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ABSTRACT
In this paper, a two-phase approach to event detection in
video is proposed. This combines a novel nonlinear Discrim-
inant Analysis (DA) method called Generalized Subclass DA
(GSDA), to identify a discriminant subspace, and a Linear
Support Vector Machine (LSVM), to efficiently learn the
event in the derived subspace. The proposed GSDA-LSVM
framework is used as an alternative to the Kernel Support
Vector Machine (KSVM) approach, which despite its ex-
cellent classification accuracy requires significant computa-
tional resources for learning the events (i.e., for identifying
the kernel parameters and KSVM penalty term) in large-
scale video collections. In contrary, using the GSDA-LSVM
approach the SVM penalty term can be rapidly identified
in the lower dimensional subspace. Moreover, an additional
speed up in deriving this lower-dimensional space is achieved
by using the proposed GSDA method instead of conventional
nonlinear subclass DA methods such as KSDA or KMSDA.
This is made possible by GSDA exploiting the special struc-
ture of the inter-between-subclass scatter matrix to reformu-
late the original KSDA eigenvalue problem to one involving
matrices of much smaller dimension. The proposed GSDA-
LSVM approach leads to more accurate event detection and
to computational efficiency gains, as shown by experimen-
tal results on the extensive TRECVID MED 2010 and 2012
datasets.

Categories and Subject Descriptors
H.3.1 [INFORMATION STORAGE AND RETRIEVAL]:
Content Analysis and Indexing; I.5.2 [ARTIFICIAL IN-
TELLIGENCE]: Vision and Scene Understanding—Video
analysis; I.2.10 [PATTERN RECOGNITION]: Design
Methodology—Classifier design and evaluation

General Terms
Algorithms, Theory, Performance, Experimentation.
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1. INTRODUCTION
The widespread use of video capture devices and video

transmission and consumption applications in many areas,
including entertainment, surveillance, the World Wide Web
and the social Web, has caused a tremendous growth of video
content. The automatic understanding, indexing and re-
trieval of this content in large-scale datasets is still a very
challenging problem mainly for two reasons: a) the seman-
tic gap between the generated video descriptions and the
interpretation of the same video data by humans, b) the
computational difficulties associated with processing these
large-scale video collections.

Recent studies in neuroscience suggest that humans or-
ganize their memory using real-life experiences structured
around high-level events. According to [23], high-level events
are defined as “purposeful activities, involving people, act-
ing on objects and interacting with each other to achieve
some result”. Inspired from these studies, researchers in the
multimedia understanding community have started focus-
ing on the detection of high-level events as a way to reduce
the semantic gap. One major effort towards this direction is
the annual multimedia event detection (MED) task initiated
by NIST TRECVID in 2010 [25]. In this task a large-scale
video dataset is provided for training and evaluating differ-
ent event detection approaches.

To deal with the complexity and variability of video events,
most event detection approaches extract a rich set of low-
level features (visual and/or audio, static and/or dynamic,
etc.) in order to generate an informative video content rep-
resentation [13]. For each feature type a base event classifier
is then created, and the different classifiers are combined uti-
lizing an appropriate fusion scheme. In [29], motion features
(STIP, DT) are extracted, Fisher vector (FV) encoding is
applied to represent a video signal, and KSVMs with Gaus-
sian radial basis function (RBF) kernel are used to build
the event detectors. Experimental results in a subset of the
MED 2012 dataset containing 25 events showed that FV-
based representation provides superior performance in com-
parison to the Bag-of-Words-based (BoW) one. The same
subset of MED 2012 is used in [24] to evaluate the algo-
rithm proposed there, which exploits a compact set of low-
level features (SIFT, MBH and MFCC), FV encoding, power
normalization (which can be seen as explicit non-linear em-
bedding) and linear SVMs (LSVMs). From their evaluation
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the authors conclude that the MBH features provide rich
video content information, and their combination with SIFT
features (and to a smaller degree with the MFCC audio fea-
tures) leads to significant performance improvements.

According to the event definition provided above, an event
encompasses several other, less complex semantic entities,
such as elementary actions, objects, etc. (called hereafter
concepts). Based on this observation, another direction to
event detection that several researchers investigate is ex-
ploiting a set of concept detectors to provide a more infor-
mative video representation, instead of trying to learn to
detect the events by looking directly at the low-level fea-
tures. For instance, in [17], videos are represented using
the so-called model vectors [18, 9] (feature vectors describ-
ing detection results for the TRECVID semantic indexing
(SIN) concepts), and a cross-entropy based criterion is ap-
plied to select the most informative concepts for the MED
2011 events. In [12], a subset of the MED 2012 dataset is
used to study the effect of concept vocabulary properties in
the performance of the event detectors, such as vocabulary
size, diversity, and other. In [16], the authors propose a
method that jointly learns the event detector and an inter-
mediate semantic representation for the specific event.

Finally, low-level video features and model vector repre-
sentations are often combined, aiming at better event detec-
tion performance [18, 22, 21]. In [18], model vectors con-
sisting of 280 concept detector responses are combined with
several low-level features (SIFT, STIP, etc.) and a hierarchi-
cal fusion strategy is used for detecting MED 2010 events.
In this work it was shown that model vector-based event
detectors outperformed classifiers trained on low-level fea-
tures, and the combination of the two provided small but
noticeable performance gains. The authors of [22] extract
a very large variety of video features (SIFT, STIP, video-
text, ASR transcripts, object spatial probability maps, etc.)
and combine them using a multistage fusion strategy. In
[21], the comparison of several different fusion strategies in
the MED 2011 dataset for combining different video fea-
tures (e.g., model vectors, color SIFT variants, MoSIFT,
MFCC, etc.) showed that simple fusion strategies, such as
arithmetic or geometric mean, can provide competitive per-
formance to more complex ones. Finally, in the context
of the MED 2013 challenge, MultiModal Pseudo Relevance
Feedback (MMPRF) is proposed in [14] to leverage informa-
tion across different feature modalities (ASR, model vectors,
dense trajectories, SIFT, etc.), while [26] introduces a new
feature (improved dense trajectories) which is shown to lead
to very good detection performance.

Most of the event detection approaches proposed until now
put the emphasis on how the video is represented and ex-
ploit new such techniques for improving the accuracy of the
event detection system. On the machine learning front, for
learning event detectors from these representations, stan-
dard machine learning methods (typically KSVMs) are em-
ployed. In contrary, in this paper we focus on classifier de-
sign for improving event detection in terms of both com-
putational efficiency and accuracy. Other recent methods
that focus on the machine learning part for improving event
detection include [9, 11]. In [11], a linear feature extrac-
tion method is used to derive a discriminant subspace and
the median Hausdorff distance is applied in this subspace
for event detection. To handle data nonlinearities more ef-
fectively, in [9] a SRECOC framework is presented, com-

bining multiple KSVM-based classifiers trained at different
regions of the feature space. It has been shown that such
fusion schemes based on KSVM detectors are among the
most effective pattern classifiers. However, the direct ex-
ploitation in SVMs of feature vectors, which usually contain
noise or irrelevant components, can degrade the classifica-
tion performance. Moreover, KSVM-based techniques are
very difficult to scale during training in big data problems.
For instance, in the TRECVID MED 2012 challenge [25] the
reported learning times typically range from a few days to
several weeks, depending on the employed computational re-
sources, i.e., the use of supercomputers or small-sized clus-
ters, respectively. Therefore, more efficient computational
approaches are necessary for the practical use of event de-
tection in time-critical applications (e.g. interactive event
learning and detection, event-based video surveillance, etc.).

Motivated from the above discussion, we propose in this
paper the use of a nonlinear discriminant analysis (DA) algo-
rithm [3, 19] to derive a lower dimensional embedding of the
original data, and then use fast LSVMs in the resulting sub-
space to learn the events. DA methods have shown promis-
ing performance in several application domains such as face
recognition [34], animation production [37, 36], etc. One of
the major advantages of the proposed approach is that the
optimization of the LSVM penalty term can be rapidly per-
formed in the lower dimensional subspace, saving significant
computational time in comparison to directly using SVMs
in the original feature space. For realizing dimensionality
reduction we utilize kernel subclass-based methods, which
have been shown to outperform other DA approaches [6, 35,
10]. In particular, a new method called generalized subclass
DA (GSDA) is proposed which exploits the special struc-
ture of the inter-between-subclass scatter [3, 4] to provide
an efficient solution to the KSDA eigenvalue problem [6, 35].
The evaluation of the proposed GSDA-LSVM framework is
performed in the TRECVID MED 2010 and 2012 video col-
lections for the detection of 28 events. The experimental re-
sults show that the proposed approach outperforms KSVM
in both efficiency and accuracy. In summary, the contribu-
tions of the paper are:

• The introduction of a new DA method, GSDA, that ex-
ploits the structure of the inter-between-subclass scat-
ter matrix to efficiently compute a nonlinear data em-
bedding.

• The presentation of a new event detection method that
combines GSDA and LSVM, outperforming conven-
tional KSVM in terms of both accuracy and efficiency.
To the best of our knowledge, the combination of any
DA method with LSVM has not yet been examined in
the field of event detection.

The paper is structured as follows. In Section 2, the pro-
posed method is described; specifically, the event detection
problem is formulated, the model vector approach for repre-
senting video signals is outlined, and the two phase GSDA-
LSVM pattern classifier is described. The proposed GSDA
method is presented in detail in Section 3, while experimen-
tal evaluation results in the TRECVID MED corpus are
discussed in Section 4. Finally, conclusions and future work
are considered in Section 5.
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2. EVENT DETECTION USING DISCRIM-
INANT ANALYSIS AND LSVM

2.1 Problem formulation
Let X = [X1,X2] be an event-annotated set of feature

vectors (derived from a corresponding set of videos), where

the block matrix Xi = [x1
i , . . . ,x

Ni
i ] contains the Ni feature

vectors of the target event class (i = 1) or the “rest of the
world” class (i = 2), and xni ∈ RF is the feature vector
representation of the n-th video in the i-th class. Our goal is
given X to learn an event detector h : RF → [0, 1] providing
a likelihood value regarding the presence of the target event
in the video.

2.2 Video representation
Model vectors are adopted in this work as feature vec-

tors for the purpose of event detection. A model vector
representation of videos is created, similarly to [9, 18], in
three steps: a) low-level feature extraction, b) evaluation of
a set of external concept detectors at keyframe level, and,
c) a pooling strategy to retrieve a single model vector at
video level. Specifically, a video signal is represented with a
sequence of keyframes extracted at uniform time intervals,
and a feature extraction procedure is applied to derive a low-
level feature vector representation of each keyframe. This in-
cludes a point sampling strategy (e.g., Harris-Laplace, dense
sampling), the extraction of local feature descriptors (e.g.,
SIFT, color SIFT variants), and a coding technique (e.g.,
BoW with hard/soft assignment, Fisher vectors; pyramidal
decomposition) to represent each keyframe with a fixed di-
mensional feature vector s ∈ RS . By applying the above
feature extraction procedure and using a pool of F external
concept detectors, G = {xf (s) : RS → [0, 1]|f = 1, . . . , F},
the model vector xn,ti = [xn,t,1i , . . . , xn,t,Fi ]T , corresponding
to the t-th keyframe of the n-th video in class i is formed;
that is, the element xn,t,fi is the response of the f -th concept
detector expressing the DoC that the respective concept is
depicted in the keyframe. The concept detectors in G are cre-
ated by exploiting an external dataset of videos or images an-
notated at concept level (e.g., TRECVID SIN [25], ImageNet
LSVRC [1], etc.), the adopted feature extraction procedure,
and an LSVM pattern classifier. Finally, average pooling
along the keyframes is performed to retrieve the model vec-

tor xni ∈ [0, 1]F at video level, i.e., xni = (Tni )−1 ∑Tn
i
t=1 xn,ti ,

where Tni is the number of keyframes of the n-th video in
class i.

2.3 Event detection
In order to build an event detector, the derived model vec-

tors in the columns of matrix X are initially used as input to
a DA algorithm. DA algorithms compute a transformation
matrix Ψ ∈ RD×F , D � F for mapping the F -dimensional
observation xni to a vector zni in the D-dimensional discrim-
inant subspace by zni = ΨTxni . The transformation matrix
is identified by solving a generalized eigenvalue problem of
the form S̀Ψ = SΨ∆, where the matrices S and S̀ express
the within- and between-class scatter respectively, and ∆
is the diagonal eigenvalue matrix. Several choices for the
above matrices have been proposed in the literature exploit-
ing different properties of the data [8, 35, 10]. In our case,
a new DA algorithm, GSDA, is used. The theory behind
GSDA is developed in Section 3.

Following dimensionality reduction, an LSVM classifier is
used for learning an event detector h in the discriminant
subspace. Given the lower dimensional embedding of the
training set, Z = [Z1,Z2], Zi = [z1

i , . . . , z
Ni
i ], zni ∈ RD, the

LSVM optimization problem is defined as

min
g,b,ξni

1

2
‖g‖2 + C

2∑
i=1

Ni∑
n=1

ξni , (1)

subject to the constraints

yni (gT zni + b) ≥ 1− ξni , ∀i, n (2)

ξni ≥ 0, ∀i, n, (3)

where g ∈ RD, b ∈ R are the weight vector and bias, respec-
tively, defining the separating hyperplane between the two
classes, C > 0 is the penalty term, and ξni and yni is the slack
variable and class label corresponding to xni (yni = 3 − 2i).
The above problem (3) is usually reformulated to its dual
quadratic form using standard Lagrangian methods, and
solved using an appropriate optimization technique. The
decision function that classifies a test observation zt is then
given by

h(zt) = sign(gT zt + b) (4)

In addition to the binary classification decisions, class like-
lihoods, which are very useful for event-based retrieval ap-
plications and for the evaluation of event detection accuracy
using measures such as average precision, are derived using
an appropriate sigmoid function that maps SVM outputs to
probabilities [15, 7].

3. GENERALIZED SUBCLASS DISCRIMI-
NANT ANALYSIS

Subclass kernel DA methods have exhibited excellent gen-
eralization performance in a variety of real-world applica-
tions [6, 35, 10]. However, their high computational cost
required during training hinders their use in applications in-
volving large-scale datasets. In this section, a new algorithm
called GSDA is presented, reformulating the KSDA criterion
so that a significant speed-up can be achieved.

3.1 Fundamentals of kernel subclass DA
A basic assumption of conventional linear DA (LDA) is

that class distributions are Guassian homoscedastic, which is
rarely true in practice. Kernel DA (KDA) approaches [3, 19]
exploit a nonlinear feature transformation φ(·) : RF 7→ F
to map the data into a high (or even infinitely) dimensional
space F where classes are expected to be linearly separable.
However, such a mapping may be difficult or very expensive
(in terms of computations) to identify. To this end, subclass
extensions of KDA approaches [6, 35, 10] have been proposed
imposing a less strict requirement for the feature mapping,
i.e., the identification of a new feature space where sub-
classes belonging to different classes are linearly separable1.
These methods exploit a subclass partition of the training

1The number of classes is denoted with Ω in the sequel. In
our application, where a detector is learned separately for
each event of interest, Ω = 2 (the event of interest and the
rest-of-the-world classes). However, GSDA is also applicable
to multiclass problems. Thus, when proposing GSDA, the
mathematical formulation for arbitrary number of classes is
given.
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data X = [X1,1, . . . ,XΩ,HΩ ], where Xi,j = [x1
i,j , . . . ,x

Ni,j

i,j ]
contains the observations of the (i, j) subclass, to optimize
the following criterion

argmax
Ψ

tr((ΨTSφbsbΨ)−1(ΨTSφΨ)) , (5)

where, tr() is the matrix trace operator,

Sφbsb =

Ω−1∑
i=1

Hi∑
j=1

Ω∑
k=i+1

Hk∑
l=1

p̂i,j p̂k,l(µ̂
φ
i,j − µ̂φk,l)(µ̂

φ
i,j − µ̂φk,l)

T ,

(6)
is the inter-between-subclass scatter matrix,

µ̂φi,j =
1

Ni,j

Ni,j∑
n=1

φni,j (7)

µ̂φ =

Ω∑
i=1

Hi∑
j=1

p̂i,jµ̂
φ
i,j , (8)

are the sample mean of (i, j) subclass and total sample mean
in F ; p̂i = Ni/N , p̂i,j = Ni,j/N are the estimated prior of
class i and its j-th subclass respectively, and φni,j = φ(xni,j)
is the mapping of observation xni,j in F . Different scat-

ter matrices have been used for representing Sφ in (5) [8,
35, 10], such as the within-subclass scatter matrix Sφws =

(1/N)
∑Ω
i=1

∑Hi
j=1

∑Ni,j

n=1 (φ(xni,j)−µ̂φi,j)(φ(xni,j)−µ̂φi,j)
T , the

modified mixture scatter matrix Šφm = Sφbsb + Sφws or the
mixture scatter matrix

Sφm =
1

N

Ω∑
i=1

Hi∑
j=1

Ni,j∑
n=1

(φ(xni,j)− µ̂φ)(φ(xni,j)− µ̂φ)T (9)

In the next section, we focus on the KSDA criterion [35],
i.e., the case where Sφ in (5) is replaced by Sφm presented
above. In particular, we show how the the special structure
of Sφbsb (6) can be exploited to speed-up the computation of
the KSDA transformation matrix in F .

3.2 Efficient computation of the transforma-
tion matrix

To avoid working in F , which may have very high or even
infinite dimensionality, the optimization criterion is refor-
mulated in F using dot products and an appropriate Mercer
kernel kn,νi,j.k,l = k(xni,j ,x

ν
k,l) = (φni,j)

Tφνk,l (e.g., Gaussian
RBF, polynomial). Moreover, without loss of generality we
assume that the total mean is zero (µ̂φ = 0) [3]. To this
end, the scatter matrices are reformulated as [6, 10]

Sφbsb = ΦAΦT (10)

Sφm = ΦΦT (11)

where Φ = [Φ1,1, . . . ,ΦΩ,HΩ ], Φi,j = [φ1
i,j , . . . ,φ

Ni,j

i,j ] and

Ai,j.k,l =

 p̃i,j(1− p̃i)/(Ni,jNk,l), if (i, j) = (k, l),
0 if i = k, j 6= l,
−p̃i,j p̃k,l/(Ni,jNk,l), else.

(12)
According to the theory of reproducing kernels the column
vectors of Ψ must lie in the span of all training samples in
F [19], and therefore we can express it as

Ψ = ΦΓ (13)

where Γ ∈ RN×H−1 contains the expansion coefficients.
Substituting (10), (11), (13) in (5) we get

argmax
Γ

tr((ΓTKAKΓ)−1(ΓTKKΓ)) , (14)

where K is the kernel Gram matrix. The above problem is
ill-posed as we estimate an N -dimensional covariance matrix
from N observations. There are mainly two approaches to
overcome this problem, i.e., either regularizing matrix K [19]
and solving the following generalized eigenvalue problem [20]

KAKΓ = KKΓΛ (15)

(where Λ is a diagonal matrix containing the generalized
eigenvalues), or exploiting the eigenvalue decomposition of
K [3, 39, 4]. Following the latter approach [3, 4] we write
K as

K = UΣUT , (16)

where Σ ∈ RL×L is a diagonal matrix containing the L < N
nonzero eigenvalues of K, U ∈ RN×L(UTU = I) is the or-
thonormal matrix containing the corresponding normalized
eigenvectors, and I is the identity matrix. Substituting (16)
in (14) and setting

W = ΣUTΓ, (17)

the optimization problem can be expressed as

argmax
W

tr((WTUTAUW)−1(WTW)). (18)

This is equivalent to finding all the eigenvectors of the L×L
matrix M = UTAU satisfying the eigenvalue problem below

MW = WΛ . (19)

For the rank of M the following inequality holds rank(M) <
min(H,L) [10], where typically L � H (e.g. in the experi-
mental results of Section 4 we vary H in the range [3, 7]).

Instead of directly performing the eigenvalue decomposi-
tion of M, the special structure of matrix A can be exploited
to significantly reduce the computational cost, as explained
in the following. Setting V = UT = [V1,1, . . . ,VΩ,HΩ ],

where Vi,j = [v1
i,j , . . . ,v

Ni,j

i,j ], vni,j ∈ RL, M can be ex-
pressed as

M =

Ω−1∑
i=1

Hi∑
j=1

Ω∑
k=i+1

Hk∑
l=1

p̂i,j p̂k,l(mi,j −mk,l)(mi,j −mk,l)
T ,

(20)

where mi,j = (1/Ni,j)
∑Ni,j

n=1 vni,j . Using (20), M can be
easily factorized as

M = FFT (21)

where, F ∈ RL×J is

F = [
√
p̂1,1p̂2,1(m1,1 −m2,1), . . . ,√
p̂Ω−1,HΩ−1 p̂Ω,HΩ(mΩ−1,HΩ−1 −mΩ,HΩ)].

(22)

The number of columns J of the matrix F can be computed
using J =

∑Ω−1
i=1

∑Ω
j=i+1 HiHj , where again L� J (e.g. in

Section 4 we have Ω = 2, H1 ∈ [2, 6] and H2 = 1).
The factorization of M in (20) can now be exploited by

the cross-product algorithm [28, 4] to efficiently compute the
D = H − 1 eigenvectors of M (instead of directly operating
on the L × L matrix M) as explained in the following. Let
F = PΥQT be the singular value decomposition of F, where
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P ∈ RL×L, Q ∈ RJ×J are orthogonal matrices and Υ is a
diagonal matrix containing the singular values of F. Then,
the columns of P (i.e. the left singular vectors of F) are
the eigenvectors of M, and the columns of Q (i.e. the right
singular vectors of F) are the eigenvectors of R = FTF,
R ∈ RJ×J . Therefore, to efficiently derive the eigenvectors
of M, we first compute the spectral decomposition of R =
QΞQT (which is of significantly smaller size than M), and
then compute the first J eigenvectors of M using PJ = FQ,
where PJ contains the eigenvectors of M corresponding to
the nonzero eigenvalues. Therefore, the projection matrix
W can be formed by the first D(< J) columns of PJ . Then,
using (17) Γ can be computed as Γ = UΣ−1W. The derived
Γ can then be used for the projection of an observation x in
the discriminant subspace using

z = ΨTφ(x) = ΓTk, (23)

where k = [k(x1
1,1,x), . . . , k(x

NΩ,HΩ
Ω,HΩ

,x)]T and z is the pro-

jection of φ(x).

E09 E14

Figure 1: Example keyframes for events E09 and
E14 of the MED 2012 dataset.

4. EXPERIMENTAL EVALUATION
In this section, the MED 2010 and 2012 video collections

are used for the comparison of the proposed method (GSDA-
LSVM) with LSVM [12] and KSVM [32]. The Matlab [2]
environment is used for the implementation of GSDA2, while
for LSVM and KSVM the libsvm [5] package was utilized.
Moreover, for GSDA and KSVM the Gaussian radial basis
function (k(xi,xj) = exp(−ρ‖xi − xj‖), ρ ∈ R+) is used as
the base kernel [32].

4.1 Datasets
The video collections provided by the TRECVID MED

evaluation task are among the most challenging in the field
of event detection. For the evaluation of the proposed algo-
rithm the MED 2010 and a subset of the MED 2012 datasets
are utilized. In the following, we briefly describe the above
datasets and their preprocessing for extracting the represen-
tations that are used as input to event detectors.

4.1.1 MED 2010
The TRECVID MED 2010 dataset consists of 1745 train-

ing and 1742 test videos belonging to one of 3 target events
or to the “rest-of-world” event category. The target event
names are provided in Table 1 (events T01-T03). For ex-
tracting the model vectors representing these videos, we fol-
low the procedure described in Section 2.2. More specifi-
cally, the video signal is decoded and one keyframe every 6
seconds is extracted. The spatial information within each
keyframe is encoded using a 1× 3 pyramidal decomposition
scheme, a dense sampling strategy and the opponentSIFT
descriptor [30]. Subsequently, for each pyramid cell a Bag-
of-Words (BoW) model of 1000 visual words is derived using
2The Matlab implementation of GSDA is provided in http:
//www.iti.gr/~bmezaris/downloads.html.

the k-means algorithm and a large set of feature vectors.
A soft assignment technique is then applied to represent
each keyframe with a BoW feature vector in RS [31], where
S = 4000 is the total number of BoW centers along all pyra-
mid levels. Then, a set of F = 346 visual concept detectors,
based on LSVM classifiers and trained on the TRECVID
SIN 2012 dataset [25], is used for deriving a model vector
for each keyframe. The final model vector at video-level is
computed by averaging the keyframe model vectors along
the video.

T01: Assembling a shelter
T02: Batting a run in
T03: making a cake
E01: Attempting a board trick
E02: Feeding an animal
E03: Landing a fish
E04: Wedding ceremony
E05: Working on a woodworking project
E06: Birthday party
E07: Changing a vehicle tire
E08: Flash mob gathering
E09: Getting a vehicle unstuck
E10: Grooming an animal
E11: Making a sandwich
E12: Parade
E13: Parkour
E14: Repairing an appliance
E15: Working on a sewing project
E21: Attempting a bike trick
E22: Cleaning an appliance
E23: Dog show
E24: Giving directions to a location
E25: Marriage proposal
E26: Renovating a home
E27: Rock climbing
E28: Town hall meeting
E29: Winning a race without a vehicle
E30: Working on a metal crafts project

Table 1: Target events of TRECVID MED 2010
(T01-T03) and 2012 (E01-E15, E21-E30) datasets.

4.1.2 MED 2012
The TRECVID MED 2012 video corpus [25] consists of

more than 5500 hours of user-generated video belonging to
one of 25 target events or to other uninteresting events. The
names of the target events are given in Table 1 (events E01-
E15, E21-E30), while two example keyframes for events E09
and E14 are depicted in Fig. 1. For ease of comparison, we
use the publicly available dataset and corresponding model
vectors provided in [12]. This subset comprises 13274 an-
notated model vectors corresponding to an equal number of
MED 2012 videos, and is divided to a training and evalua-
tion partition of 8840 and 4434 model vectors, respectively.
These model vectors were extracted using a procedure sim-
ilar to that of Section 2.2. Specifically, low-level features
were extracted using a 1× 3 spatial pyramid decomposition
scheme, three SIFT-based descriptors (SIFT, opponentSIFT
and C-SIFT) and Fisher vector coding [12]. The above fea-
ture extraction procedure along with the TRECVID SIN
2012 [25] and ImageNet ILSVRC 2011 [1] datasets, anno-
tated with 346 and 1000 concepts respectively, were used
for creating a pool of F = 1346 LSVM-based concept de-
tectors. Then, the MED 2012 model vectors were extracted
by applying the concept detectors to one frame every two
seconds, and averaging them along the video as previously.
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4.2 Evaluation measure
The average precision APi [27] is utilized for assessing the

retrieval performance of the i-th event detector

APi =
1

Oi

N∑
n=1

Oni
n
ζin, (24)

where, Oi, O
n
i , are the number of test videos belonging to

the i-th event, and the number of i-th event videos in the
n-top ranked list returned by the detection method; ζin is
an indicator function with ζin = 1 if the n-th video in the
ranked list belongs to the i-th event and ζin = 0 otherwise.
The overall performance of a method is then measured using
the mean AP (MAP) along all events in a dataset

MAP =
1

Π

Π∑
i=1

APi , (25)

where Π is the number of target events.

Event LSVM KSVM GSDA-LSVM % Boost

T01 0.106 0.213 0.252 18.3%
T02 0.477 0.651 0.678 4.1%
T03 0.103 0.293 0.295 0.6%
MAP 0.229 0.385 0.408 5.8%

Table 2: Performance evaluation on the TRECVID
MED 2010 dataset; the last column depicts the
boost in performance of GSDA-LSVM over KSVM.

Event LSVM KSVM GSDA-LSVM % Boost

E01 0.156 0.488 0.583 19.5%
E02 0.030 0.175 0.161 -7.8%
E03 0.234 0.441 0.460 4.4%
E04 0.273 0.579 0.668 15.4%
E05 0.051 0.156 0.256 64.2%
E06 0.131 0.181 0.243 34.6%
E07 0.059 0.285 0.383 34.4%
E08 0.383 0.564 0.577 2.4%
E09 0.252 0.463 0.464 0.2%
E10 0.061 0.260 0.285 9.8%
E11 0.043 0.308 0.307 -0.2%
E12 0.115 0.253 0.286 13.1%
E13 0.078 0.480 0.510 6.4%
E14 0.175 0.512 0.515 0.7%
E15 0.112 0.388 0.451 16.2%
E21 0.406 0.556 0.572 2.9%
E22 0.045 0.174 0.168 -3.5%
E23 0.406 0.612 0.633 3.5%
E24 0.032 0.150 0.142 -5.2%
E25 0.043 0.047 0.078 66.4%
E26 0.086 0.288 0.327 13.8%
E27 0.331 0.382 0.441 15.6%
E28 0.354 0.410 0.479 17.1%
E29 0.124 0.252 0.277 10.3%
E30 0.020 0.142 0.197 39.2%
MAP 0.160 0.341 0.379 10.9%

Table 3: Performance evaluation on the TRECVID
MED 2012 dataset; the last column depicts the
boost in performance of GSDA-LSVM over KSVM.

4.3 Experimental setup and results
In this section, the proposed GSDA-LSVM approach is

evaluated using the TRECVID MED datasets described in
Section 4.1, and its performance is compared with that of
KSVM and LSVM.

4.3.1 Experimental setup
In the stage of model selection during the training of event

detectors, for LSVM we need to identify the penalty term C,
for KSVM both C and the scale parameter ρ of the Gaussian
RBF kernel, while for GSDA-LSVM we additionally need to
estimate the number of subclasses H. These parameters are
estimated using a grid search on a 3-fold cross-validation
procedure, where at each fold the development set is split
to 70% training set and 30% validation set. During opti-
mization, the LSVM parameter C and the Gaussian RBF
parameter ρ of KSVM and GSDA-LSVM are searched in
the range [2−10, 24]. For the identification of the optimum
number of GSDA subclasses, the k-means algorithm is used
to evaluate different data partitions by varying H1 in the
range [2, 6] (i.e., the “rest-of-the-world” class is not divided
into subclasses).

4.3.2 Event detection accuracy
The performance of the different methods in terms of AP

(and MAP along all events) in MED 2010 and 2012 is shown
in Tables 2 and 3 respectively, where the best performance
is printed in bold. Moreover, two keyframes for each of the
5 top ranked videos retrieved using the GSDA-LSVM algo-
rithm for events E01 to E05 are shown in Fig. 2, where
wrongly detected videos are presented within red colored
frames. From the obtained results we observe that GSDA-
LSVM provides the best performance in both datasets. In
more detail, in the MED 2010 dataset we observe that GSDA-
LSVM provides an approximate boost in performance over
KSVM of approximately 5.8%, and that both kernel-based
methods (KMSDA, GSDA-LSVM) achieve a MAP boost of
more than 68% over the linear one (LSVM). From Table 3 we
see that the performance of all methods is somewhat lower,
in absolute numbers, in the more challenging (in terms of
event diversity and scale) MED 2012 dataset. However, the
performance differences between the methods are increased,
in comparison to the differences observed in MED 2010;
GSDA-LSVM provides a MAP boost of approximately 11%
and 137% over KSVM and LSVM respectively.

4.3.3 Time complexity
For the evaluation of the proposed method in terms of

time complexity two experiments are performed, as described
in the following. GSDA extends KSDA (and similarly other
subclass DA methods) by providing a new formulation of
the eigenvalue problem that can be solved more efficiently.
To this end, we compare GSDA with KSDA in terms of
computational time for learning one MED 2012 event. In
this experiment a speed up of around 25% of GSDA over
KSDA was observed. This performance gain is achieved be-
cause the eigenanalysis performed in GSDA involves ma-
trices of smaller dimension as explained in Section 3.2. In
more detail, KSDA solves the generalized eigenvalue prob-
lem presented in (15) involving two N ×N matrices, where
N = 8840 (N is the number of kernel evaluations executed
for constructing the kernel Gram matrix in (14), which is
equal to the number of videos in the training dataset); in
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Figure 2: Example keyframes for the 5 top ranked videos retrieved using GSDA-LSVM algorithm for events
E01 to E05; wrongly detected videos are presented within red colored frames.

contrary, GSDA requires the spectral decomposition of two
matrices, specifically, an N × N matrix (K in (16)) and a
much smaller one (R in Section 3.2), of dimension J × J ,
where J ∈ [3, 7].

Secondly, GSDA-LSVM was compared with KSVM and
LSVM. In this experiment, a grid search was performed for
identifying the optimum parameters of the above approaches
on an Intel i7 3.5-GHz machine. In particular, we recorded
the training times of GSDA-LSVM (where the number of
subclasses remained fixed to H = 2), and KSVM for identi-
fying ρ and C in a 5× 5 optimization grid; for LSVM only a
5×1 grid as this approach includes only one parameter (the
penalty term C). The evaluation results are shown in Table
4. From the obtained results we can see that GSDA-LSVM
is approximately two times faster than KSVM. This perfor-
mance gain is achieved because GSDA-LSVM can efficiently
identify the best C in the reduced dimensionality space af-
ter the application of the GSDA phase of this approach. It
should also be noted that the above results were obtained
using an unoptimized Matlab implementation of GSDA. Fi-
nally, concerning testing times, similar values were observed
for both GSDA-LSVM and KSVM. This was expected as
testing time performance in kernel approaches is dominated
by the kernel evaluations between the test observation and
the annotated observations in the training dataset.

LSVM KSVM GSDA-LSVM

Time (min) 8.67 103.54 52.10

Table 4: Time (in minutes) for selecting the parame-
ters C and ρ of KSVM and GSDA-LSVM with H = 2
during training in MED 2012 dataset from a 5 × 5
grid; for LSVM a 5× 1 grid is used as only C needs
to be identified.

5. CONCLUSIONS
A novel video event detection method was presented that

exploits a new efficient kernel subclass DA algorithm (GSDA)

to extract the most discriminant concepts of the event, and
LSVM for detecting the event in the GSDA subspace. The
evaluation of the proposed method on the TRECVID MED
corpora of 2010 and 2012 for the detection of 28 events in to-
tal showed that it favorably compares to the corresponding
KSVM-based one in terms of both efficiency and accuracy.

Interesting extensions include the exploitation of spectral
regression [4] or QR decomposition [33] in the GSDA crite-
rion to further enhance the computational efficiency of the
proposed algorithm. Another interesting future work direc-
tion is the investigation of mathematical formulations com-
bining GSDA and LSVM in a single optimization criterion
[38].
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