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ABSTRACT

In this work we deal with the problem of video concept detection,

for the purpose of using the detection results towards more effective

concept-based video retrieval. In order to handle this task, we pro-

pose using spatio-temporal video slices, called video tomographs,

in the same way that visual keyframes are typically used in tradi-

tional keyframe-based video concept detection schemes. Video to-

mographs capture in a compact way motion patterns that are present

in the video, and are used in this work for training a number of base

detectors. The latter augment the set of keyframe-based base detec-

tors that can be trained on different image representations. Combin-

ing the keyframe-based and tomograph-based detectors, improved

concept detection accuracy can be achieved. The proposed approach

is evaluated on a dataset that is extensive both in terms of video du-

ration and concept variation. The experimental results manifest the

merit of the proposed approach.

Index Terms— video analysis, supervised learning, support

vector machines, video tomograph, concept detection

1. INTRODUCTION

One of the main goals of the image and video processing community

is to develop techniques that would allow the automatic understand-

ing of unconstrained video. In the root of this task lies the fast and

accurate detection of the semantic concepts depicted in the video.

The efficient and effective detection of concepts by looking purely

at the visual content is an important and challenging problem.

In the last years, the research community, partially triggered by

the TRECVID Semantic Indexing task [1], has been shifting its fo-

cus on large-scale video concept detection, i.e. the development of

systems that would be able to handle large amounts of video data

and detect multiple semantic concepts efficiently (e.g. [2], [3]). As a

result, several powerful techniques have emerged, which aim to com-

bine high precision and low computational cost. For example, in or-

der to exploit color information in addition to local image structure,

the Opponent-SIFT and RGB-SIFT (or Color-SIFT) variations of the

well-known SIFT descriptor [4] were proposed in [5]. Furthermore,

in order to reduce computational cost, Speeded Up Robust Features

(SURF) [6] and DAISY [7] were introduced as fast SIFT approx-

imations; interest point detection (traditionally performed with the

help of corner detectors, e.g. the Harris-Laplace one [8]) was fully

or partially replaced in many schemes by dense sampling (i.e. the

sampling of image patches on a regular dense grid); and chi-square

kernels, that were originally considered to be optimal for use in sup-

port vector machines (SVM) [9], [10] are now often replaced by His-

togram Intersection kernels [11] or even Linear SVMs, to name a few

recent developments in this area.

This work was supported by the European Commission under contracts
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Contrary to what is intuitively expected, in most of the devel-

oped schemes that aim to detect multiple concepts in video data,

motion information is ignored and the detection is based exclusively

on a set of characteristic keyframes that are extracted at shot level

(i.e. each video shot is represented by one or more keyframes). This

is explained by the fact that motion descriptor extraction is typically

associated with high computation cost, and the gains in precision

that are attained by introducing motion descriptors in the concept

detection process are often disproportionally low, compared to the

added computational complexity. However, a concept detection al-

gorithm that uses no motion information handles the video stream as

a mere collection of photos (keyframes), failing to take advantage of

the dynamic nature of video that makes it particularly expressive.

In this work we propose the use of video tomographs [12] (i.e.

spatio-temporal slices with one axis in time and one in space) to

represent video motion patterns. These tomographs are straightfor-

wardly extracted, their extraction exhibits extremely low computa-

tion cost, and as we show in this work they can then be analyzed

as if they were regular keyframes. We demonstrate that video to-

mographs, when used along with visual keyframes, enhance video

concept detection while being a computationally efficient solution

towards exploiting information about the temporal evolution of the

video signal.

The rest of the paper is organized as follows. An overview of

the proposed approach is presented in Section 2. The use of visual

tomographs for concept detection is detailed in Section 3. The ex-

perimental results are reported in Section 4 and, finally, conclusions

are drawn in Section 5.

2. OVERVIEW OF THE PROPOSED APPROACH

The pipeline of a typical concept detection system is shown in Fig. 1.

The video stream is initially sampled, for instance by selecting one

or multiple keyframes per shot. Subsequently, each sample is rep-

resented using one or more types of appropriate features (e.g. SIFT

[4], SURF [6]). These features form the input to a number of base

classifiers, which typically rely on vector quantization and support

vector machines. The parameter sets that control the employed clas-

sifiers are predefined (i.e. have been learned at the classifier training

stage), using similar features extracted from training data. Finally,

the base classifier outputs are fused to estimate a final concept de-

tection score. It should be noted that if multiple concepts are to be

detected, this process is executed multiple times, independently for

each of the considered concepts.

In this work we focus on the first component of the analysis

pipeline, i.e. the video sampling, to extract not only keyframes but

also video tomographs. We then show that all other components

of the analysis pipeline that processes the extracted video samples

(both keyframes and tomographs) can follow established state-of-

the-art approaches. More specifically, in our work the employed rep-
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Fig. 1. The pipeline of a typical concept detection system. Initially the video stream is sampled (e.g. keyframes are extracted) using N
different sampling strategies (labeled s1, s2,... sN in the figure). Subsequently, M sets of features are extracted to represent the visual

information samples (labeled r1, r2,...rM in the figure). The set of features are used as inputs to base classifiers that are trained off-line.

Finally, the base classifier outputs are combined and an overall concept detection score is estimated.

resentations are SIFT, RGB-SIFT and Opponent-SIFT, which were

experimentally found in [5] to form the optimal low-level visual de-

scriptor set for video concept detections tasks. These descriptors are

extracted from local image patches. Similarly to the current state

of the art, we use two approaches for selecting these patches. In

the first one the interest points are selected through dense sampling,

while in the second one interest point detection is performed through

a Harris-Laplace corner detector [8]. The extracted low-level de-

scriptors are assigned to visual words using separately two vocab-

ularies, which were created off-line by k-means clustering, through

hard-assignment and soft-assignment, respectively [13]. A pyrami-

dal 3 × 1 decomposition scheme, employing 3 equally-sized hori-

zontal bands of the image [14], is used in all cases, thus generating

3 different Bag-of-Words (BoW) feature vectors from image bands,

while a fourth BoW is built using the entire image. In all cases,

the number of words for each BoW was set to 1000. Thus, for

each combination of video sampling strategy, interest point detec-

tor, descriptor and assignment method a vector of 4000 dimensions

is finally extracted and used as the actual input to the utilized base

classifiers. The latter are linear SVMs, chosen so as to keep low the

required computations time. All classifiers were trained off-line, us-

ing the extensive training data that were made available as part of the

TRECVID 2012 Semantic Indexing task [15].

3. VIDEO TOMOGRAPHS FOR CONCEPT DETECTION

In this section we explain how keyframe-based concept detection

can be improved by augmenting the set of keyframes with a spatio-

temporal type of image, the video tomograph. Video tomographs

were introduced in [12] as spatio-temporal slices and have been used

for optical flow estimation [16], camera motion classification [17]

and video copy detection [18], [19]. A video tomograph is defined

in [12] as a cross-section image (i.e. an image defined by the inter-

section between a plane and the video volume) which is additionally

smoothed using a high-pass filter. The cross-section image is gen-

erated by fixing a 1-D line on the image plane and aggregating the

video content falling on the corresponding line for all frames of the

shot. In this work video tomographs are re-defined in a slightly dif-

ferent and somewhat more general way, and are used in a completely

new way for a different application.

Video tomograph re-definition is based on the fact that the video

volume is not continuous, but is formed by a finite set of frames.

Consequently, tomographs can be defined as a set of line segments,

which are recursively estimated as intersections between lines and

frames. More specifically, if fi is the current frame, vi−1 the line

defining the intersection in the previous frame, Ri the current to-

mograph rotation matrix and Ti the current tomograph translation

vector then the i− th line is estimated as:

vi = fi ∩ (Ri ∗ vi−1 + Ti) (1)

If v0 is the initial line segment and all Ri, Ti are known, then

a tomograph image can be straightforwardly extracted. It should be

noted that this tomograph definition encompasses the definition of

[12]. As a matter of fact, this corresponds to the selection Ri =
I2, Ti = [0 0]T ∀i, where I2 is the two-dimensional identity matrix

and the superscript T denotes the transpose matrix.

Based on the above definition, complex motion patterns can be

projected into meaningful images. For example, a tomograph could

be formed by lines chosen so as to be always perpendicular to the

camera motion direction, thus generating an image that captures

the objects being followed by the camera. While such an approach

would require the characterization of camera motion, several meth-

ods exist for automatically detecting camera motion parameters from

the video (e.g. [20], [21]), and such methods have also been used

directly on the motion vectors encoded in the MPEG stream (e.g.

[22]), thus introducing minimal computational overhead to the over-

all video analysis pipeline.

Putting aside for now the possibility of taking into account cam-

era motion, the two most simple tomograph images are the central-

ized horizontal (CH-tomograph) and the centralized vertical (CV-

tomograph) tomographs. A CH-tomograph is constructed by aggre-

gating for all frames of a shot the visual content of the horizontal line

passing from the frame center (i.e. Ri = I2, Ti = [0 0]T ∀i and v0
is the line y = H/2, where H is the frame height). A CV-tomograph

is constructed in an analogous way, with the only difference being

that v0 is perpendicular to the x-axis, instead of parallel to it.
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Fig. 2. Two tomograph examples, each one corresponding to a different type of tomograph image. The left tomograph is a CH-tomograph,

while the right a CV-tomograph. Both of them are defined by the temporal ordering of lines that pass from the center of the frame. Three

indicative frames of the shot from which each tomograph was generated are also shown to the left of the corresponding tomograph (the

temporal order of the shown frames is from the top to the bottom).

In Fig. 2 a CH-tomograph and a CV-tomograph example are

shown. In the left example the shot shows the national anthem cer-

emony in a sports event. As the camera follows the raising flag, the

CH-tomograph “draws” a flipped version of the scene background.

The flipping artifact is not expected to play an important role in the

following steps of the concept detection algorithm, since most of the

well-known low-level descriptors are orientation invariant. On the

other hand, in the right example the video shot depicts a road junc-

tion. In this case, the camera is moving in the horizontal direction.

The CV-tomograph, which is generated by lines perpendicular to the

camera motion direction, generates a “mosaic-like” image of the ur-

ban scene.

For the purpose of concept detection, the tomographs are pro-

cessed in the same way as keyframes. More specifically, image

patches are estimated, followed by descriptor extraction and vec-

tor quantization. It should be noted that the vocabulary employed at

this stage is constructed by clustering visual words extracted from

the corresponding tomograph type (e.g. a random sample of CV-

tomograph SIFT vectors are clustered in order to generate the vo-

cabulary used for vector quantization of SIFT descriptors extracted

from CV-tomograph images). The resulting Bag-of-Words feature

vectors are the input to tomograph-based base classifiers. These

classifiers are also independently trained for each tomograph type,

using annotated samples taken from tomographs of the correspond-

ing type. Finally, the base classifier output is fused with the output

of the keyframe-based classifiers in a simple averaging scheme that

does not discriminate between outputs of keyframe and tomograph-

based classifiers.

Concerning the computational cost of introducing video tomo-

graphs in the concept detection process, it is straightforward that this

processing time depends on the total number of pixels in each tomo-

graph. Consequently, an estimation of the tomograph size can be

used to compare the computational cost of tomograph-based clas-

sification with the computational cost of keyframe-based classifica-

tion. Keyframe size is constant for a given video and can be adjusted

during the decoding process. On the other hand, tomograph size is

not constant, since it depends not only on frame size and frame ra-

tio (that are typically constant) but also on the current shot duration.

However, a rough estimation of the mean tomograph size is possible,

at least for CH-tomographs and CV-tomographs. As a matter of fact,

if W and H is the frame width and height, r is the frame rate and τs
the duration of shot s then the total number of pixels for keyframe

K, CH-tomograph KH and CV-tomograph KV would be:

#(K) = WH (2)

#(KH) = ⌊rτs⌋W, #(KV ) = ⌊rτs⌋H (3)

where #(.) operator denotes the number of frames and ⌊.⌋ the in-

teger part of a real number. In the extensive TRECVID SIN 2012

dataset, the mean shot duration is 5.1 seconds. If typical values

(r = 25, τs = 5.1, W = 352, H = 288) are replaced in the

above equations then the number of pixels of both CH-tomographs

and CV-tomographs compared to the number of pixels in a keyframe

would be:

(#(KV ) + #(KH))/#(K) ≃ 0.8 (4)

Consequently, the descriptor extraction computational cost

when using a pair of tomographs is similar to the cost of processing

a single keyframe. This cost is minimal compared to typical motion

descriptors, since the extraction of the latter involves processing all

frames of each shot or a large subset of them. Due to this, the extrac-

tion of even computationally efficient spatio-temporal descriptors

(e.g. [23], [24]) is much more computationally demanding.

Finally, it should be noted that the creation of tomographs is

also very fast. Apart from decoding the video stream into frames,

this requires only accessing a small set of image pixels. This set is

determined for each frame by Eq. (1) in O(max{W,H}) cost.

4. EVALUATION AND EXPERIMENTAL RESULTS

To examine the contribution of tomographs towards more accurate

concept detection, we conducted an experimental comparison of a

concept detection scheme that employs only 1 keyframe per shot

and a concept detection scheme that additionally employs 1 CH-

tomograph and 1 CV-tomograph per shot. We selected these two

simple tomographs for our experiments in order to demonstrate that

tomographs can enhance performance even if a non-optimized, sim-

ple tomograph extraction method is followed. Additionally, a third

configuration in which only the aforementioned tomographs are used

was also included in the comparison. In all cases, the scores of the

different base classifiers (regardless of whether these are keyframe-

based classifiers, tomograph-based ones, or a mixture of both types)

were fused at the last stage of the concept detection process simply

by calculating their harmonic mean.

The experimental setup employs the entire video dataset and

concept set that were used in the 2012 TRECVID SIN task. More

specifically, 46 semantic concepts were evaluated. The detection

of these concepts takes place in a video dataset comprising 8263
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Fig. 3. Performance comparison of a concept detection system that uses tomographs plus keyframes versus a system that uses exclusively

keyframes, or exclusively tomographs, in TRECVID 2012 Semantic Indexing dataset. Concept detection accuracy is measured by xinfAP.

videos of almost 200 hours total duration. The whole dataset is off-

line pre-segmented into more than 140 thousand shots. The goal of

each concept detector is to retrieve the top-2000 shots that are most

likely for the concept to be present. The 2000 shots are sorted using

the detectors’ score in descending order and the results are evalu-

ated using partial, manually generated ground-truth annotations. The

employed detection accuracy measure is Extended Inferred Average

Precision (xinfAP) [25], which is a measure approximating Average

Precision, when the ground-truth annotations are not complete. The

employed ground-truth annotations and the xinfAP implementation

are the ones provided by the TRECVID organizers.

The experimental results are shown for each concept in Fig. 3.

Although many of the 46 concepts are not intuitively expected to

be strongly correlated with any type of motion (e.g. “landscape”,

“fields”, “computers”) we can see from this figure that combining

keyframe- and tomograph-based concept detection increases the ac-

curacy for 39 of the 46 concepts. Overall, the performance as mea-

sured by mean xinfAP increases from 0.135 to 0.156, representing

a 15.5% accuracy boost. This together with the standalone perfor-

mance of video tomographs, which is expressed by a mean xinfAP of

0.044, show that although the tomographs are not potential replace-

ments of the keyframes, they provide additional information that the

latter do not capture, thus being a valuable addition to keyframe-

based concept detection approaches.

Furthermore, these results indicate that using tomographs in ad-

dition to one or a few keyframes is beneficial, compared to using a

large number of keyframes for each shot. In [3], a concept detection

scheme similar to our baseline keyframe-based approach was em-

ployed, in two versions differing only in that the first one exploited

only 1 keyframe for each shot, while the second employed 10 addi-

tional keyframes. The accuracy boost achieved by the second version

in relation to the first one was 14.7%, which is comparable to the one

achieved in our work by the introduction of a pair of tomographs, but

the associated computational cost of using an extra 10 keyframes per

shot is higher than the cost of using a pair of tomographs by one or-

der of magnitude.

Finally, it should be noted that the concepts that benefit the most

from the introduction of tomographs are, as expected, the dynamic

concepts, i.e. those that are clearly related with motion. In the em-

ployed concept set we have identified 15 concepts that are either

directly related with actions that involve motion (e.g. “throwing”,

“walking-running”, “bicycling”) or are objects that are very likely

to be filmed while they are in motion (e.g. “skier”, “motorcycle”,

“boat-ship”). In Fig. 3 these concepts are marked with a “*”. If only

these concepts are taken into account, the accuracy boost caused by

introducing tomographs is 56.4% (mean xinfAP rising from 0.074
to 0.116). For the remaining, rather static concepts, the correspond-

ing mean xinfAP boost is limited to 11%. Among the latter concepts,

there are 7 for which the introduction of tomographs results in detec-

tion accuracy reduction (i.e. “landscape”, “stadium”, “apartments”,

“clearing”, “fields”, “lakes”, “man wearing a suit”). The reason for

this is that shots associated with such concepts typically do not ex-

hibit specific motion patterns that could contribute to the detection of

the concept. Consequently, for these concepts the tomograph-based

classifiers primarily introduce noise to the overall detection pipeline.

5. CONCLUSIONS

In this work we examined the use of video tomographs as an addi-

tional sampling strategy for the video concept detection task. Our

experimental results give evidence that the use of video tomographs

can be an efficient and effective way to include motion-related in-

formation in concept detection systems, while it is expected that in-

troducing more sophisticated tomograph selection techniques in the

future could further increase the achieved accuracy.
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