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ABSTRACT
In this paper, the problem of unlabeled video retrieval using textual
queries is addressed. We present an extended dual encoding net-
work which makes use of more than one encodings of the visual and
textual content, as well as two different attention mechanisms. The
latter serve the purpose of highlighting temporal locations in every
modality that can contribute more to effective retrieval. The differ-
ent encodings of the visual and textual inputs, along with early/late
fusion strategies, are examined for further improving performance.
Experimental evaluations and comparisons with state-of-the-art
methods document the merit of the proposed network.
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1 INTRODUCTION
In the last years, the explosion of social media use has lead to a rapid
increase in the multimedia content that is available on the Internet.
This content originates from a variety of sources, and its nature is
extremely heterogeneous, i.e. it includes video, images, audio, text
etc., and combinations of them. Despite this multimodality, text-
based queries remain the most natural way for people to search for
content - be it video, images etc. The research field of text-based
video retrieval, or more general cross-modal retrieval, addresses
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the problem of retrieving items of one modality (in our case, video)
when the given query is of another modality (text).

A typical application scenario of text-based video search is Ad-
hoc Video Search (AVS), originally introduced as a TRECVID bench-
mark task [23][1]. Given a set of unlabeled video shots and an un-
seen textual query, the goal of an AVS method is to retrieve the
most related video shots, ranked from the most relevant to the least
relevant shot for the query. The main challenge of AVS and its key
difference from other video retrieval problems (e.g. concept-based
retrieval [19][11]) is the lack of video examples for the queries.
Moreover, these queries, which are given in natural language form,
contain complex subject relations, e.g., Find shots of exactly two men
at a conference or meeting table talking in a room.

Many methods have been proposed for the AVS problem in
recent years, e.g. [19][15][25]. Their majority relies on examining
the correlation of visual concepts with the textual queries, i.e. they
use a variety of pre-trained visual concept detectors. The detectors’
number and diversity are crucial for the retrieval performance.

During the last few years, several deep learning methods have
been proposed for visual or text analysis and classification. Progress
in the natural language processing field led to compelling text
embedding methods [20][5] and gave the necessary boost to a
variety of cross-model problems such as text-based video retrieval
and image/video captioning. For this reason, recent AVS methods
use deep learning for embedding the representation of different
modalities (textual queries, videos) into a common subspace in a
way that the new representations can be compared directly.

In this paper, we focus on the AVS problem. We use as a starting
point a deep network architecture introduced in [8], in which two
similar networks are jointly trained using several state-of-the-art
(SoA) methods such as recurrent neural networks (GRUs) [4], text
embeddings [20], and deep image classification networks [13][26].
We extend this by introducing two attention mechanisms. We also
introduce and examine the impact of usingmore than one encodings
of the visual content as well as of the textual query. As is typically
the case in the relevant literature, pairs of video shots and captions
are used for training the network. The main contributions of our
work are summarized as follows:

• We integrate and evaluate two attention mechanisms into
the dual encoding network. These lead to better textual and
visual representation into the common subspace.
• We investigate the performance of different encodings for
the text and the visual modalities.
• We compare early and late fusion for combining different
encodings.
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2 RELATEDWORK
Early solutions to the AVS problem were based on large pools of
visual concept detectors, and NLP techniques for query decomposi-
tion in order to identify concepts in the textual queries. In [19], a
set of NLP rules and a variety of pre-trained deep neural networks
for video annotation were used in order to associate visual concepts
with the provided textual queries. In [14], a large amount of concept,
scene and object detectors were used along with an inverted index
structure for query-video association.

Recent SoA approaches rely on deep neural networks for directly
comparing textual queries and the visual content in a common space
[12]. Also, inspired by problems similar to AVS, e.g. cross-modal
retrieval or visual question-answering, solutions that have been
proposed for these problems were modified and adapted to AVS. In
[9], an improved multi-modal embeddings system was proposed,
together with a loss function that utilizes the hard negative samples
of the dataset; this approach was adapted to the AVS problem in [3].
In [15], an improved version of the image-to-text matching method
of [6] was proposed for the AVS task. More specifically, [15] used the
method of [6] together with the triplet loss function of [9] and an
improved sentence encoding strategy. In [22], a weakly-supervised
method was proposed to learn a joint visual-text embedding space
using an attention mechanism to highlight temporal locations in a
video that are relevant to a textual description. This mechanismwas
also used for extracting text-depended visual features. Recently, the
dual encoding network proposed in [8] encodes videos and queries
into a dense representation using multi-level encodings for both
text and videos and the improved loss function of [9]. In [10], the
problem of video retrieval was addressed by training three different
networks using different training datasets, and combining them by
using an additional neural network.

3 PROPOSED METHOD
In this work, we propose an improved dual encoding method de-
signed for Ad-hoc Video Search. Inspired by the dual encoding
network presented in [8] (Section 3.1), we create a network that
encodes video-caption pairs into a common feature subspace. In
contrast to [8], our network utilizes attention mechanisms for more
efficient textual and visual representation, and exploits the benefits
of richer textual and visual embeddings.

Let V be a media item (e.g., an entire video or a video shot) and S
the corresponding caption of V. Our network translates both V and
S into a new common feature space Φ(·), resulting in two new rep-
resentations Φ(V) and Φ(S) that are directly comparable. For this,
two similar modules, consisting of multiple levels of encoding, are
utilized, for the visual and textual content respectively. Moreover,
two new attention components are integrated into the baseline
network. The overall network architecture is illustrated in Fig. 1.

3.1 Dual encoding network
For every video three different encodings are created, 𝜙 (𝑉 )1, 𝜙 (𝑉 )2,
𝜙 (𝑉 )3. We consider a video or a video shot as a sequence of 𝑛
keyframes V = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, where each keyframe vector 𝑣𝑖
is the output of a pre-selected hidden layer of a pretrained deep
network, e.g. the pool5 layer of Resnet [13] or Resnext [26]. The
first encoding is the global representation of every video and is

obtained by mean pooling the individual keyframe representations,
as follows: 𝜙 (𝑉 )1 = 1

𝑛

∑𝑛
𝑖=1 𝑣𝑖 .

Next, the keyframe representation vectors {𝑣1, 𝑣2, . . . , 𝑣𝑛} are fed
in a sequence of bi-directional Gated Recurrent Units [4] (bi-GRUs).
The hidden state in time 𝑡 of a forward

−−−→
𝐺𝑅𝑈 is defined as

−→
ℎ𝑡 =

−−−→
𝐺𝑅𝑈 (𝑣𝑡 ,

−−−→
ℎ𝑡−1), and in the backward

←−−−
𝐺𝑅𝑈 as

←−
ℎ𝑡 =

←−−−
𝐺𝑅𝑈 (𝑣𝑡 ,

←−−−
ℎ𝑡+1).

All GRU’s hidden states are represented as a feature matrix Hv =

[ℎ1, ℎ2, . . . , ℎ𝑛] , where ℎ𝑡 = 𝑐𝑜𝑛𝑐𝑎𝑡 (−→ℎ𝑡 ,
←−
ℎ𝑡 ). To obtain the second

level of encoding, mean pooling of the ℎ𝑡 values is performed as
follows: 𝜙 (𝑉 )2 = 1

𝑛

∑𝑛
𝑡=1 ℎ𝑡 .

Subsequently, a 1-d CNN is built and fed with the feature matrix
Hv. A convolutional layer 𝐶𝑜𝑛𝑣1𝑑𝑘,𝑟 is used, with 𝑟 filters of size 𝑘 .
After applying ReLU activation and max pooling to the layer’s out-
put, the 𝑐𝑘 =𝑚𝑎𝑥𝑝𝑜𝑜𝑙 (𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣1𝑑𝑘,𝑟 (Hv))) vector is produced.
Multiple representations of the video are created, using different
𝑘 = 2, 3, 4, 5 values. The third-level video representation is the
concatenation of the produced 𝑐𝑘 vectors: 𝜙 (𝑉 )3 = [𝑐2, 𝑐3, 𝑐4, 𝑐5].

Finally, the concatenation of the previously generated features is
used as the global and multi-level feature representation of a video:

𝜙 (𝑉 ) = 𝐵𝑁 (𝑊𝑣𝑐𝑜𝑛𝑐𝑎𝑡𝑡 (𝜙 (𝑉 )1, 𝜙 (𝑉 )2, 𝜙 (𝑉 )3) + 𝑏𝑣)
where𝑊𝑣 and 𝑏𝑣 are trainable parameters and 𝐵𝑁 a batch nor-

malization layer.
Similar to the visual content encoding network, a multilevel

encoding 𝜙 (𝑆)1, 𝜙 (𝑆)2, 𝜙 (𝑆)3 is generated for the textual content.
Given a sentence 𝑆 containing𝑚 words, the 𝜙 (𝑆)1 representation is
created by averaging individual one-hot-vectors {𝑤1,𝑤2, . . . ,𝑤𝑚}.
Next, as the second level of textual encoding, a deep network-based
representation for every word is used as input for the bi-directional
GRU module, and similarly to 𝜙 (𝑉 )2, 𝜙 (𝑆)2 = 1

𝑚

∑𝑚
𝑡=1 ℎ𝑡 . Next,

the feature matrix Hs of the textual bi-GRUs is forwarded into
a 1-d convolutional layer with filter sizes 𝑘 = 2, 3, 4 and 𝜙 (𝑆)3 is
calculated similarly to𝜙 (𝑉 )3 above. The final textual representation
is:

𝜙 (𝑆) = 𝐵𝑁 (𝑊𝑠𝑐𝑜𝑛𝑐𝑎𝑡𝑡 (𝜙 (𝑆)1, 𝜙 (𝑆)2, 𝜙 (𝑆)3) + 𝑏𝑠 )
Following [9], [21] and [8], the improved marginal ranking loss

is used to train the entire network.

3.2 Introducing Self-Attention Mechanisms
The 1-d CNN layer that is fed withHs orHv in the original network
of [8] treats each item of the words or frames sequence equally. Our
target is to exploit the most meaningful information from the tex-
tual and visual sequences, particularly the words with the highest
semantic importance and the keyframes which are more repre-
sentative for a video shot. For this, we introduce a self-attention
mechanism [2][18] in each modality, in order to find the relevant
importance of each word in the input sentence, and to find im-
portant temporal locations in a video-shot. An overview of this
self-attention mechanism is illustrated in Fig. 2.

In the textual encoding part of the network, given the output of
the bi-GRU Hs, the attention model outputs a vector 𝑎:

𝑎 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑤𝑠2𝑡𝑎𝑛ℎ(𝑊𝑠1Hs
𝑇 ))

where𝑊𝑠1 is a trainable weight matrix of size 𝑑 × 2𝑢, where 𝑑
is a hyper-parameter, 2𝑢 is the size of a single bi-GRU unit and
𝑤𝑠2 a parameter vector of size 𝑑 . The 𝑤𝑠2 vector is extended in a
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Figure 1: The overall dual encoding network incorporating the self-attention mechanism in both visual and textual modules.
A pair of video+text is fed into the network in order to be represented into a joint feature space. The dotted red rectangles
indicate the contributions of this work beyond [8]: the self-attention mechanisms, and the multiple video/text encodings.

Figure 2: An illustration of the employed self-attention
mechanism.

𝑧 × 𝑑 matrix𝑊𝑠2 for multi-head attention, by modeling 𝑧 semantic
aspects of the text, as in [18], resulting in a weight matrix As:

As = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑠2𝑡𝑎𝑛ℎ(𝑊𝑠1Hs
𝑇 ))

The 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 () is used for weight normalization, so that all the
weights sum up to 1. Then, the attention matrix As is multiplied
with the initial Hs, resulting in matrix:

Hs = AsHs

Hs is forwarded into the 1-d convolutional layer instead of the
feature matrix Hs, as described in Sec. 3.1. This text-based self-
attention mechanism is denoted as Att in the sequel.

A similar self-attention mechanism, denoted as Atv, is integrated
in the visual encoding module. In this caseHv is used for calculating
the attention weighted matrix Av, resulting in

Hv = AvHv

3.3 Examining multiple encodings and fusion
strategies

Dealing with such a demanding task, where typically the SoA meth-
ods achieve accuracy of about 10 − 22% on different evaluation
datasets, it is vital to exploit the advantages of different signal en-
codings. Regarding the video module, two SoA deep neural network

architectures are used for frame feature extraction: the ResNext-101
[26] and ResNet-152 [13] models. Concerning the text module, the
performance of the Word2Vec [20] model, as well as the bidirec-
tional transformer-based language model BERT [5], are examined.
We also examine early fusion (as shown in Fig. 1) i.e. concatenation
of encoding vectors, versus late fusion (i.e. merging of ranked lists,
each obtained using a different text-visual encoding pair), for jointly
exploiting the multiple encodings.

4 EXPERIMENTS
4.1 Experimental setup
We train our network1 using the combination of two large-scale
video datasets: MSR-VTT [27] and TGIF [17]. We evaluate its perfor-
mance on the official evaluation dataset of the TRECVID AVS task
for the years 2016, 2017, and 2018, i.e. the IACC.3 test collection con-
sisting of 4,593 videos and altogether 335,944 shots. As evaluation
measure we use mean extended inferred average precision (MX-
infAP), which is an approximation of the mean average precision
suitable for the partial ground-truth that accompanies the TRECVID
dataset. As initial frame representations, generated by a ResNext-
101 (trained on the ImageNet-13k dataset) and a ResNet-152 (trained
on the ImageNet-11k dataset), we use the publicly-available fea-
tures released by [15]. Also, two different word embeddings are
utilized: i) the Word2Vec model [20] trained on the English tags of
30K Flickr images, provided by [7]; and, ii) the pre-trained language
representation BERT [5], trained on Wikipedia content.

4.2 Results and discussion
For comparison reasons, we used the publicly available code of [8]
to re-train the network with the same configuration and features we
use in ourmethods. This method is indicated asW2V+ResNext-101 in
Table 1 and is used as a baseline for our experiments. Overall, three
general network architectures are trained, i) the baseline network,
ii) the network with the text-based attentionmechanism, and iii) the
network with the visual-based attention. Each network is trained
using one or both available word embeddings (i.e., Word2Vec [a.k.a.

1Software available at: github.com/bmezaris/AVS_dual_encoding_attention_network
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Table 1: Results (MXinfAP) of the proposed networks and their combinations, compared with the baseline [8]. The best results
for each dataset are indicated with bold, while those that are worse than the baseline are given in parenthesis. All reported
training/inference times are in hours, for a single setup (should bemultiplied by 6 for theCombination of 6 setups) and for pro-
cessing thewhole training/test dataset. These numbers are not to be confusedwith query execution time; this is approximately
30 sec. for all but the late fusion methods, and 4 times higher for the latter.

I. Combination of 6 setups II. Best of 6 setups Avg. train-
ing time

Inference
timeAVS16 AVS17 AVS18 AVS16 AVS17 AVS18

(a) W2V + ResNext-101 [8] 0.142 0.2189 0.1187 0.1457†,1 0.212*,3 0.1165*,2 6.66 1.72

(b) (a) + Att 0.1544 0.2264 0.1233 0.1477†,2 0.2298†,1 0.1183†,2 7.53 1.81
(c) (a) + Atv 0.1497 0.2274 0.1231 0.1464†,2 0.2165†,1 0.1237†,1 7.52 1.80

(d) BERT + ResNext-101 0.1532 0.2248 0.1194 0.1576*,2 0.2288†,1 (0.1126)†,2 6.7 1.70
(e) W2V + ResNet152 0.1464 (0.2033) (0.0986) 0.1507*,1 (0.2062)*,1 (0.1043)†,2 6.64 1.71
(f) BERT + ResNet152 0.1501 (0.2141) (0.103) 0.1464†,2 (0.208)*,2 (0.099)†,2 6.68 1.71

(g) Early fusion of W2V + BERT +
ResNext-101 + ResNet-152

0.1614 0.2312 0.122 0.1544†,2 0.2327†,1 0.12*,1 9.1 1.73
(h) (g) + Att 0.1635 0.2427 0.1266 0.1594†,2 0.2444†,2 0.1261*,2 9.21 1.84
(i) (g) + Atv 0.1637 0.2352 0.1265 0.1583†,2 0.2307†,2 0.1265*,3 9.2 1.84

(j) Late fusion of (a), (d), (e), (f) 0.1658 0.2414 0.1206 0.1683 0.2499 0.1272 26.7 6.84
(k) Late fusion of (b), (d)+Att, (e)+Att,(f)+Att 0.1663 0.2413 0.1240 0.1658 0.2469 0.1283 27.6 7.01
(l) Late fusion of (c), (d)+Atv, (e)+Atv, (f)+Atv 0.1655 0.2415 0.1245 0.1693 0.2576 0.1288 27.4 7.00
† Adam optimizer * RMSprop optimizer 1 learning rate: 1 × 10−4 2 learning rate: 5 × 10−5 3 learning rate: 1 × 10−5

W2V for short] and BERT) and one or both visual representations
(i.e., ResNext-101 and ResNet-152). The Combination of 6 setups col-
umn presents the results after late fusion of 6 different experimental
setups for the same network, using two optimizers, i.e. Adam and
RMSprop, and 3 learning rates (1×10−4, 5×10−5, 1×10−5), similarly
to [16][24], while the Best of 6 setups column presents the results
of the best-performing among these setups.

The results reported in Table 1(a)-(f) show that both attention
mechanisms improve the performance of the baseline method. Fur-
thermore, using better word embeddings (BERT) consistently im-
proves the performance in comparison to W2V.

In the (g), (h) and (i) configurations of Table 1, the results of the
early fusion of the text and visual embeddings are presented. The re-
sults indicate that the combination of different visual (ResNext-101,
ResNet-152) and textual (W2V, BERT) features leads to improved
performance. Moreover, the integration of the aforementioned at-
tention mechanisms further improves performance.

Subsequently, in configurations (j), (k) and (l) of Table 1 the per-
formance of late-fusion combinations of the previously-examined
networks is presented. In configuration (j), the late fusion of the
baseline network trained with different textual and visual features
is presented. When considering the combination of 6 setups, this
approach usually outperforms by a small margin the correspond-
ing early fusion model (g). The late fusion of models with text- or
visual-based attention performs similarly to, or a bit better when
combining the best of 6 setups (columns II) compared to the cor-
responding early fusion approaches, however at the expense of
considerably higher training and inference times.

In Table 2 the recommended single-setup early fusion configu-
rations of the proposed method (shaded rows (h) and (i) of Table
1) are compared with the literature SoA works (included the top-
performer of the TRECVID 2018 competition [15]), based on the

Table 2: Comparison with published SoA results (MXinfAP).

Method AVS16 AVS17 AVS18

VSE++ [9] 0.123 0.154 0.074
Video2vec [12] 0.087 0.150 -
W2VV++ [15] 0.151 0.220 0.121
Dual encoding [8] 0.159 0.208 -
(h) from Table 1 0.1594 0.2444 0.1261
(i) from Table 1 0.1583 0.2307 0.1265

results reported in the corresponding papers for the same evalua-
tion datasets. We can see that the proposed method’s configurations
(h), (i), outperform the SoA published results on all three datasets.

5 CONCLUSIONS
This paper examined the problem of video retrieval using textual
queries. We focused on a network that encodes the visual and text
modalities into a common space. We extended this network by
integrating a self-attention mechanism in each modality. The ex-
perimental results confirm the contribution of this extension to
the performance of the network. Moreover, the effectiveness of
using multiple textual and visual representations was experimen-
tally evaluated, and the early fusion of the different text and visual
encodings, together with an attention mechanism, was shown to
achieve state of the art results without considerable impact on the
time-efficiency of the network’s training and inference.

ACKNOWLEDGMENTS
This work was supported by the EU Horizon 2020 research and
innovation programme under grant agreement H2020-780656 ReTV.

Author's accepted version. The final publication is available at https://doi.org/10.1145/3372278.3390737



REFERENCES
[1] George Awad, Asad Butt, Keith Curtis, Yooyoung Lee, Jonathan Fiscus, Afzal

Godil, Andrew Delgado, Alan F Smeaton, Yvette Graham, Wessel Kraaij, and
Georges Quénot. 2019. TRECVID 2019: An evaluation campaign to benchmark
Video Activity Detection, Video Captioning and Matching, and Video Search &
retrieval. In TRECVID 2019 Workshop. Gaithersburg, MD, USA. NIST, USA.

[2] Maria Barrett, Joachim Bingel, Nora Hollenstein, Marek Rei, and Anders Søgaard.
2018. Sequence classification with human attention. In Proceedings of the 22nd
Conference on Computational Natural Language Learning. 302–312.

[3] Muhammet Bastan, Xiangxi Shi, Jiuxiang Gu, Zhao Heng, Chen Zhuo, Dennis
Sng, and Alex Kot. 2018. NTU ROSE Lab at TRECVID 2018: Ad-hoc Video Search
and Video to Text. In TRECVID 2018 Workshop. Gaithersburg, MD, USA. NIST,
USA.

[4] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 1724–1734.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).

[6] Jianfeng Dong, Xirong Li, and Cees G. M. Snoek. 2016. Word2VisualVec: Image
and video to sentence matching by visual feature prediction. arXiv preprint
arXiv:1604.06838 (2016).

[7] Jianfeng Dong, Xirong Li, and Cees G. M. Snoek. 2018. Predicting visual features
from text for image and video caption retrieval. IEEE Transactions on Multimedia
(TMM) 20, 12 (Dec 2018), 3377–3388.

[8] Jianfeng Dong, Xirong Li, Chaoxi Xu, Shouling Ji, Yuan He, Gang Yang, and Xun
Wang. 2019. Dual Encoding for Zero-Example Video Retrieval. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 9346–
9355.

[9] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler. 2018. VSE++:
Improving Visual-Semantic Embeddings with Hard Negatives. In Proceedings of
the British Machine Vision Conference (BMVC).

[10] Danny Francis, Phuong Anh Nguyen, Benoit Huet, and Chong-Wah Ngo. 2019.
Fusion of multimodal embeddings for ad-hoc video search. In 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW). 1868–1872.

[11] Amirhossein Habibian, Thomas Mensink, and Cees GM Snoek. 2014. Composite
Concept Discovery for Zero-Shot Video Event Detection. In Proceedings of the
2014 International Conference on Multimedia Retrieval (Glasgow, United Kingdom)
(ICMR ’14). 17–24.

[12] Amirhossein Habibian, Thomas Mensink, and Cees GM Snoek. 2017. Video2vec
Embeddings Recognize Events When Examples Are Scarce. IEEE Transactions on
Pattern Analysis and Machine Intelligence 39, 10 (Oct 2017), 2089–2103. https:
//doi.org/10.1109/TPAMI.2016.2627563

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[14] Duy-Dinh Le, Sang Phan, Vinh-Tiep Nguyen, Benjamin Renoust, Tuan A Nguyen,
Van-Nam Hoang, Thanh Duc Ngo, Minh-Triet Tran, Yuki Watanabe, Martin
Klinkigt, et al. 2016. NII-HITACHI-UIT at TRECVID 2016. In TRECVID 2016
Workshop. Gaithersburg, MD, USA.

[15] Xirong Li, Chaoxi Xu, Gang Yang, Zhineng Chen, and Jianfeng Dong. 2019.
W2VV++: Fully Deep Learning for Ad-hoc Video Search. In Proceedings of the
27th ACM International Conference on Multimedia. ACM, 1786–1794.

[16] Xirong Li, Jinde Ye, Chaoxi Xu, Shanjinwen Yun, Leimin Zhang, Xun Wang,
Rui Qian, and Jianfeng Dong. 2019. Renmin University of China and Zhejiang
Gongshang University at TRECVID 2019: Learn to Search and Describe Videos.
In TRECVID 2019 Workshop. Gaithersburg, MD, USA.

[17] Yuncheng Li, Yale Song, Liangliang Cao, Joel Tetreault, Larry Goldberg, Alejandro
Jaimes, and Jiebo Luo. 2016. TGIF: A new dataset and benchmark on animated
GIF description. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 4641–4650.

[18] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang,
Bowen Zhou, and Yoshua Bengio. 2017. A structured self-attentive sentence
embedding. In Proceedings of the 5th International Conference on Learning Repre-
sentations.

[19] Foteini Markatopoulou, Damianos Galanopoulos, Vasileios Mezaris, and Ioannis
Patras. 2017. Query and keyframe representations for ad-hoc video search. In
Proceedings of the 2017 ACM International Conference on Multimedia Retrieval
(ICMR ’17). ACM, 407–411.

[20] Tomas Mikolov, G.s Corrado, Kai Chen, and Jeffrey Dean. 2013. Efficient estima-
tion of word representations in vector space. In 1st International Conference on
Learning Representations, Workshop Track Proceedings (ICLR ’13).

[21] Niluthpol Chowdhury Mithun, Juncheng Li, Florian Metze, and Amit K. Roy-
Chowdhury. 2018. Learning joint embedding with multimodal cues for cross-
modal video-text retrieval. In Proceedings of the 2018 ACM on International Con-
ference on Multimedia Retrieval (ICMR ’18). ACM, 19–27.

[22] Niluthpol Chowdhury Mithun, Sujoy Paul, and Amit K Roy-Chowdhury. 2019.
Weakly supervised video moment retrieval from text queries. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 11592–11601.

[23] Alan F. Smeaton, Paul Over, and Wessel Kraaij. 2006. Evaluation campaigns and
TRECVid. In Proceedings of the 8th ACM International Workshop on Multimedia
Information Retrieval (Santa Barbara, California, USA) (MIR ’06). ACM Press, New
York, NY, USA, 321–330. https://doi.org/10.1145/1178677.1178722

[24] Cees GM Snoek, Xirong Li, Chaoxi Xu, and C. Dennis Koelma. 2017. University of
Amsterdam and Renmin University at TRECVID 2017: Searching Video, Detecting
Events and Describing Video. In TRECVID 2017Workshop. Gaithersburg, MD, USA.

[25] Kazuya Ueki, Yu Nakagome1, Koji Hirakawa, Kotaro Kikuchi, Tetsuji Ogawa,
and Tetsunori Kobayashi. 2017. Waseda Meisei at TRECVID 2017: Ad-hoc video
search. In TRECVID 2017 Workshop. Gaithersburg, MD, USA.

[26] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 1492–1500.

[27] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. MSR-VTT: A Large Video
Description Dataset for Bridging Video and Language. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 5288–5296.

Author's accepted version. The final publication is available at https://doi.org/10.1145/3372278.3390737

https://doi.org/10.1109/TPAMI.2016.2627563
https://doi.org/10.1109/TPAMI.2016.2627563
https://doi.org/10.1145/1178677.1178722

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Dual encoding network
	3.2 Introducing Self-Attention Mechanisms
	3.3 Examining multiple encodings and fusion strategies

	4 Experiments
	4.1 Experimental setup
	4.2 Results and discussion

	5 Conclusions
	Acknowledgments
	References



