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ABSTRACT

In this paper, a probabilistic approach to combining spatial context
with visual and co-occurrence information for semantic image anal-
ysis is presented. Overall, the examined image is segmented and
subsequently an initial classification of the resulting image regions
to semantic concepts is performed based solely on visual informa-
tion. Then, a Genetic Algorithm (GA) is introduced for deciding on
the optimal semantic image interpretation, realizing image analysis
as a global optimization problem. The fundamental novelty of this
work is that the GA incorporates in its evolutionary procedure a set
of Bayesian Networks (BNs), which probabilistically learn the im-
pact of the available spatial, visual and co-occurrence information
on the final outcome for every possible pair of semantic concepts.
Experimental results on two publicly available datasets demonstrate
the efficiency of the proposed approach.

Index Terms— Spatial context, bayesian network, genetic algo-
rithm, semantic image analysis

1. INTRODUCTION

The widespread use of multimedia capturing devices with high stor-
age capabilities and the continuously growing network access avail-
ability have resulted in an enormous increase of the total amount
of image content that is exchanged among individuals or is made
available over the internet. This has raised the need for techniques
facilitating common image manipulation tasks like indexing, search
and retrieval. Among the solutions that have received particular at-
tention are semantic image analysis approaches [1], targeting the de-
tection and recognition of the real-world objects that are depicted in
an image. Despite the good recognition performance that has been
reported for domain specific applications, this task has proven to be
rather challenging in less constrained environments. The latter is
mainly due to the ambiguity that is inherent in the visual medium.
For overcoming this limitation, the use of context has been proposed.

Spatial context in particular is of increased importance in se-
mantic image analysis. The latter models the spatial configuration
of the objects and facilitates in discriminating between objects that
exhibit similar visual characteristics. In [2], Yuan et al. employ
simple grid-structure graphical models to characterize the spatial de-
pendencies between the objects depicted in the image. Additionally,
a Conditional Random Field (CRF)-based approach is presented in
[3] that incorporates both co-occurrence as well as spatial contextual
information. Wang et al. [4] propose a probabilistic approach for
integrating feature distribution and spatial context models for image
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region annotation. Moreover, individual spatial context techniques
are comparatively evaluated with several different combinations of
classifiers and low-level features in [5]. Although a series of spa-
tial context techniques have already been presented, little work has
been carried out towards the direction of examining under which cir-
cumstances spatial context should be used, i.e. identifying for which
objects spatial context can facilitate their discrimination and subse-
quently adjusting its impact on their detection against the visual and
the objects’ co-occurrence information. Additionally, most of the ex-
isting approaches consider spatial context to have equal importance
for all objects.

In this paper, a probabilistic approach to combining spatial con-
text with visual and co-occurrence information for semantic image
analysis is presented. Initially, the examined image is segmented
and for every pair of regions a corresponding set of fuzzy directional
spatial relations are estimated. Subsequently, an initial association
of the computed image regions with a set of predefined high-level
semantic concepts is performed using only visual features. Then, a
Genetic Algorithm (GA) is introduced for estimating a globally op-
timal region-concept assignment. The fundamental novelty of this
work is that the GA makes use of a set of Bayesian Networks (BNs)
for probabilistically acquiring and utilizing complex contextual in-
formation. The BNs are provided with an appropriate network struc-
ture, which enables them to identify concept pairs for which spatial
context can reinforce their discrimination. Consequently, they prob-
abilistically adjust the weight of spatial context against the visual
and co-occurrence information during the detection of every possi-
ble pair of semantic concepts.

The paper is organized as follows: Section 2 discusses the vi-
sual information processing. Section 3 focuses on the proposed ap-
proach for combining spatial context with visual and co-occurrence
information for semantic image analysis. Experimental results are
presented in Section 4 and conclusions are drawn in Section 5.

2. VISUAL INFORMATION PROCESSING

In order to perform the initial region-concept association, the exam-
ined image has to be segmented to regions and suitable low-level
descriptions have to be extracted for every resulting segment. Under
the proposed approach, the segmentation algorithm of [6] is used and
the created spatial regions, which are likely to represent meaningful
semantic objects, are denoted by sn, n ∈ [1, N ].

For every image segment sn, a corresponding region feature
vector vn is computed as follows: A set of keypoints are estimated
for every region, using a point-of-interest detector as well as a pre-
determined image grid, and a SIFT descriptor vector (with 128 el-
ements) is extracted at each keypoint. Then, following the ‘Bag of
Words’ (BoW) methodology [7] a 300-dimensional feature vector
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vn is created for region sn based on its original SIFT descriptor vec-
tors. In parallel to visual feature extraction, a set of fuzzy directional
spatial relations are estimated for every ordered pair of image re-
gions (sn, sm), n �= m. The set of directional relations utilized in
this work, denoted by R = {rγ , γ ∈ [1,Γ]}, comprises the follow-
ing relations: Above, Right, Below, Left, Below-Right, Below-Left,
Above-Right and Above-Left. Relation rγ estimated for the region
pair (sn, sm) is denoted by rγ(sn, sm) ∈ [0, 1]. A detailed descrip-
tion of their extraction procedure can be found in [8].

Using only the visual features, an initial region-concept asso-
ciation is performed using Support Vector Machines (SVMs). In
particular, an individual SVM is introduced for every defined con-
cept ck, k ∈ [1,K], to detect the corresponding instances, and is
trained under the ‘one-against-all’ approach. Each SVM receives as
input the region feature vector vn and estimates for every segment a
posterior probability hnk ≡ P (ck|vn), which denotes the degree to
which concept ck is assigned to region sn. This probability is cal-
culated as follows: hnk = 1

1+e−η·znk
, where znk is the distance of

the particular input feature vector vn from the corresponding SVM’s
separating hyperplane and η is a slope parameter set experimentally.

3. EXPLOITATION OF CONTEXTUAL INFORMATION

3.1. Genetic Algorithm

GAs have been extensively used in a wide variety of optimization
problems, where they have been shown to outperform other tradi-
tional methods. Building on the authors’ previous work [8], a GA
is employed on top of the initial region-concept association results
for deciding on the optimal semantic image interpretation by treating
image analysis as a global optimization problem.

In this work, the GA employs an initial population of randomly
generated chromosomes. Every chromosome T represents a possi-
ble solution, i.e. each gene assigns one of the defined concepts ck
to an image region sn; this assignment is denoted gnk and there-
fore T = {gnk, n ∈ [1, N ]}. After the population initialization,
new generations are iteratively produced, where each new genera-
tion comes from the current one after the application of evolutionary
operators like selection, crossover and mutation, until the optimal
solution is reached. The GA makes use of an appropriate fitness
function for denoting the plausibility of every possible image inter-
pretation, which has the form:

f(T ) =

∑
n,m V (gnk, gml)

N(N − 1)
, (1)

where V (gnk, gml) ∈ [0, 1] indicates the degree to which the gnk,
gml region-concept mappings are consistent with respect to the ac-
quired contextual and other (e.g. visual) information and N(N − 1)
denotes the number of permutations of the N image regions taken 2
at a time (i.e. the number of ordered region pairs that are present in
the image and which contribute to the summation in the numerator).

The output of the GA is a final region-concept association which
corresponds to the solution with the highest fitness value. The main
issues related to the use of the GA in the presented semantic im-
age analysis framework are: i) the contextual information acquisi-
tion procedure, and ii) the definition of function V (gnk, gml) that
exploits this contextual and other information for evaluating the con-
sistency of the region-concept mappings. In this work, a probabilis-
tic approach is followed for efficiently combining the spatial context
with the visual and co-occurrence information for every possible pair
of concepts, as opposed to the method of [8], where only a global
weight factor is learned for adjusting the impact of the spatial versus
the visual cues on the final outcome.

3.2. Spatial Constraints Acquisition and Evaluation

In order to acquire the appropriate spatial constraints that will facili-
tate towards the discrimination between concepts that exhibit similar
visual characteristics, a statistical learning approach is followed. For
that purpose, a set of manually annotated image content, denoted by
D1

tr and for which the fuzzy directional relations have been com-
puted, is assembled. Then, for every ordered concept pair (ck, cl) the
mean vector rkl and the corresponding covariance matrix cov(rkl),
with respect to relations rγ , are calculated as follows:

rn,m = [r1(sn, sm), r2(sn, sm)...rΓ(sn, sm)]T

rkl = [rkl1 , rkl2 ...rklΓ ]T = E[rn,m]

cov(rkl) = E[(rn,m − rkl)(rn,m − rkl)T ], (2)

where for the calculations the spatial relations rγ(sn, sm) which
have been computed for all region pairs (sn, sm), n �= m, that
are assigned to the concepts (ck, cl), respectively, are taken into ac-
count. The set of values rkl and cov(rkl) obtained for concept pair
(ck, cl) define a spatial constraint, denoted by ukl, which represents
the ‘allowed’ spatial topology of concepts ck and cl.

For evaluating the agreement of a given pair of region to con-
cept mappings (gnk,gml) with spatial constraint ukl, the following
mahalanobis distance-based expression is used:

Yukl(gnk, gml) =
1

1 +
√

pT
n,mcov−1(rkl)pn,m

, (3)

where pn,m = (rn,m − rkl). Yukl(gnk, gml) ∈ [0, 1] denotes
the degree to which the pair of mappings (gnk,gml) is consistent
with the acquired spatial contextual information. Greater values of
Yukl(gnk, gml) indicate more plausible spatial arrangements.

3.3. Combination of Spatial, Visual and Co-occurrence Infor-
mation

BNs constitute an efficient methodology for learning complex prob-
abilistic relationships among a set of random variables [9]. Un-
der the proposed approach, BNs are employed for automatically ad-
justing the impact of the available spatial, visual and concepts’ co-
occurrence information on the detection of each pair of concepts
(ck, cl). Combining this information, a BN estimates the value of
V (gnk, gml) (Eq. (1)), which measures how plausible a given pair
of region to concept mappings (gnk, gml) is. To this end, a series of
K2 BNs are constructed, where an individual BN is introduced for
every possible ordered pair of concepts (ck, cl) to learn the respec-
tive correlations. The general structure of each BN is described in
the sequel. It must be highlighted that in the presented work discrete
space BNs are employed, since they are less prone to under-training
occurrences compared to the continuous space ones [9].

The first step in the development of any BN is the definition of
the random variables that are of interest for the given application.
For the task at hand, the following random variables are defined:

a) variables CAnk and CAml, which correspond to the mappings
gnk and gml, respectively. Variable CAnk denotes the fact of
assigning concept ck to region sn; similarly for CAml.

b) variable SCkl
nm, which indicates the consistency of the aforemen-

tioned mappings with respect to the acquired spatial knowl-
edge (Section 3.2). This variable denotes the value of the
spatial constraint verification factor Yukl(gnk, gml).

c) variables V Ank and V Aml, which represent the visual analysis
results for concepts ck and cl (Section 2), respectively. Vari-
able V Ank denotes the feasibility of the mapping gnk based
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on visual cues, i.e. the value of the estimated posterior prob-
ability hnk; similarly for V Aml.

Subsequently, the space of every introduced random variable, i.e.
the set of possible values that it can receive, needs to be defined. In
particular, for variables CAnk and CAml the set of values that they
can receive is chosen equal to {cank1, cank2} = {caml1, caml2} =
{True, False}, where True denotes the assignment of concepts
ck, cl to regions sn, sm, respectively, and False the opposite.
On the other hand, a discretization step is applied to the values
Yukl(gnk, gml), hnk and hml for defining the spaces of variables
SCkl

nm, V Ank and V Aml, respectively. The aim of the selected
discretization procedure is to compute a close to uniform discrete
distribution for each of the aforementioned variables, which was ex-
perimentally shown to better facilitate the BN inference, compared
to discretization with constant step or other common distributions
like gaussian and poisson.

The discretization is defined as follows: initially, a set of anno-
tated image content, denoted by D2

tr , is formed (similarly to the D1
tr

set described in Section 3.2). Then, for every possible ordered re-
gion pair (sn, sm) in D2

tr , the posterior probabilities hnk, hml and
the verification factor Yukl(gnk, gml) are estimated. Subsequently,
the aforementioned values are grouped, forming sets L1 = {hnk} ≡
{λ1i}, L2 = {hml} ≡ {λ2i} and L3 = {Yukl(gnk, gml)} ≡ {λ3i}
(for 1 ≤ i ≤ I), where I denotes the total number of ordered re-
gion pairs in D2

tr . Then, the elements of the aforementioned sets are
sorted in ascending order, and the resulting sets are denoted by Lj

(j = 1, 2, 3). If Q denotes the number of possible discrete values of
every corresponding random variable, these are defined according to
the following equations:

Bj =

⎧⎨
⎩

bj1 if λjiε[0,Lj(φ))
bjq if λjiε[Lj(φ · (q − 1)),Lj(φ · q)), qε[2, Q− 1]
bjQ if λjiε[Lj(φ · (Q− 1)), 1]

(4)
where φ = � I

Q
�, Lj(o) denotes the oth element of the ascend-

ing sorted set Lj , and bj1, bj2,...bjQ denote the values of variable
Bj (Bj ∈ {V Ank, V Aml, SC

kl
nm}). From the above equations, it

can be seen that although the number of possible values for all ran-
dom variables Bj is equal to Q, the corresponding value ranges with
which they are associated are generally different.

The next step in the development of a BN structure is to define
a Directed Acyclic Graph (DAG), which represents the causality re-
lations among the introduced random variables. For the problem
of concern, the causal DAG Gkl, which is illustrated in Fig 1, is
constructed. The direction of the arcs in the proposed BN structure
defines explicitly the causal relationships / conditional independence
assumptions among the defined variables. In particular, it is consid-
ered that: a) variables V Ank and V Aml are conditionally dependent
only on variables CAnk and CAml, respectively (i.e. the semantic
concept that is present in an image region fully determines the ob-
served visual features), and b) variable CAnk has a causal influence
on CAml both directly (co-occurrence information) as well as transi-
tively through variable SCkl

nm (spatial constraint verification factor).
From the developed casual DAG Gkl and the conditional inde-

pendence assumptions that it represents, the joint probability distri-
bution of the random variables that are included in Gkl, which is
denoted by Pjoint and satisfies the Markov condition [9] with Gkl,
is defined as follows:

Pjoint(cank, caml, vank, vaml, sc
kl
nm) = P1 · P2

P1 = P (cank) · P (caml|cank, sc
kl
nm) · P (scklnm|cank)

P2 = P (vank|cank) · P (vaml|caml) , (5)

CAnk
True
False

CAml
True
False

VAnk (hnk)
vank1...
vankQ

VAml (hml)
vaml1...
vamlQ

SCnm (Yu (gnk,gml))
scnm1

kl

kl

kl

scnmQ

...
kl

Fig. 1. Developed BN structure Gkl.

where cank, caml, vank, vaml, scklnm are the values of the vari-
ables CAnk, CAml, V Ank, V Aml, SCkl

nm, respectively. The pair
(Gkl, Pjoint) constitutes the developed BN. From the above equa-
tions, it can be seen that the proposed BN probabilistically learns
the impact that the spatial, visual and co-occurrence information
should have on the calculation of the degree of plausibility for the
pair of mappings (gnk,gml). More specifically, it is capable of learn-
ing the importance of the visual cues on the assignment of concepts
ck and cl to regions sn and sm, respectively, and in particular it
adds variable significance to every corresponding analysis value (i.e.
values hnk and hml), by calculating the conditional probabilities
P (vank|cank) and P (vaml|caml) in term P2, respectively. Simi-
larly, the developed BN also encodes the complex correlations be-
tween the mappings gnk and gml, by adaptively adjusting the degree
to which spatial-related cues and concept co-occurrence information
are taken into account. The latter is realized by calculating the prob-
abilities P (caml|cank, sc

kl
nm) and P (scklnm|cank) in term P1.

Regarding the training process of the developed BN, the set
of all conditional probabilities among the defined conditionally-
dependent random variables of Gkl (Eq. (5)), are estimated from
the set of annotated image content D2

tr , which was also used for
input variable discretization. At the evaluation stage, the BN re-
ceives as input the visual analysis results (i.e. posterior probabilities
hnk and hml) and the corresponding spatial constraint verification
factor Yukl(gnk, gml). These constitute the so called evidence data
that a BN requires for performing inference. Then, the BN esti-
mates the following posterior probability (degree of belief), making
use of all the pre-computed conditional probabilities and the de-
fined local independencies among the random variables of Gkl:
P (cank = True, caml = True|vank, vaml, sc

kl
nm). This proba-

bility constitutes a quantitative indication of how plausible the pair
of region to concept mappings (gnk, gml) is, based on spatial, visual
and co-occurrence information; the value of V (gnk, gml) in Eq. (1)
is set equal to this probability.

4. EXPERIMENTAL RESULTS

In this section, experimental results from the application of the pro-
posed approach to two publicly available datasets, denoted by D1

and D2, are presented. In particular, the SCEF1 dataset, which is
denoted by D1 (922 images) and was introduced in [5], is used for
experimentation. For this, the following 10 concepts are defined:
Building, Foliage, Mountain, Person, Road, Sailing-boat, Sand, Sea,
Sky and Snow. The aforementioned image set was divided into three
sub-sets, namely D1

tr (230 images), D2
tr (230 images) and Dte (462

images). The first one, D1
tr , was used for training the SVM-based

classification algorithm and acquiring the spatial constraints. D2
tr

was utilized for training the proposed BNs, while Dte was used for
evaluation. Regarding the dataset D2 (591 images), the MSRC2 v2
dataset was utilized. For the latter dataset, the following 21 concepts

1http://mklab.iti.gr/project/scef
2http://research.microsoft.com/en-us/projects/objectclassrecognition/
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are supported: Building, Grass, Tree, Cow, Sheep, Sky, Aeroplane,
Water, Face, Car, Bicycle, Flower, Sign, Bird, Book, Chair, Road,
Cat, Dog, Body and Boat. Moreover, the corresponding sets D1

tr ,
D2

tr and Dte, including 148, 147 and 296 images, respectively, were
also formed.

In Fig. 2, quantitative performance measures from the applica-
tion of the proposed approach to the utilized datasets are presented
in terms of the difference in concept detection accuracy. The latter is
calculated by subtracting the detection accuracy accomplished based
solely on visual features from the corresponding one obtained after
the application of the proposed spatial context exploitation approach.
The initial classification results computed based on visual informa-
tion are depicted in parentheses. It has been considered that for each
region sn, argmaxk(hnk) indicates its concept assignment based
solely on visual features. Accuracy is defined as the percentage of
the image regions that are assigned to the correct semantic concept.
It must be noted that the value of variable Q in Eq. (4), which de-
fines the number of possible values for variables V Ank, V Aml and
SCkl

nm, was set equal to 19 and 24 for the D1 and D2 datasets, re-
spectively; it has been observed that values of Q greater than 10,
i.e. when the selected discretization was not coarse, led to marginal
changes in the overall detection accuracy for both datasets.

From the presented results, it can be seen that the proposed
approach achieves an overall performance improvement of 7.94%
and 5.21% in the D1 and D2 datasets, respectively, compared to
the initial classification results. Additionally, the detection rates
for most of the supported concepts are significantly increased in
both datasets. In particular, it is shown that concepts exhibiting
more well-defined spatial configuration are substantially favored,
such as concepts Building, Person in D1 and Tree, Road in D2.
Concept ck is considered to have well-defined spatial context if the
sum

∑
l tr(cov(r

kl)) receives relatively low values (where tr(.)
denotes the trace of a matrix), i.e. the spatial relations of concept
ck with all other concepts cl of the respective dataset do not present
significant variations in their values. On the other hand, the detec-
tion rate of concepts that present less well-defined spatial context
is also increased (for example concepts Snow, Foliage and Sheep,
Chair in D1 and D2, respectively). For the latter set of concepts,
this performance improvement is mainly due to the incorporation
of the concepts’ co-occurrence information in the developed BNs.
Moreover, it can be seen that significant performance improvement
can be obtained for concepts that present low initial classification
rate (e.g. concepts Road, Sailing-boat and Aeroplane, Car in D1

and D2, respectively). Significant contribution towards this perfor-
mance improvement is induced by the probabilistic approach that is
followed for adjusting the impact that the visual cues should have
on the detection of every supported concept. On the contrary, small
decrease in the detection performance may be observed for a few
concepts that either: a) present significantly increased initial clas-
sification rate (e.g. concept Sky in both datasets), or b) have less
well-defined spatial context and the visual / co-occurrence informa-
tion can not facilitate towards their discrimination (e.g. concepts
Water and Face in D2). These results demonstrate the efficiency
of the proposed approach in improving the region classification
results that have been computed based solely on visual informa-
tion, by probabilistically combining spatial context with visual and
co-occurrence information.

The performance of the proposed approach was also compared
with the spatial context exploitation techniques presented in [5]. In
particular, it was shown that the proposed method outperforms the
methods of [5] by approximately 5% and 3% in the D1 and D2

datasets, respectively, in terms of overall concept detection accuracy.
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Fig. 2. Concept detection results.

This difference in performance is due to the more elaborate approach
followed by the proposed method for probabilistically combining the
available spatial, visual and co-occurrence information, contrary to
the simpler methodologies that the methods of [5] adopt.

5. CONCLUSIONS

In this paper, a probabilistic approach to semantic image analysis,
which combines spatial context with visual and co-occurrence in-
formation, was presented and evaluated on two publicly available
datasets. Future work includes the investigation of additional infor-
mation sources (e.g. scene-level information) and their integration
in the developed framework.
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