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ABSTRACT

Vast amounts of digital multimedia data are being produced and dis-
tributed today, so methods for the efficient and reliable extraction of
information from video data are becoming necessary. We present
a novel motion segmentation algorithm, which accurately extracts
moving objects from a video, and also provides a likelihood map,
for each object pixel assignment. The flow is estimated, and accumu-
lated over several frames, to give action masks. Color segmentation
clusters regions of similar color in each frame. A novel, likelihood
ratio-based method for the statistical comparison of color layers in
the regions of activity and the background is presented and com-
pared with an Earth Mover’s Distance-based approach. Our method
also gives the likelihood with which each pixel is assigned to a mov-
ing object in each frame. Experiments with real sequences illustrate
the advantages of our method, namely that it gives overall more reli-
able results, and also provides the likelihood map for the segmented
object.

1. INTRODUCTION

The facility with which digital multimedia can be acquired, created
and disseminated today has increased the need for the efficient ex-
traction of useful information from it. Computer vision and video
processing tasks, such as the reliable segmentation of moving ob-
jects in video, have become more necessary than before. This paper
focuses on the problem of segmenting moving objects from video,
by integrating the motion and the color information in a statistically
substantiated, and computationally inexpensive manner.

Numerous methods have been proposed for the segmentation
of moving objects [1], [2]. Object motion is a fundamental cue in
these approaches, but using motion information alone may lead to
inaccuracies, because of errors that may appear in the motion esti-
mates. This motivates us to also employ the color information in
the video [3]. Color segmentation alone does not suffice to extract
moving objects from the video either, since a moving entity may
be composed of many different colors. In this paper we present a
novel method for integrating the motion information with the color
segments, in order to achieve reliable motion segmentation.

Sec. 2 presents the motion processing stage. The optical flow is
estimated between pairs of frames, and then accumulated and pro-
cessed statistically to form “action masks”, encompassing all pixels
that have undergone a displacement. In the case of a moving camera,
its motion can be compensated for in a pre-processing stage, and our
method can be applied to the resulting video. Color segmentation
is then applied to each frame, giving layers of color in the action
masks and their complementary (background) regions (Sec. 3). Fi-
nally, two different approaches for matching the colors layers in the
action masks and the background of each frames are described in

Sec. 4. Experiments demonstrate the effectiveness of our approach
in Sec. 5, and conclusions and ideas for future work are shown in
Sec. 6.

2. OPTICAL FLOW ANALYSIS FOR ACTION AREAS

In order to localize the moving objects in the video sequence, we
estimate the optical flow between pairs of frames, using the Lukas
Kanade algorithm [4]. Since it is based on the constant illumination
assumption, optical flow suffers from inaccuracies introduced by il-
lumination changes that are not introduced by object motions (e.g.
lighting changes, measurement noise). Although the Lukas Kanade
method is more robust to these inaccuracies than other methods, the
flow estimates are still noisy. Also, their values are higher near mo-
tion boundaries, and negligible in smooth areas of moving objects.
In Fig. 1(a) and Fig. 4(a), the flow between pairs of video frames is
significant only at the moving object boundaries.

We take advantage of the velocity estimates’ noise, to extract ac-
tion masks in each video sequence, with the pixels that undergo dis-
placements during several (if not all) frames. Since we have many
samples of this noise (it affects the flow estimates over all frame
pixels, over many frames), we approximate it by a Gaussian dis-
tribution. Thus, finding moving pixels is reduced to testing if the
accumulated velocity estimates follow a Gaussian distribution. For
a random variable y, the classical measure of non-gaussianity is the
estimation of its fourth order cumulant, also known as the kurtosis:
kurt(y) = E{y4}−3(E{y2})2. The fourth order moment of Gaus-
sian random variables is given by E{y4} = 3(E{y2})2, so ideally
the kurtosis of a Gaussian random variable should be equal to zero.
Motivated by this, we accumulate the flow estimates v for each pixel,
over several frames, and characterize each pixel according to:{

r̄ ∈ action area if E{v4} = 3(E{v2})2
r̄ ∈ background if E{v4} �= 3(E{v2})2. (1)

The number of frames is chosen as follows: initially the mean of
each pixel velocity is estimated over ten frames. We accumulate
flow over new frames, and compare it with the mean of the previous
frames. When a new estimate is greater than the standard deviation
of the previous ones, we consider that an event has occurred, and
therefore we have a sufficient number of frames. Naturally, it is pos-
sible to gather more frames, to include more than one event. We then
estimate the kurtosis of each pixel’s flow estimates over the frames
being examined. Since the Gaussian model is only an approxima-
tion, we do not expect the kurtosis to be zero, but we do expect it
to be significantly higher at pixels that have undergone motion. We
consider that pixels whose flow has kurtosis above 10% of the mean
kurtosis have been displaced. These pixels form an “action maksk”,
as in Fig. 1(b), where it is obvious that our method correctly localizes
the moving pixels for a tennis match.
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Optical flow between frames 9 and 10

(a)

Activity Mask for Tennis Match

(b)

Fig. 1. (a) Optical flow between frames 9− 10. (b) Activity mask.

3. COLOR-BASED FRAME SEGMENTATION

The activity masks described in the previous section include any
pixel that moves during a subsequence of the video, so color pro-
cessing is used for the precise localization of the moving objects in
each frame. We perform color segmentation with the mean shift al-
gorithm [3], as it is reliable, and does not require determining the
number of clusters. Mean shift searches for the modes of the data’s
distribution, so their number “automatically” gives the number of
clusters. This search is performed over a window of radius h, which
we set equal to the percentage of each frame that is covered by the
action mask. This makes intuitive sense and, indeed, leads to accu-
rate results, since the size of the moving entities determine the size
of the action mask. We approximate the data’s distribution by a dis-
tribution with a symmetric kernel K(x), as follows:

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi

h

)
, (2)

and then search iteratively for the distribution’s modes. The Epanech-
nikov kernel is used, as it is symmetric and differentiable, and thus
enables us to calculate the distribution’s gradient and its modes.

KE(x) =

{
1
2
c−1

d (d + 2)(1− xT x), ifxT x < 1
0, otherwise

(3)

The modes of the data distribution are reached by translating the data
window by the “sample mean shift”:

Mh(x) =
1

nx

∑
xi∈Sh

xi − x. (4)

Once iterations converge to several density maxima, the image pixels
are assigned to the clusters whose color is closest to their color.

4. OBJECT SEGMENTATION FROM COLOR AND
MOTION STATISTICAL ANALYSIS

In order to isolate moving objects in each frame, we apply color seg-
mentation to the pixels inside the action masks and to those outside
these masks. The resulting color segmentation results need to be
compared, in order to find which pixels of each frame’s action mask
match the background color, and consequently which ones belong to
a moving object in that frame.

4.1. Earth Mover’s Distance

There exist many methods for the comparison of the color in the ac-
tion areas and the static frame pixels. For each color layer, we extract
three histograms corresponding to its three color components. The
histograms of each color can be regarded as “signatures” characteriz-
ing its distribution1. A measure of the similarity between signatures
of data is the Earth Mover’s Distance (EMD) [5], that calculates the
cost of transforming one signature to another. A histogram with m
bins, can be represented by P = {(μ1, Σ1, h1), ..., (μm, Σm, hm)},
where μi, Σi are the mean and covariance, respectively, of the data
in that bin (equivalently, cluster), and hi is the corresponding his-
togram value (essentially the probability of the values of the pix-
els in that cluster). This histogram can be compared with another,
Q = {(μ1, Σ1, h1), ..., (μn, Σn, hn)}, by estimating the cost of
transforming histogram P to Q. If the distance between their clus-
ters is dij (we use the Euclidean distance here), the goal of trans-
forming one histogram to the other is that of finding the flow fij that
achieves this, while minimizing the cost:

W =

m∑
i=1

n∑
j=1

dijfij . (5)

Once the optimal flow fij is found [5], the EMD becomes:

EMD(P, Q) =

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij

. (6)

We estimated the EMD between the three histograms of each
color layer in the action mask and the background area of each frame.
We combined the EMD’s results for each color by simply adding
their magnitudes. The color layers of the static areas and the action
areas that require the least cost (EMD) to be transformed to each
other should correspond to pixels with the same color. Indeed, our
experiments show that this approach correctly separates the back-
ground pixels in the action areas from the moving objects.

4.2. Probability Likelihood Testing for Color Comparison

In this section, we present an alternative approach to using the EMD,
as it is computationally expensive, especially for large amounts of
data and many color layers. This method has the advantage of pro-
viding an estimate of each pixel’s likelihood to belong to the moving
object, in addition to leading to a binary decision, like the EMD-
based comparison.

We propose to estimate the statistical distribution of each layer’s
colors in the action masks and the background areas, and compare
them by likelihood ratio testing. This leads to a hypothesis test for
each pixel r̄, with the hypotheses that it is “active” (i.e. has moved
in the current frame) or “static” (i.e. it is a background pixel):

H0 : r̄ ∼ fstatic(r̄)
H1 : r̄ ∼ factive(r̄).

(7)

This process requires modelling of the color data’s statistical distri-
bution in both the action mask (factive), and its complement (fstatic).
We make the realistic assumption that the three color components in
each layer are independent random variables, so the overall pdf of
each pixel r̄, in each layer, can be written as:

flayer(r̄) = fR(r̄)fG(r̄)fB(r̄), (8)

1In [5] signatures have a more general meaning than histograms, but in
this paper we consider the special case of histograms as signatures.
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where “layer” is static or active. Spatial luminance data is often
modelled by mixtures of Gaussian distributions, which are estimated
using the Expectation-Maximization (EM) algorithm [6]. However,
the EM is computationally expensive, it requires knowing the num-
ber of mixture components, and its success is highly dependent on
correct training, which limits its usability in general applications.

For these reasons, we develop a simpler but effective method for
approximating the color layer statistics, and subsequently compar-
ing the different color regions. Fig. 2(a) shows the normal probabil-
ity plot of the R component of a color layer inside an action mask,
which shows that it follows a distribution with heavier tails than the
Gaussian, as it contains outliers. We account for the data’s outliers
by using the heavy-tailed Cauchy distribution, given by:

f(x) =
1

π

γ

γ2 + (x− δ)2
, (9)

where γ is the data’s dispersion and δ is its location parameter (the
median for the Cauchy pdf). The dispersion expresses the data’s
spread around δ, so it is equivalent to the data variance [7].
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Fig. 2. (a) Normal Probability Plot of the red color component in an
action mask’s color layer. (b) LRT for the same color layer.

A likelihood ratio test (LRT) is then formulated, to find whether
each frame’s pixel belongs to the color layer of the action or the static
area. Using the Cauchy model for our data and Eq. (8), we have:

L(r̄) =
factive(r̄)

fstatic(r̄)
=

γstatic

γactive

γ2
active + (x− δactive)

2

γ2
static + (x− δstatic)2

, (10)

where γlayer =
∏

i={R,G,B} γi
layer , δlayer =

∏
i={R,G,B} δi

layer

(layer = static or active) are estimated directly from the data avail-
able [7]. In order to mask out the player, we threshold the values
of the LRT, using the Bayesian threshold [8], which is automatically
extracted from the data:

η =
μH1 + μH0

2
, (11)

where μH1 and μH0 are the means of the LRT. They are directly esti-
mated from the data available as follows: μH1 = EH1 [L(r̄)], μH0 =
EH0 [L(r̄)], where, for H1 we estimate the LRT mean using factive,
and for H0 we use fstatic. By thresholding the LRT, we separate
the moving object pixels from the background pixels in each frame.
As our experiments show, this method gives equally good results as
the EMD-based one, and in some cases performs even better, at a
much lower computational cost and with a simpler implementation.
Another advantage of using the LRT is that it gives the likelihood
with which the pixels in the action mask match the corresponding
color layer of the static regions, as shown in Fig. 2(b). This gives us

the flexibility to decide whether the segmentation should include all
possible object pixels, at the cost of including “false alarm” pixels,
i.e. pixels that did not move at that frame, or including only the high
LRT pixels, at the cost of losing some of the object pixels.

5. EXPERIMENTS

In this section we show experimental results for real videos that
demonstrate the effectiveness of our approach.

Tennis Match: In these experiments we examine a video of a
tennis match (Fig. 3(c)). Fig. 1 shows the motion analysis results,
where the action areas are evident, and even the trajectory of the ten-
nis ball has been extracted. It should be emphasized that this video
was of particularly bad quality, yet the de-noising of the flow esti-
mates successfully localized the active pixels. In Fig. 3(a), (b) we
show the results of the color segmentation, where we can already
discern the players from the tennis court. In this experiment, the
color comparison using the EMD and the LRT gave the same seg-
mentation result, shown in Fig. 3(d). Note that, in this sequence,
the player in the back was not moving significantly, and was barely
visible due to the poor quality of the sequence, so she has not been
recovered.

Color segmentation for background

(a)

Color segmentation in action mask

(b)
Frame 47 for tennis match

(c)

Segmentation result for tennis match

(d)

Fig. 3. Frame 47 of Tennis match. Color segmentation for (a) back-
ground areas, (b) action masks. (c) Frame 47. (d) Final segmenta-
tion.

Tennis Serve: Experiments were also conducted with a video
showing a player serving a tennis ball (Fig. 5(a)). Fig. 4 shows
characteristic flow estimates, and the resulting action mask. The re-
sults of the mean-shift color segmentation are shown in Fig. 4(c),
(d) where we see that the player’s colors help separate her from the
background. The final segmentation results using the EMD and LRT
are shown in Fig. 5(b) and (c) respectively. In this case, the LRT gave
better segmentation results than the EMD. This can be attributed

2016



Optical flow between frames 19 and 20

(a)

Activity Area for frames 1 to 60

(b)
Color segmentation in the action mask

(c)

Color segmentation for background area

(d)

Fig. 4. Tennis serve. (a) Optical flow between frames 19 and 20. (b)
Action mask. Color segmentation: (c) action mask, (d) background.

to the fact that the test based on the EMD sums the absolute val-
ues of the EMD’s between the three color components, whereas the
LRT makes the more realistic assumption that the color distributions
are independent, and approximates the total pdf by multiplying the
marginal pdfs (Eq. 8).

In our experiments with the rest of the video frames, we found
that, overall, the EMD and LRT based approaches perform compa-
rably, with the LRT method giving better results in some cases (like
that of Fig. 5). Also, the computational cost of the EMD method is
higher, as it involves an optimization process for comparing all pos-
sible combinations of the color histogram bins. In the experiments,
on a 3.4 GHz Pentium IV, using Matlab, the EMD algorithm takes
0.095 seconds per 720 × 576 frame, and the LRT estimation 0.024
seconds.

6. CONCLUSIONS

This paper proposes a novel method for the accurate segmentation of
moving objects in a video, that is computationally efficient, and pro-
duces a likelihood map for the segmentation. Optical flow estimates
are processed statistically to give action masks, with the pixels that
move during the video. These masks are integrated with color seg-
mentation by comparing the color layers via the EMD and a novel
LRT-based method. The latter has the novel feature of giving likeli-
hood estimates for each pixel in the action mask, so that a pixel can
be assigned to a moving object with high or low probability in each
frame. Experiments demonstrate the accuracy of the object segmen-
tation and the usefulness of the likelihood maps.
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Frame 4 for tennis serve

(a)

Segmentation result using the EMD

(b)
Segmentation result using the LRT

(c)

Fig. 5. (a) Frame 4 of Tennis serve. (b) EMD-based segmentation.
(c) LRT-based segmentation.
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