texture characteristics, even in low-contrast images,
where intensity and texture differences are small compared
to spatial distances.
• Step 3. The connectivity of the formed regions is evalu-
ated; those which are not connected are easily broken down
to the minimum number of connected regions using a recur-
sive four-connectivity component labelling algorithm [16].
• Step 4. Region centers are recalculated (Eq. (6)-(8)).
Regions with areas below a size threshold ξ are dropped.
In our experiments, the threshold ξ was equal to 0.5% of the
total image area. This is lower than the minimum accepted
region size ψ, which in our experiments was equal to 0.75%
of the total image area. The latter is used to ensure that no
particularly small, meaningless regions are formed. Here,
the slightly lower threshold ξ is used to avoid dropping,
in one iteration of the KMCC algorithm, regions that are
close to threshold ψ and are likely to exceed it in future
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iterations. The number of regions K is also recalculated,
taking into account only the remaining regions.
• Step 5. Two regions are merged if they are neighbors and
if their intensity and texture distance is not greater than
an appropriate merging threshold:

Ds(sk1 , sk2) =
‖Js(sk1)− Js(sk2)‖+ λ1‖Ts(sk1)− Ts(sk2)‖ ≤ µ (12)

Threshold µ is image-specific, defined in our experiments
by

µ =




7.5 if C < 25
15 if C > 75
10 otherwise

(13)

where C is an approximation of the intensity and texture
contrast of the particular image, as defined in Sec. II-C
• Step 6. Region number K and region centers are reeval-
uated.
• Step 7. If the region number K is equal to the one calcu-
lated in Step 6 of the previous iteration and the difference
between the new centers and those in Step 6 of the previ-
ous iteration is below the corresponding threshold for all
centers, then stop, else goto Step 2. If index “old” charac-
terizes the region number and region centers calculated in
Step 6 of the previous iteration, the convergence condition
can be expressed as K = Kold and

‖Js(sk)− Js(sold
k )‖ ≤ cI ,

‖Ts(sk)− Ts(sold
k )‖ ≤ cT ,

‖S(sk)− S(sold
k )‖ ≤ cS ,

for k = 1, . . . ,K. Since there is no certainty that the
KMCC algorithm will converge for any given image, the
maximum allowed number of iterations was chosen to be
20; if this is exceeded, the method proceeds as though the
KMCC algorithm had converged.

III. Fast Large-format Image Segmentation

The approach presented in the previous section is con-
siderably fast when the algorithm is applied to images of
relatively small dimensions, e.g. 150×100 pixels. When the
image size increases, time efficiency degrades quickly, since
the computational complexity of the algorithm is approxi-
mately proportional to the number of pixels of the image.
In order to provide a more efficient scheme for the segmen-
tation of relatively large images, one could take advantage
of a reasonable assumption already made in the previous
section, namely that regions falling below a size threshold
ψ, that was defined to be equal to 0.75% of the total image
area in subsection II-E, are insignificant for the multimedia
applications where segmentation is required. For relatively
large images, this threshold corresponds to a large number
of pixels. This reveals the potential of applying the segmen-
tation algorithm of the previous section to reduced versions
of the original images [18], [42], [32]. These would be large
enough for even insignificant objects to be detectible, yet
significantly smaller than the original ones, thus faster to
segment.

In this paper, the reduced image is derived from the orig-
inal image by associating each R×R block of the original
image with a pixel of the reduced one (Fig. 3), where R
is the reduction factor. A necessary condition for all sig-
nificant objects to be detectible in the reduced image is
that the size threshold for the reduced image, expressed as
the minimum number of pixels, be much greater than one;
otherwise, even significant objects could be difficult or even
impossible to detect. Thus,

ψ

R2
� 1 (14)

where ψ has been defined as ψ = 0.75
100 · ymax · xmax and

xmax, ymax are the original image dimensions. A graphical
representation of this three-layer segmentation scheme is
presented in Fig. 3. The segmentation algorithm proposed
in Sec. II is applied to the Layer 1 image. Consequently,
its initial clustering process described in subsection II-C is
performed on the Layer 2 image.
The use of a reduced image improves the time efficiency

of the segmentation process, but does so at the expense
of the quality of the segmentation result; edges between
objects are crudely approximated by piecewise linear seg-
ments, lowering the perceptual quality of the result. To
alleviate this problem, the use of the Bayes classifier for
the reclassification of pixels is proposed. Reclassification
of all pixels of the original image is unnecessary, since only
those close to the edges of each region may have been mis-
classified due to the use of a reduced image. Thus, reclassi-
fication is restricted to the latter. The proximity of pixels
to edges is evaluated using the output of the segmentation
algorithm: the segmentation mask corresponding to the
Layer 1 image. If a pixel of that mask, assigned to one re-
gion, is neighboring to pixels of Γ other regions, Γ �= 0, the
assignments of all pixels of the original image represented
by that pixel of the Layer 1 image must be reevaluated,
since each of them may belong to any one of the possible
Γ + 1 regions. In this way, G sets gp

i , i = 1, . . . , G of dis-
puted pixels are formed, each associated with a different
set gs

i , i = 1, . . . , G of possible regions (Fig. 4).
The reclassification of the disputed pixels is then per-

formed using their intensity values only, as follows: Let ωk

be the class of pixels of region sk. According to the Bayes
classifier [11], [8], a disputed pixel p, p ∈ gp

i , is assigned to
region sk if

p(ωk|I(p)) > p(ωq|I(p)), ∀sk, sq ∈ gs
i , k �= q, (15)

Using the Bayes Theorem, Eq. (15) can be rewritten as:

p(I(p)|ωk) · p(ωk) > p(I(p)|ωq) · p(ωq), ∀sk, sq ∈ gs
i , k �= q,

(16)
The probability p(ωk) is the a priory probability of class
ωk, whereas probability p(I(p)|ωk) is the density function
of the intensities of pixels belonging to class ωk. The latter
can be easily determined using the normalized histogram
histk of each intensity component for the non-disputed pix-
els of region sk:

p(I(p)|ωk) =
∏

x∈{L,a,b}
histxk(Ix(p)), (17)
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Regarding class prior probabilities, it can be assumed that
among the pixels of group gp

i the a priory probability of
class ωk, sk ∈ gs

i , is equal for all regions sk ∈ gs
i . The fact

that reclassification is restricted to disputed pixels, i.e. pix-
els on edges between regions, along with the fact that each
pixel of group gp

i belongs to a block that is on the edges of
all regions of group gs

i , make the size of each region sk ∈ gs
i

irrelevant to the employed methodology (Fig. 4); therefore,
using region size for estimating prior probabilities would be
unjustifiable. Consequently, the classification criterion of
Eq. (16) is simplified to: pixel p, p ∈ gp

i , is assigned to
region sk if

∏
x∈{L,a,b} hist

x
k(Ix(p)) >

∏
x∈{L,a,b} hist

x
q (Ix(p)),

∀sk, sq ∈ gs
i , k �= q,

(18)
The block diagram of the pixel reclassification scheme is
presented in Fig. 5.

IV. Experimental results

The segmentation algorithm described in Sec. II was ap-
plied to a variety of synthetic and natural color images of
typical dimensions 150 × 100 and 192 × 128; these were
mainly selected from the Corel gallery [6] and the MIT
Vision Texture (VisTex) database [27], while some were
collected from the web. Results for natural images are pre-
sented in Fig. 6, along with results obtained using two sim-
pler variants of the proposed algorithm: one that neither
uses texture features nor enforces connectivity constraints
during pixel classification (denoted KM1), and one that
differs from the proposed algorithm in that texture is used
only by the conditional filtering module and not by KMCC
(denoted KM2). Figure 6 illustrates the shortcomings of
such simpler variants and the improvement attained using
the proposed algorithm.
Additional results for 192 × 128 pixel images [6],

[27] are presented in Figs. 7 and 8, along with the
corresponding results of the Blobworld segmentation
algorithm [2], [4] (obtained using source code from
http://elib.cs.berkeley.edu/src/blobworld/). The Blob-
world algorithm is one that has been extensively tested
and has produced very satisfactory results. It is based on
modelling the joint distribution of color, texture and posi-
tion features with a mixture of Gaussians; the Expectation-
Maximization (EM) algorithm is employed to estimate the
parameters of this model. From the results presented here
it can be seen that the proposed algorithm tends to pro-
duce more accurate region boundaries. This, along with the
fact that every pixel of the image is assigned to a region,
make the proposed algorithm suitable not only for content-
based image retrieval but also for region-of-interest coding,
a task for which the Blobworld algorithm is not suited. A
comparison, using an 800Mhz Intel PIII PC, of the time
efficiency of the algorithm of Sec. II and Blobworld (uses
mostly Matlab code) can be seen in table I.
Objective evaluation of segmentation quality was per-

formed using synthetic images, created using the reference
textures of the VisTex database [27], and natural images

of the Corel gallery [6]; reference masks for the latter were
manually generated. The employed evaluation criterion is
based on the measure of spatial accuracy proposed in [46]
for foreground/background masks. For the purpose of eval-
uating still image segmentation results, each reference re-
gion rq of the reference mask is associated with a different
created region sk on the basis of region overlapping (i.e.
sk is chosen so that rq ∩ sk is maximized). Then, the spa-
tial accuracy of the segmentation is evaluated by separately
considering each reference region as a foreground reference
region and applying the criterion of [46] for the pair of
{rq, sk}; during this process, all other reference regions are
treated as background. A weighted sum of misclassified
pixels for each reference region is the output of this process.
The sum of these error measures for all reference regions
is used for the objective evaluation of segmentation accu-
racy; values of the sum closer to zero indicate better seg-
mentation. The test images used for objective evaluation
are presented in Fig. 9, along with their reference masks
and results of the algorithm proposed here (KMCC), the
Blobworld algorithm [4] and a modified RSST algorithm
[30]. The latter is based on adding to the original RSST
algorithm [28] a second stage of region merging, using a
distance function that does not discourage the creation of
large regions. The values of the evaluation metric for the
images of Fig. 9 are shown in table II; results for the sim-
pler variants KM1 and KM2 of the proposed algorithm
are also shown. These results clearly demonstrate that al-
gorithms using only color features (KM1, RSST) perform
poorly on synthetic or natural images containing textured
regions; however, they may be useful in interactive applica-
tions requiring some degree of over-segmentation [5]. Both
the Blobworld and the proposed KMCC algorithm produce
significantly better results. The superiority of the proposed
algorithm in producing accurate region boundaries without
over-segmentation is demonstrated in Fig. 9 and is numer-
ically verified.

The efficiency of the fast large-format image segmenta-
tion framework of Sec. III was also evaluated, by compar-
ing its time-efficiency and perceptual segmentation quality
with two other segmentation schemes: the direct applica-
tion of the algorithm of Sec. II to the large-format images
and the application of the same algorithm to reduced im-
ages, as in Sec. III, without the subsequent application
of the quality improvement stage that employs the Bayes
classifier. The time-efficiency of the three aforementioned
segmentation schemes was evaluated on an 800MHz Intel
Pentium III PC, using a set of 100 730× 490 pixel images
from the Corel gallery [6]. The average image segmenta-
tion time for the images of this set is presented in table III.
The perceptual quality of the three schemes can be evalu-
ated using the segmentation examples of Fig. 10. As can
be seen, the perceptual quality of the proposed fast large-
format image segmentation scheme is generally higher than
that of the direct approach, due to superiority of the Bayes
classifier, compared to the euclidian distance classification
used by the KMCC algorithm. The quality of the reduced
image approach is clearly lower, due to the fact that regions
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are composed of blocks of pixels rather than pixels. Note
that the three different schemes do not necessarily produce
the same number of regions for a given image. This is due
to the fact that the segmentation algorithm of Sec. II is ap-
plied to different images under each of the three schemes.
To test the sensitivity of the proposed algorithms to

variations of the threshold values, additional tests were
conducted using threshold values deviating from those de-
scribed in the previous sections and summarized in table
IV. The values used for these tests and the corresponding
results for the images of Fig. 10 are illustrated in table IV;
in all cases the results are satisfactory. Note that, with the
exception of the results presented in table IV, all results
were produced using the original threshold values reported
in Sec. II and table IV. The plethora of heterogeneous im-
ages shown in Figs. 6 through 10 are seen to be properly
segmented without changing any threshold values, which is
another indication of the low threshold dependency of the
proposed algorithms.
Finally, an important observation regarding the pro-

posed large-format image segmentation methodology is
that it requires nothing of the employed segmentation al-
gorithm, apart from an image as its input and a segmen-
tation mask of the same dimensions as the input image be
its output. Thus, this methodology can be used in combi-
nation not only with the proposed segmentation algorithm
but also with a variety of other segmentation algorithms
described in the literature.

V. Conclusions

A methodology was presented for the segmentation of
color images using intensity, position and texture features
to facilitate the formation of regions corresponding to the
objects contained in the image. Furthermore, a framework
for the fast segmentation of large-format color images was
presented, to improve the time efficiency of the segmenta-
tion process. This framework combines the segmentation
algorithm of Sec. II with a Bayes classifier and, as dis-
cussed in Sec. IV, features improved time-efficiency and
higher perceptual segmentation quality compared to the
algorithm of Sec. II, when applied to large-format images.
Not only the proposed segmentation algorithm but also
others could be easily combined with the fast large-format
image segmentation framework to their benefit.
The proposed algorithms are appropriate for use as part

of an object-based multimedia application, such as object-
based image querying, or for defining regions of interest for
content-based coding of still images, in the context of the
JPEG2000 standard.
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Fig. 2. (a) Original image “zebra”, 150× 100 pixels. (b) Filtered image.
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Fig. 3. Three-layer segmentation scheme.

TABLE I

Average Segmentation Time for 192× 128 pixel Images.

Segmentation Scheme Average Time (sec.)

Direct application of the segmentation algorithm of Sec. II 65.5

Application of the blobworld algorithm 226.2
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(a) (b) (c) (d)

Fig. 4. A magnified 14 × 14 pixel area of a layer 1 segmentation mask. If black, gray and white pixels belong to regions s0, s1 and s2
respectively, then the marked areas denote (a) pixel set gp

1 , associated with region set g
s
1 = {s0, s1}, (b) pixel set gp

2 , associated with region

set gs
2 = {s0, s1, s2}, (c) pixel set gp

3 , associated with region set gs
3 = {s0, s2}, (d) pixel set gp

4 , associated with region set gs
4 = {s1, s2}.
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Fig. 5. Block diagram of the proposed framework for fast segmentation of large-format color images.

TABLE II

Numerical evaluation of the segmentations of Fig. 9

images KM1 KM2 RSST Blobworld KMCC

synth1 142.923679 6.453033 105.339744 12.188144 1.260071

synth2 205.812701 15.309401 187.123016 40.027074 1.787774

synth3 66.207026 39.597181 105.995881 45.812201 2.167452

synth4 226.903358 16.022338 78.353790 56.613260 42.442787

synth5 147.495911 70.91871 136.206447 34.720163 50.283481

synth6 127.208613 1.898975 73.851239 10.601577 1.197819

butterfly1 85.742792 11.218476 57.476854 29.533668 9.940959

butterfly2 71.658535 62.490798 22.572128 48.468529 7.800168

sunset 44.383718 44.386698 68.794582 89.307062 5.722744

bear 61.268402 62.992715 86.269010 55.090216 60.948571

TABLE III

Average Segmentation Time for 730× 490 pixel Images.

Segmentation Scheme Average Time (sec.)

Direct application of the segmentation algorithm of Sec. II to 730 × 490 pixel
images

2494.28

Application of the segmentation algorithm of Sec. II to reduced images (reduc-
tion factor R = 8)

18.92

Application of the large-format image segmentation framework of Sec. III (re-
duction factor R = 8)

47.55
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(a) (f) (k) (p)

(b) (g) (l) (q)

(c) (h) (m) (r)

(d) (i) (n) (s)

(e) (j) (o) (t)

Fig. 6. Image segmentation examples: (a)-(e) Original images of approximate dimensions 150 × 100 pixels. (f)-(j) Segmentation masks,
produced by a variant of the algorithm of Sec. II, that neither uses texture features nor enforces connectivity constraints. (k)-(o)
Segmentation masks, produced by a variant of the algorithm of Sec. II, that uses texture features only by the conditional filtering module
and not by KMCC. (p)-(t) Segmentation masks, produced by the algorithm of Sec. II.
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Fig. 7. Segmentation results for images belonging to various classes of the Corel gallery. Results of the proposed algorithm are shown below
each original image; below these, results of the Blobworld algorithm are shown.
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Fig. 8. Segmentation results for images belonging to various classes of the Corel gallery, and MIT’s VisTex database. Results of the proposed
algorithm are shown below each original image; below these, results of the Blobworld algorithm are shown.
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Fig. 9. Segmentation results for synthetic and natural images used for numerical evaluation. Synthetic images were created using the
reference textures of MIT’s VisTex database. Reference masks are shown in the second column; results for a modified RSST, the
Blobworld algorithm and the proposed algorithm are shown in columns 3 to 5, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10. Segmentation examples: (a)&(e) Original large-format images. (b)&(f) Direct application of the segmentation algorithm of Sec. II.
(c)&(g) Application of the same algorithm on reduced images (reduction factor R = 8). (d)&(h) Results of the large-format image
segmentation framework.
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TABLE IV

Threshold Dependency Experiments

Original threshold

New values
Outcome

initial clustering parameter

γ = 0.4

0.3, 0.5

using γ = 0.5, no changes were observed; γ = 0.3
resulted in an additional small region being formed
in the “zebra” image, due to the imperfect texture
homogeneity of the “zebra” object

τ = max{0.65 · Tmax, 14}
max{0.6 · Tmax, 12},
max{0.7 · Tmax, 16}

in the first case (τ = max{0.6 · Tmax, 12}), no
changes were observed; in the second case, an ex-
tra region was formed in the “cat” image

size thresholds {ξ, ψ} = {0.5%,
0.75%} of the image area

{0.4%, 0.6%},
{0.6%, 0.9%}

in the first case ({0.4%, 0.6%}), no changes were
observed; in the second case, one region of the
“cat” image was rejected for being too small

merging threshold µ (Eq. 13)

µ′ = 0.8 · µ,
µ′ = 1.2 · µ

in the first case (µ′ = 0.8 · µ), an extra region was
formed in the “cat” image; in the second case, no
changes were observed

number of blocks for initial clustering
L ≈ 75

50, 100, 150

using 50 blocks had no effect on the segmentation
results; using 100 or 150 blocks resulted in an ad-
ditional small region being formed in the “zebra”
image, due to the imperfect texture homogeneity
of the “zebra” object

λ1 = 1.0

0.8, 1.3

using λ1 = 0.8 had no effect on the results; using
λ1 = 1.3 resulted in an additional small region
being formed in the “zebra” image

convergence thresholds cI , cT , cS

c′X = 0.5 · cX , X ∈ {I, T, S}, c′X =
1.5 · cX , X ∈ {I, T, S}

in both cases, no changes were observed
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TABLE V

Legend of symbols

Symbol Description

p = [px py ] pixel

xmax, ymax image dimensions in pixels

H(z), G(z), V prototype lowpass filter/ highpass filter/ levels of DWF decomposition

Φ square neighborhood for pixel texture calculation

bl, l = 1, . . . , L square blocks for initial clustering

f size of blocks for initial clustering

sk spatial region

Mk, M̄ size of region sk/ average region size

I(.), T(.) intensity/texture feature vector of pixel

Ib(.), Tb(.) intensity/texture feature vector of block

Is(.), Ts(.), S(.) intensity/texture/position feature vector (center) of region

J(.), Js(.) pixel/region intensity feature vector after conditional filtering

D(.), Db(.), Ds(.) distance of pixel from region/ distance between blocks/ distance between re-
gions

C intensity and texture contrast (Sec. II-C)

γ ∈ [0, 1] parameter used by the maximin algorithm (Sec. II-C)

τ texture threshold for conditional filtering (Eq. (10))

λ1, λ2 parameters controlling the weight with which texture/spatial differences are
added to intensity differences (Eq. (5), (11), (12))

ξ, ψ size thresholds (Sec. II-E)

µ merging threshold (Eq. (13))

cI , cT , cS KMCC intensity/texture/position convergence thresholds (Sec. II-E)

R image reduction factor (Sec. III)

gp
i , g

s
i set of disputed pixels/ corresponding set of possible regions (Sec. III)


