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Problem

e Concept-based video retrieval (38 evaluated concepts)
e TRECVID SIN Task video dataset
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Typical solution
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Motivation for going beyond the

typical solution

e Typical concept detection: Train one supervised classifier separately for

each concept; a single-task learning process (STL)

e However, concepts do not appear in isolation from each other
Label relations Task relations
clouds animal sky

outdoors
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Literature review

e Multi-concept learning (MCL): Exploit concept relations

e Stacking-based approaches (Smith et al. 2003), (Markatopoulou et al.
2014)

e Inner learning approaches (Qi et al. 2007)

e Multi-task learning (MTL): Exploit task relations (learn many tasks
together)

e Assuming all tasks are related e.g., use regularization (Argyriou et al.
2007)

e Some tasks may be unrelated e.g., CMTL (Zhou et al. 2011), AMTL (Sun
et al. 2015), GO-MTL (Kumar et al. 2012)

e Online MTL for lifelong learning e.g., ELLA (Eaton & Ruvolo 2013)
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Our approach

e Proposed method: ELLA_LC

e ELLA_LC stands for Efficient Lifelong Learning Algorithm with Label
Constraint

e |tjointly considers task and label relations
e ELLA LCis based on ELLA (Eaton & Ruvolo 2013)

e ELLA is the online version of GO-MTL: Learning Task Grouping and
Overlap in Multi-Task Learning (Kumar et al. 2012)
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Background: Single-task learning
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Background: The GO-MTL algorithm

k latent tasks each linear combination is
. A | assumed to be sparse in the
1) ™ latent basis
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Background: The GO-MTL algorithm

Iterative optimization with respect to L and S:
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Background: The ELLA algorithm

 ELLA is the online version of GO-MTL (useful in lifelong learning scenarios)

Average the
model losses
across tasks

First inefficiency: due to the explicit dependence of the above equation on all of the
previous training data (through the inner summation)
e Solution: Approximate the equation using the second-order Taylor expansion of

Nitzfitlﬁ (D (Xi(t); W(t)) 'yi(t)) around w(®

Second inefficiency: In order to evaluate a single candidate L, an optimization

problem must be solved to recompute the value of each of the s®’s

 Solution: Compute each s® only when training data for task t are available and
do not update it when new tasks arrive
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1.
2.

ELLA_LC objective function

Contributions:

instead of solving the Lasso problem
. We use linear SVMs as base learners instead of logistic regression
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extra term added to ELLAs

objective function that conS|ders
concept correlations
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coefficient

between tand t’

We add a new label-based constraint that considers concept correlations
We solve the objective function of ELLA using quadratic programming
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ELLA_LC label constraint

Positive correlation: force task
parameters to be similar, linear
classifiers return similar scores

xLs®

xLs@"

t,: sky

t: sun

t,: indoors

Correlation
between
sun and all
the other
concepts

Negative correlation: force task
parameters to be opposite, linear
classifiers return opposite scores
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ELLA LC solution

—\

Compute the ¢-
correlation
coefficient of the
concept learned in
task t with all the

For each LearerVM
task e.g.,
—

arriving
(X®, y®)

Y
d-element

feature vector

] L previously learned
w(® concepts
Fix L Update s(® Update L Fix s(®
- 9 L
S S g
>~ E o - €
—> 2 5 T ——>
] = E
© E J s \\
) To update st we use |
\ .
k latent tasks quadratic

5
—

Institute University of London

: . programming
m oformation %Q4 Queen Mary VID »



Experimental setup: Compared
methods

Dataset: TRECVID SIN 2013
e 800 and 200 hours of internet archive videos for training and testing
e One keyframe per video shot
e Evaluated concepts: 38, Evaluation measure: MXinfAP

We experimented with 8 different feature sets

e The output from 4 different pre-trained ImageNet DCNNs (CaffeNet, ConvNet,
GoogleNet-1k, GooglLeNet-5k)

e The output from 4 fine-tuned networks on the TRECVID SIN dataset
Compared methods
e STL using: a) LR, b) LSVM, c) kernel SVM with radial kernel (KSVM)

e The label powerset (LP) multi-label learning algorithm that models only label
relations (Markatopoulou et al. 2014)

e AMTL (Sun et al. 2015) and CMTL (Zhou et al. 2011), two batch MTL methods
e ELLA (Eaton & Ruvolo 2013), an online MTL method (what we extend in this study)
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Experimental results

Single-task learning Joint concept learning Proposed multi-task learning
‘ Direct _— ~1 | LP AMTL CMTL ELLA | ELLAQP ELLAQP ELLALC ELLALC
R# | Features output | LR LSVM  KSVM | o) [17] [16] 2] LR LSVM LR LSYM
(1) Using the output of ImageNet-based networks as features

I CaffeNetlk 13.00  14.20 12.81 11.77 12.90 11.56 13.14 13.99 16.27 * 14.28 16.36

2 ConvNetlk 1758 19.29 15.62 1608 17.58 16.09 17.88 18.45 21.02% 18.94 21.10

3 GNETIk 16.10 17.73 14.17 15.00 16.34 14.43 15.79 17.07 10.86 * 17.48 19.98

4 GNET5k 2089 22.68 20.73 20.54 21.01 19.99 15.65 21.88 24.05* 22.16 4.1

5 4xDCNN 2077 2429 22.64 19.58 22.96 21.42 2117 23.66 2597 * 24.18

(11) Using the output of networks finetuned on different subsets of the TRECVID SIN 2013 training set as features

6 CaffeNet1k-345 | 20.29 2221 2416 23.00 21.29 24.22 24.03 16.63 23.09 2547 % 23.51 25.88

7 GNET1k-60 19.77 2451 2430 23.07 2506 22.56 22.25 23.71 24.56 26.05 24.51 25.90 *
8 GNETIk-60 19.90 2471 2478 22.90 25207 2387 22.87 24.57 24.69 26.24 24.52 26.24

9 GNETI1k-323 23.97 26.67  28.65 2719 27122 28.67 28.09 25.75 27.56 29.86 28.19 30.23

10 | GNET5k-323 22.78 2713 29.32 28.53 28.21 29.47 29.27 27.15 28.61 30.80 * 28.90 310

11 | 5xDCNNFT 25.35 2856 30.60 29.93 30.27 30.94 30.15 28.19 29.89 31.82°% 30.32
* Results of our experiments in terms of MXinfAP
 ELLA _QP: an intermediate version of the proposed ELLA LC that does not use

the label constraint of ELLA_LC but uses quadratic programming

°

Statistical significance from the best performing method using the paired t-

test (at 5% significance level); the absence of * suggests statistical significance
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Experimental results

Change in XlanP per task
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Iteration

Change in XinfAP for each task between the iteration that the task was first
learned and the last iteration (where all tasks had been learned), divided by
the position of the task in the task sequence

Reverse transfer occurred, i.e., a positive change in accuracy for a task
indicates this, mainly for the tasks that were learned early

As far as the pool of tasks increases early tasks get new knowledge from many
more tasks, which explains why the benefit is bigger for them
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Conclusions

. Proposed ELLA_LC: an online MTL method for video concept detection

. Learning the relations between many task models (one per concept) in
combination with the concept correlations that can be captured from the
ground-truth annotation outperforms other SoA single-task and multi-task
learning approaches

e The proposed ELLA_QP and ELLA_LC perform better than the STL alternatives
both when LR and when LSVM is used as the base learner

e The proposed ELLA_QP and ELLA_LC perform better than the MTL ELLA algorithm
(the one that they extend) both when LR and when LSVM is used as the base
learner

e  Serving as input more complicated keyframe representations (e.g., combining
many DCNNs instead of using a single DCNN) improves the accuracy of the
proposed ELLA_QP and ELLA_LC

. Fine-tuning is a process that improves the retrieval accuracy of ELLA_QP and
ELLA_LC
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Thank you for your attention!
Questions?

More information and contact:
Dr. Vasileios Mezaris
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