
CASCADE OF CLASSIFIERS BASED ON BINARY, NON-BINARY AND DEEP
CONVOLUTIONAL NETWORK DESCRIPTORS FOR VIDEO CONCEPT DETECTION

Foteini Markatopoulou⋆† Vasileios Mezaris⋆ Ioannis Patras†

⋆ Information Technologies Institute (ITI), CERTH, Thermi 57001, Greece
†Queen Mary University of London, Mile end Campus, UK, E14NS

ABSTRACT

In this paper we propose a cascade architecture that can be used
to train and combine different visual descriptors (local binary, lo-
cal non-binary and Deep Convolutional Neural Network-based) for
video concept detection. The proposed architecture is computation-
ally more efficient than typical state-of-the-art video concept detec-
tion systems, without affecting the detection accuracy. In addition,
this work presents a detailed study on combining descriptors based
on Deep Convolutional Neural Networks with other popular local
descriptors, both within a cascade and when using different late-
fusion schemes. We evaluate our methods on the extensive video
dataset of the 2013 TRECVID Semantic Indexing Task.

Index Terms— Concept detection, Concept-based video re-
trieval, Cascade architecture, Video feature extraction

1. INTRODUCTION

Semantic concept detection in video aims to annotate video frag-
ments with one or more semantic concepts (e.g. hand, sky, run-
ning), chosen from a predefined concept list [1]. This process fa-
cilitates many applications such as semantics-based video segmenta-
tion and retrieval, video event detection, video hyperlinking [1, 2, 3].
Large-scale semantic concept detection systems mainly follow a pro-
cess where a video is initially segmented into meaningful fragments,
called shots; each shot is represented by e.g. one or more charac-
teristic keyframes/images; and, several features (e.g. different local
visual descriptors) are extracted from the keyframes (or any other
chosen representation) of each shot. Given a ground-truth annotated
video training set, supervised machine learning algorithms are then
trained separately for each concept, using the extracted features and
ground truth annotations. The trained classifiers (concept detectors)
can subsequently be applied to an unlabeled video shot, following
feature extraction, and return a set of confidence scores for the ap-
pearence of the different concepts in the shot.

In this work we focus on the learning stage of video concept
detection, by making two contributions. Firstly, we present a cas-
cade architecture of classifiers that utilizes different visual descrip-
tors and improves computational complexity in training and classifi-
cation, without sacrificing the concept detection accuracy. Secondly,
we show optimal ways to combine features based on Deep Convo-
lutional Networks (Deep CNN) with other popular local descriptors,
both within a cascade and in two other late-fusion architectures.

The rest of this paper is organized as follows: Section 2 reviews
related work on learning concept detectors. Section 3 introduces the

This work was supported by the EC under contracts FP7-600826 For-
getIT and FP7-287911 LinkedTV.

proposed cascade architecture, Section 4 presents the experimental
results and finally Section 5 presents conclusions.

2. RELATED WORK

A variety of visual features has been proposed to facilitate concept
detection [1] [4]. We can distinguish two main categories: hand-
crafted features and features based on Deep Convolutional Networks
(Deep CNN). With respect to handcrafted features, binary (ORB [5])
and non-binary (SIFT [6], SURF [7]) local descriptors, as well as
color extensions of them ([8], [4]) have been examined for video
concept detection. Local descriptors are aggregated into global im-
age representations by employing feature encoding techniques such
as Fisher Vector (FV) [9] and VLAD [10]. With respect to features
based on Deep CNN, one or more hidden layers of a Deep CNN are
typically used as a global image representation [11]. Deep CNN-
based descriptors present high discriminative power and generally
outperform the local descriptors [12], [13]. There is a lot of re-
cent research on the complementarity of different features, focusing
mainly on local descriptors [4]. However, the combination of Deep
CNN-based features with other state-of-the-art local descriptors has
not been thoroughly examined [12].

The typical way of combining multiple features for concept de-
tection is to separately train supervised classifiers for the same con-
cept and each different feature. When all the classifiers give their
decisions, a fusion step computes the final confidence score (e.g.
in terms of averaging); this is known as late fusion. Hierarchical
late fusion [14] is a more elaborate approach; classifiers that have
been trained on more similar features (e.g. SIFT and RGB-SIFT)
are firstly fused together and then, more dissimilar classifiers (e.g.
SURF) are sequentially fused with the previous groups. A prob-
lem when training supervised classifiers is the large-scale and im-
balanced training sets, where for many concepts negative samples
are significantly more than positives. The simplest way to deal with
this is to randomly select a subset of the negative examples in or-
der to have a reasonable ratio of positive-negative examples [15].
Random Under-Sampling is a different technique, which can some-
what balance the loss of negative samples of random selection [15]
[2]. Different subsets of the negative examples are given as input to
train different classifiers that are finally combined by late fusion. To
achieve fast detection and reduce the computational requirements of
the above process, linear supervised classifiers such as linear SVMs
or Logistic Regression (LR) models, are typically preferred.

While late fusion is one reasonable solution, there are other ways
that these classifiers can be trained and combined in order to accel-
erate the learning and detection process [16],[17]. Cascading is a
learning and fusion technique that is useful in large-scale datasets
and also accelerates training and classification. In a cascading archi-

Proc. IEEE Int. Conf. on Image Processing (ICIP 2015), Quebec City, Canada, Sept. 2015.

Fig. 1. (a) Block diagram of the proposed cascade architecture. (b)
Stage combining many base classifiers trained on different features.
(c) Stage with one base classifier trained on a single feature.

tecture, the classifiers are arranged in stages, from the less computa-
tionally demanding to the most demanding ones (or may be arranged
according to other criteria e.g. their accuracy). A video shot is clas-
sified sequentially by each stage and the next stage is triggered only
if the previous one returns a positive prediction (i.e. that the concept
appears in the shot). The rationale behind this is to rapidly reject
shots (i.e. keyframes) that clearly do not present a specific concept
and focus on those shots that are more difficult and more likely to
depict the concept. Cascades of classifiers have been mainly used in
object detection tasks, where one of the most popular methods for
face detection is the cascade of Viola & Jones [18]. Extensions of
this have been proposed, focusing either on the design of each stage
of the cascade ([19],[20], [21]) or the optimization of the whole cas-
cade [22]. These architectures are trained on specific types of fea-
tures (e.g. Haar-like features), which are suitable for object or face
detection, and are not directly applicable to video concept detection
using local or Deep CNN-based descriptors. Cascade architectures
have been only briefly examined for video/image concept detection
[23], [24].

3. CASCADE ARCHITECTURE FOR VIDEO CONCEPT
DETECTION

3.1. Cascade architecture overview

Figure 1 shows the proposed cascade architecture that can be used
for combining local and Deep CNN-based descriptors. Each stage
j of the cascade encapsulates a stage classifier Dj . The stages of
the cascade are sorted such that the classifier Dj+1 is more accu-
rate/expensive than Dj . Let I indicate an input image, the classifier
Dj+1 will be triggered only if the previous classifier does not reject
the input image I . Each stage of the cascade is associated with a
rejection threshold θj , and a stage output score Dj(I) is associated
with each stage classifier. A classifier is said to reject an input image
if Dj(I) < θj . A rejection indicates the classifier’s belief that the
concept does not appear in the image. Each stage classifier either
combines many base classifiers trained on different types of features
(Fig. 1:(b)) or contains only one base classifier trained on a single
type of features (Fig. 1:(c)). In the first case, fj base classifiers
are still trained independently from each other (e.g. one classifier is

trained on SIFT features, the other on RGB-SIFT features etc.), but
their output is combined in order to return a single stage output score
(Dj(I) = B1(I)

⊕
...

⊕
Bfj (I)) in the [0,1] range that indicates

the belief of the combined classifier that a concept appears into the
shot. Symbol

⊕
indicates the function used to combine the output

of base classifiers (e.g. arithmetic mean). In the second case, the
stage output score is just the probability output of the single base
classifier (Dj(I) = B1(I)) in the [0,1] range. Any supervised clas-
sifier that solves a binary classification problem and outputs scores
in the [0,1] range can be used as a base classifier.

Algorithm 1 presents the training and the classification process
of the proposed cascade. During the training phase, the learning goal
of the n-stage cascade is the construction of a set of n stage classi-
fiers Dj and n thresholds θj , one for each stage (j = 1 : n). Stages
are trained independently from each other, but every next stage fo-
cuses on a subset of the training images that pass from the previous
stage (Alg. 1 Training: Step 5). This guarantees that fewer compu-
tations will be performed, because some images will be rejected by
earlier stages and subsequently will not be used to train later stages.
During the classification phase every next stage is triggered only if
the stage output score is higher than the rejection threshold; similarly
to training, this guarantees reduced number of classifier evaluations.
The final score assigned to each image is the average of all stage out-
put scores of all the previous stages (Alg. 1 Classification: Step 3).
As a result, even images that did not reach stage n have a confidence
score.

In order to be effective, the proposed architecture needs to allow
as many as possible positive images to reach stage n. To achieve
this, a rejection threshold should be selected for each stage that max-
imizes the true positive rate. Minimizing the false positive rate is not
as important, because false positives that pass to next stages will
be processed by more accurate stages, which will correct any mis-
takes that the earlier weaker stages have made. We automatically ad-
just the rejection threshold associated with each stage using a simple
threshold selection strategy, which selects a threshold on the proba-
bility output of a classifier. More specifically, we apply each stage
classifier on a validation set, in order to collect probability output
scores, and we select the score that maximizes the required perfor-

Algorithm 1 Algorithm for the training and classification process of
the proposed cascade

Training
Input: Training set T= {xi, yi}M

i=1, yi ∈{±1}; Number of stages: n; Sets of
types of features to be used from each stage, each set consists of fj different types
of features for j = 1 : n
Output: A trained n-stage cascade that consists of D1, ...Dn stage classifiers, and
θ1, ...θn stage thresholds.
for j = 1 to n do

1. Train fj base classifiers Bj , one for each type of features assigned to stage j,
using T

2. Save the stage classifier Dj = B1
⊕

...
⊕

Bfj
.

3. Find the threshold θj , using the threshold selection algorithm that optimizes
the recall of Dj

4. Find T1 ⊂ T of xi for which Dj(xi) > θj
5. T=T1

end for
Classification
Input: Unlabeled sample = x′, n-stage trained cascade of D1, ..., Dn classifiers,
and θ1, ..., θn stage thresholds
Output: Concept confidence score Y
j = 1, Y = 0
while Dj(x

′) > θj and j ≤ n do
1. Y = Y + Dj(x

′)
2. j = j + 1

end while
3. Y = Y

j−1

Proc. IEEE Int. Conf. on Image Processing (ICIP 2015), Quebec City, Canada, Sept. 2015.

mance measure. Given that high true positive rate is crucial for the
success of the proposed cascade, the employed thresholding strat-
egy optimizes recall. Recall, which is a different name for the true
positive rate, guarantees that the detected rejection threshold will be
as small as possible in order allow all positive images to pass to the
next stage.

3.2. Arrangement of features on the stages of the cascade

Arranging different features on cascade stages is a complex opti-
mization problem that requires to select the best features, group them
and sort them on stages. Finding the globally optimal arrangement
requires retraining the full cascade from scratch (for every candidate
arrangement), which is ineffective in large-scale datasets. In this
work the arrangement of features on the cascade is fixed and chosen
based on a previous study that evaluates individual local descriptors
and also combinations of them [4]. Specifically, fast, more com-
pact but less accurate descriptors are introduced on early stages (e.g.
binary descriptors), while more complex and more accurate descrip-
tors are used on later stages (e.g. non-binary, Deep CNN-based).

3.3. Offline cascade optimization

In the above, the thresholds of the proposed cascade are calculated
separately for each stage. This can be suboptimal. In this section
we use the offline method proposed by [25] for optical character
recognition, to refine the rejection thresholds of each stage in or-
der to improve the overall performance of the cascade. In contrast
to [25] that refines the thresholds to improve the overall classifica-
tion speed, we adjust their method in order to optimize the overall
detection performance of the cascade. Following the dynamic pro-
gramming algorithm we start with a two stage cascade, containing
only the first and last stages of a pre-trained n-stage cascade. We ap-
ply this cascade on a validation set of M examples from which we
collect M possible threshold values. Then the second stage D2 is
added between the first and last stage. The initial M thresholds can
be extended into M possible ways through D2. The full cascade is
evaluated on all these M2 extensions and the best M threshold paths
are collected. This process of adding a stage is repeated n− 2 times
and the threshold path that leads to the best overall performance of
the cascade is selected to refine the initial thresholds. In [25] the re-
fined thresholds are selected by minimizing the overall classification
cost, subject to a low error rate. To adjust this method for video con-
cept detection we choose to maximize the Average Precision (AP).
More specifically, the algorithm finds those thresholds that optimize
the overall AP of the cascade, subject to the constraint that the over-
all recall (the measure that optimizes each node) equals to 1. This
constraint guarantees that the refined thresholds will always lead to
higher overall AP than the initial thresholds, without sacrificing the
recall.

4. EXPERIMENTS

4.1. Datasets and experimental setup

Our experiments were performed on the TRECVID 2013 Seman-
tic Indexing (SIN) dataset [26], which consists of a development set
and a test set (approximately 800 and 200 hours of internet archive
videos for training and testing, respectively). We evaluate our system
on the test set using the 38 concepts that were evaluated as part of the
TRECVID 2013 SIN Task, and we follow the TRECVID methodol-
ogy for the evaluation of the results [26].

For experimenting with all methods, one keyframe was extracted
for each video shot and was scaled to 320 × 240 pixels. Regarding
feature extraction, we followed the experimental setup of [4]. More
specifically, we extracted three binary descriptors (ORB, RGB-ORB
and OpponentORB) and six non-binary descriptors (SIFT, RGB-
SIFT and OpponentSIFT; SURF, RGB SURF and OpponentSURF).
All the local descriptors, were compacted using PCA following [4]
and were subsequently aggregated using the VLAD encoding. The
VLAD vectors were reduced to 4000 dimensions and served as input
to LR classifiers, used as base classifiers on the cascade or trained in-
dependently as described in the next paragraph. In all cases, the final
step of concept detection was to refine the calculated detection scores
by employing the re-ranking method proposed in [27]. In addition,
we used features based on the last hidden layer of a pre-trained Deep
CNN. Specifically, to extract these features we used the 16-layer pre-
trained deep ConvNet network provided by [11]. The network has
been trained on the ImageNet data only, and provides scores for 1000
concepts. We applied the network on the TRECVID keyframes and
similar to other studies [12] we used as a feature the output of the
last hidden layer (fc7), which resulted to a 4096-element vector. We
refer to these features as DCNN in the sequel.

To train our algorithms, for each concept, 70% of the negative
annotated training examples was randomly chosen for training and
the rest 30% was chosen as a validation set for the offline cascade op-
timization method. Each of the two negative sets was merged with
all positive annotated samples, by adding in every case three copies
of each such positive sample (in order to account for their, most of-
ten, limited number). Then the positive and negative ratio of training
examples was fixed on each of these sets by randomly rejecting any
excess negative samples, to achieve a 1:6 ratio (which is important
for building a balanced classifier). To train the proposed cascade ar-
chitecture, the full training set was given as input to the first stage,
while each later stage was trained with the subset of it that passed
from its previous stages, as discussed in section 3. We compared
the proposed cascade with a typical late-fusion scheme, where one
LR classifier was trained for each type of features on the same full
training set (that included three copies of each positive sample), de-
noted in the sequel as overtraining scheme. We also compared with
another late-fusion scheme, where one LR classifier was trained on
different subsets of the training set for each type of features. To
construct different subsets of training sets we followed the Random
Under-Sampling technique of Section 2; for each classifier, trained
on a different type of features, a different subset of negatives was
merged with all the positives (just one copy of each positive sample,
in this case) and was given as input. The ratio of positive/negative
samples was also fixed to 1:6. This scheme is denoted in the se-
quel as undersampling. For the offline cascade optimization we used
quantization to ensure that the optimized cascade generalizes well
to unseen samples. In these lines, instead of searching for candidate
thresholds on all the M examples of a validation set, we sorted the
values by confidence and split at every M/Q example (Q = 200).

4.2. Results and discussion

Tables 1 and 2 present the results of our experiments in terms of
Mean Extended Inferred Average Precision (MXinfAP) [28], which
is an approximation of the Mean Average Precision suitable for the
partial ground truth that accompanies the TRECVID dataset [26].
Table 1 presents the ten types of features that have been extracted
and used by the algorithms of this study. For brevity, for SIFT, ORB
and SURF we only show the MXinfAP when the original grayscale
descriptor is combined with other two corresponding color variants

Proc. IEEE Int. Conf. on Image Processing (ICIP 2015), Quebec City, Canada, Sept. 2015.

Table 2. Performance (MXinfAP. %) and relative computational complexity for different architectures/schemes: (a) cascade architecture (in
parenthesis we show results for the offline cascade optimization which was presented in Section 3.3), (c) overtraining, (d) undersampling.

Cascade (Offline cascade optimization) Late fusion-overtraining Late fusion-undersampling

Run
ID Features

of Base
detectors/
Stages

MXinfAP
(%)

amount of
training
data (%)

amount of
classifier
evalua-
tions (%)

MXinfAP
(%)

amount of
training
data (%)

MXinfAP
(%)

amount of
training
data (%)

amount of
classifier evalua-
tions (%); same
for both late
fusion schemes

R1 ORBx3;DCNN 4 / 2 27.25 (27.31) 39.3 37.3 (38.4) 27.28 40.0 25.31 15.6 40.0
R2 SIFTx3;DCNN 4 / 2 27.42 (27.47) 38.8 36.8 (38.1) 27.41 40.0 25.89 15.6 40.0
R3 SURFx3;DCNN 4 / 2 26.9 (27.3) 39.3 37.6 (38.3) 27.01 40.0 25.98 15.6 40.0
R4 ORBx3;SIFTx3;DCNN 7 / 3 27.82 (27.88) 65.3 57.9 (61.3) 27.76 70.0 26.42 27.3 70.0
R5 ORBx3;SURFx3;DCNN 7 / 3 27.16 (27.66) 65.8 58.4 (61.3) 27.63 70.0 26.5 27.3 70.0
R6 SIFTx3;SURFx3;DCNN 7 / 3 27.69 (27.71) 64.5 56.7 (61.4) 27.7 70.0 26.8 27.3 70.0

R7 ORBx3;SIFTx3;
SURFx3;DCNN 10 / 4 27.52 (27.52) 90.8 75.4 (83.0) 27.61 100.0 26.62 39.0 100.0

R8 ORBx3;DCNN 4 / 4 24.43 (24.53) 36.6 30.4 (33.7) 24.55 40.0 22.46 15.6 40.0
R9 SIFTx3;DCNN 4 / 4 24.42 (24.43) 35.6 29.1 (32.8) 24.5 40.0 23.05 15.6 40.0
R10 SURFx3;DCNN 4 / 4 24.49 (24.49) 36.9 31.7 (34.0) 24.46 40.0 23.66 15.6 40.0
R11 ORBx3;SIFTx3;DCNN 7 / 7 24.66 (24.79) 60.5 44.7 (51.5) 24.82 70.0 23.47 27.3 70.0
R12 ORBx3;SURFx3;DCNN 7 / 7 23.02 (24.77) 61.8 46.9 (54.0) 24.72 70.0 23.96 27.3 70.0
R13 SIFTx3;SURFx3;DCNN 7 / 7 23.53 (25.24) 60.0 44.1 (53.1) 25.16 70.0 24.32 27.3 70.0

R14 ORBx3;SIFTx3;
SURFx3;DCNN 10 / 10 23.55 (25.06) 82.5 57.0 (67.3) 25.09 100.0 24.28 39.0 100.0

Table 1. Performance (MXinfAP. %) for base classifiers or combi-
nations of them trained on different features.

Descriptor MXinfAP Base classifiers
(ordered in terms of accuracy)

ORBx3 18.31 ORB, OpponentORB, RGB-ORB
SIFTx3 18.98 SIFT, OpponentSIFT, RGB-SIFT
SURFx3 19.34 SURF, OpponentSURF, RGB-SURF
DCNN 23.84 Last hidden layer of Deep CNN

by means of late fusion (averaging) (see [4] for fine-grained results).
Table 2 presents the performance and computational complexity

of the proposed cascade architecture and the overtraining and under-
sampling schemes. The second column shows the features on which
base classifiers have been trained for each run, and the number of
stages (column three) indicates how the features have been grouped
in stages. Runs R1 to R7 use stages that combine many base classi-
fiers, in terms of late fusion (averaging), as presented in Fig. 1:(b).
Specifically, stages that correspond to SIFT, SURF and ORB con-
sist of three base classifiers (i.e. the grayscale descriptor and the
two color variants), while the last stage of DCNN features contains
only one base classifier. Runs R8 to R14 use stages made of a sin-
gle base classifier (trained on a single type of features) as in Fig.
1:(c). We sort the stages on each cascade according to the accuracy
of the employed individual base classifiers or combinations of them
(according to Table 1) from the less accurate to the most accurate.
Stages do not refer only to the cascade but also affect the way that
late fusion has been performed by the overtraining and undersam-
pling schemes. For example, for stages that consist of many features,
the corresponding base classifiers per stage were firstly combined by
averaging the classifier output scores and then the combined outputs
of all stages were further fused together.

Table 2 shows that both cascade and late fusion-overtraining
outperform the most commonly used approach of late fusion-
undersampling, which uses less negative training examples to train
each base classifier. The best results for cascade and overtaining
are achieved by R4, reaching a MXinfAP of 27.82 and 27.76 re-
spectively. The cascade reaches this good accuracy while at the
same time is less computationally expensive than overtraining, both
during training and during classification. Specifically, the cascade

employed for R4 achieves 17.3% relative decrease in the number of
classifier evaluations. Considering that training is performed offline
only once, but classification will be repeated many times for any new
input video, the latter is more important and this makes the observed
reduction in the amount of classifier evaluations significant. Table
2 also presents the results of the cascade when the offline cascade
optimization technique of Section 3.3 for threshold refinement is
employed. We observe that in many cases MXinfAP increases. The
amount of necessary classifier evaluations also increases in this case,
but even so the cascade is more computationally efficient than the
two late fusion schemes.

The second fold of this work is to examine how we can effec-
tively combine Deep CNN-based features with handcrafted local de-
scriptors. According to Table 1, the DCNN performs better than
the combinations of SIFT, SURF and ORB with their color variants.
It should be noted that each of the base classifiers of these groups
(e.g. RGB-SIFT) is rather weak, achieving MXinfAP that ranges
from 11.68 to 15.04 (depending on which descriptor is used). Ta-
ble 2 shows that the way that the stages of a cascade are constructed
but also the way that late fusion is performed on the overtraining
and undersampling schemes affects the combination of DCNN with
the other descriptors. Generally, it is better to merge weaker base
classifiers to a more robust one (e.g. grouping grayscale SIFT with
its color variants) in order to either use them as a cascade stage or
to combine their decisions in terms of late fusion (R1-R7: MXinfAP
ranges from 22.6 to 25.09), than treating each of them independently
from the others (i.e., using one weak classifier per stage or fusing all
of them with equal weight; R8-R14: MXinfAP ranges from 25.31 to
27.82). The best way to combine DCNN with other local descriptors
is R4, where ORBx3, SIFTx3 and DCNN are arranged in a cascade,
increasing the MXinfAP from 23.84 (for DCNN alone) to 27.82.

5. CONCLUSIONS

In this work we presented a cascade architecture for video concept
detection that improved the computational complexity compared to
typical state-of-the-art late fusion architectures, without affecting
the concept detection accuracy. Furthermore, we presented effec-
tive ways to fuse Deep CNN-based features with other popular local
descriptors, both within a cascade and in late fusion schemes.

Proc. IEEE Int. Conf. on Image Processing (ICIP 2015), Quebec City, Canada, Sept. 2015.

6. REFERENCES

[1] C. G. M. Snoek and M. Worring, “Concept-Based Video Re-
trieval,” Foundations and Trends in Information Retrieval, vol.
2, no. 4, pp. 215–322, 2009.

[2] F. Markatopoulou et al., “ITI-CERTH participation to
TRECVID 2013,” in TRECVID 2013 Workshop, Gaithersburg,
MD, USA, 2013.

[3] V. Mezaris, P. Sidiropoulos, and I Kompatsiaris, “Improv-
ing interactive video retrieval by exploiting automatically-
extracted video structural semantics,” in IEEE Int. Conf. on
Semantic Computing (ICSC), 2011, pp. 224–227.

[4] F. Markatopoulou, N. Pittaras, O. Papadopoulou, V. Mezaris,
and I. Patras, “A study on the use of a binary local descriptor
and color extensions of local descriptors for video concept de-
tection,” in 2015 MultiMedia Modeling Conference, vol. 8935
of Lecture Notes in Computer Science, pp. 282–293. Springer,
2015.

[5] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB:
An efficient alternative to SIFT or SURF,” in IEEE Int. Conf.
on Computer Vision, 2011, pp. 2564–2571.

[6] D. G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” Int. Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, 2004.

[7] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up
robust features,” in ECCV, vol. 3951 of LNCS, pp. 404–417.
Springer, 2006.

[8] K. E. A. Van de Sande, T. Gevers, and C. G. M. Snoek, “Evalu-
ating color descriptors for object and scene recognition,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 32,
no. 9, pp. 1582–1596, 2010.

[9] G. Csurka and F. Perronnin, “Fisher vectors: Beyond bag-
of-visual-words image representations,” in Computer Vision,
Imaging and Computer Graphics. Theory and Applications,
vol. 229 of Communications in Computer and Information Sci-
ence, pp. 28–42. Springer Berlin, 2011.

[10] H. Jegou, M. Douze, C. Schmid, and P. Perez, “Aggregating lo-
cal descriptors into a compact image representation,” in IEEE
Int. Conf. on CVRP 2010, SF, CA, 2010, pp. 3304–3311.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” arXiv technical re-
port, 2014.

[12] B. Safadi, N. Derbas, A. Hamadi, M. Budnik, P. Mulhem, and
G. Qu, “LIG at TRECVid 2014 : Semantic Indexing,” in
TRECVID 2014 Workshop, Gaithersburg, MD, USA, 2014.

[13] C. G. M. Snoek, K. E. A. Van De Sande, D. Fontijne, S. Cap-
pallo, J. Van Gemert, and A. Habibian, “MediaMill at
TRECVID 2014 : Searching Concepts, Objects, Instances and
Events in Video,” in TRECVID 2014 Workshop, Gaithersburg,
MD, USA, 2014.

[14] S. T. Strat, A. Benoit, H. Bredin, G. Quenot, and P. Lam-
bert, “Hierarchical late fusion for concept detection in videos,”
in European Conference on Computer Vision (ECCV) 2012.
Workshops and Demonstrations, vol. 7585 of Lecture Notes in
Computer Science, pp. 335–344. Springer, 2012.

[15] B. Safadi and G. Quénot, “Evaluations of multi-learner
approaches for concept indexing in video documents,” in
RIAO’10, 2010, pp. 88–91.

[16] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vap-
nik, “Parallel support vector machines: The cascade SVM,” in
Neural Information Processing Systems, 2004, pp. 13–18.

[17] L. Bao et al., “Informedia@TRECVID 2011,” in TRECVID
2011 Workshop, Gaithersburg, MD, USA, 2011.

[18] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in 2001 IEEE Computer Society
Conf. on Computer Vision and Pattern Recognition (CVPR),
2001, vol. 1, pp. 511–518.

[19] L. Bourdev and J. Brandt, “Robust object detection via soft
cascade,” in IEEE Computer Society Conf. on Computer Vi-
sion and Pattern Recognition (CVPR’05), USA, 2005, vol. 2
of CVPR ’05, pp. 236–243, IEEE Computer Society.

[20] C. Shen, P. Wang, and H. Li, “Lacboost and fisherboost: Op-
timally building cascade classifiers,” in European Conference
on Computer Vision (ECCV) 2010, vol. 6312 of Lecture Notes
in Computer Science, pp. 608–621. Springer, 2010.

[21] L. Jianguo and Z. Yimin, “Learning surf cascade for fast and
accurate object detection,” in 2013 IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2013, pp. 3468–3475.

[22] L. Lefakis and F. Fleuret, “Joint cascade optimization using a
product of boosted classifiers,” in NIPS’10, 2010, pp. 1315–
1323.

[23] C. Nguyen, H. Vu Le, and T. Tokuyama, “Cascade of
multi-level multi-instance classifiers for image annotation,” in
KDIR’11, 2011, pp. 14–23.

[24] H. Harzallah, F. Jurie, and C. Schmid, “Combining efficient
object localization and image classification,” in IEEE 12th Int.
Conf. on Computer Vision, 2009, pp. 237–244.

[25] K. Chellapilla, M. Shilman, and P. Simard, “Combining mul-
tiple classifiers for faster optical character recognition,” in
7th International Conference on Document Analysis Systems,
Berlin, 2006, DAS’06, pp. 358–367, Springer.

[26] P. Over et al., “Trecvid 2013 – an overview of the goals, tasks,
data, evaluation mechanisms and metrics,” in Proceedings of
TRECVID 2013. NIST, USA, 2013.

[27] B. Safadi and G. Quénot, “Re-ranking by local re-scoring for
video indexing and retrieval,” in 20th ACM Int. Conf. on In-
formation and Knowledge Management, NY, 2011, pp. 2081–
2084, ACM.

[28] E. Yilmaz, E. Kanoulas, and J. A. Aslam, “A simple and ef-
ficient sampling method for estimating ap and ndcg,” in 31st
ACM SIGIR Int. Conf. on Research and Development in Infor-
mation Retrieval, USA, 2008, pp. 603–610, ACM.

Proc. IEEE Int. Conf. on Image Processing (ICIP 2015), Quebec City, Canada, Sept. 2015.

