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ABSTRACT

This paper proposes the use of feature tracks for the detection of
concepts in video, particularly dynamic concepts. Feature tracks are
defined as sets of local interest points found in different frames of a
video shot that exhibit spatio-temporal and visual continuity, defin-
ing a trajectory in the 2D+Time space. The extraction of feature
tracks and the selection and representation of an appropriate sub-
set of them allow the generation of a Bag-of-Spatiotemporal-Words
model for the shot, which facilitates capturing the dynamics of video
content. The experimental evaluation of the proposed approach high-
lights how the selection of such feature tracks for the definition of
the Bag-of-Spatiotemporal-Words model enhances the results of tra-
ditional keyframe-based concept detection techniques.

Index Terms— Video signal processing, image sequence anal-
ysis, motion analysis, concept detection

1. INTRODUCTION

The development of algorithms for the automatic understanding of
the semantics of multimedia and in particular of video content is cur-
rently one of the major challenges in multimedia research. This is
motivated by the ever-increasing pace at which video content is gen-
erated, rendering any annotation scheme that requires human labor
unrealistically expensive and unpractical for use in the majority of
potential applications.

This work focuses on the detection of high-level concepts in
video, particularly dynamic ones (e.g. action- or motion-related con-
cepts, as opposed to static ones). It builds upon previous work on
local interest point detection and description to propose the extrac-
tion, selection and representation of Feature Tracks. These features
compactly describe the appearance and the long-termmotion of local
regions and are invariant, among others, to camera motion, in con-
trast to both 2D interest point descriptors and their known extensions
to spatio-temporal interest points. The proposed feature tracks are
shown to be suitable for the generation of a Bag-of-Spatiotemporal-
Words (BoSW) model that facilitates concept detection in video.

The rest of the paper is organized as follows: in section 2, pre-
vious work on local interest point detection and description is dis-
cussed. In section 3 feature track extraction and selection are pre-
sented, while the representation of feature tracks using the LIFT de-
scriptor and their use in a Bag-of-Spatiotemporal-Words model are
discussed in section 4. Experimental results are reported in section
5 and finally conclusions are drawn in section 6.

This work was supported by the European Commission under contracts
FP6-045547 VIDI-Video and FP7-248984 GLOCAL.

2. RELATEDWORK

Several approaches to scale-invariant interest point detection and de-
scription in still images have been proposed and are widely used in
still image understanding tasks (image classification, object detec-
tion, etc.) as well as other applications. These include SIFT [1],
SURF [2], and techniques introducing color information to the orig-
inal grey-value SIFT [3]. For the application of high-level feature ex-
traction in generic image collections, the above descriptors are typi-
cally used to build a Bag-of-Words (BoW) model [4], which involves
the definition of a “vocabulary” of visual words and the subsequent
representation of each image as the histogram of the visual words
(i.e. corresponding interest points) found in it.

Large scale video analysis for the purpose of high-level feature
extraction, using local invariant features, is in most cases performed
at the key-frame level [5]. Thus, the video analysis task reduces to
still image analysis. This has obvious advantages in terms of compu-
tational complexity, but on the other hand completely disregards the
temporal dimension of video and the wealth of information that is
embodied in the evolution of the visual signal along time. The latter,
particularly long-term trajectories (e.g. [6]), is generally considered
to be very important for video analysis. For concept detection, sim-
ilarly to other analysis tasks, the use of video data in excess of one
single key-frame (e.g. multiple key-frames per shot [7]) has been
shown to lead to improved results.

In order to introduce temporal information in the interest-point-
based representation of video shots, the use of spatio-temporal (as
opposed to spatial-only) interest point detectors has been proposed
[8]. Spatio-temporal interest points are defined as locations in the
video where intensity values present significant variations both in
space and in time. In [9] and other works, such points are used for
human action categorization, since the abrupt changes in motion that
trigger the detection of spatio-temporal interest points can be useful
in discriminating between different classes of human activity (walk-
ing, jumping, etc.). However, spatio-temporal interest points define
3D volumes in the video data that typically neither account for pos-
sible camera motion nor capture long-term local region trajectories.
To alleviate these drawbacks, the tracking of spatial interest points
across successive frames has been proposed for applications such
as object tracking [10] and visualization of pedestrian traffic flow
in surveillance video [11]. In [12], the problem of object mining
in video is addressed by tracking SIFT features and subsequently
clustering them, to identify differently moving objects within a shot.
In [13, 14] interest points are tracked and either the motion infor-
mation alone [13] or appearance and motion information in separate
BoWmodels [14] are used for action recognition in video. However,
neither one of the previous works on tracking spatial interest points
[10]-[14] uses the outcome of tracking for defining a BoSW model
of the shot, as in the present work.
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3. FEATURE TRACKS

3.1. Feature Track extraction

Let S be a video shot comprising T frames, S = {It}T−1
t=0 . Ap-

plication of interest point detection and description techniques (e.g.
[1, 2, 3]) on any frame It of S results in the extraction of a set of in-
terest point descriptionsΦt = {φm}Mt

m=1, where interest point φm is
defined as φm = [φx

m, φ
y
m, φ

d
m]. φx

m, φy
m denote the coordinates of

the corresponding local region’s centroid on the image grid and φd
m

is the local descriptor vector, e.g. an 128-element SIFT vector. In
this work, the SIFT method was used for interest point detection and
description, due to its well-documented [1, 15] invariance properties.

Having detected and described interest points in all frames of S,
a temporal correspondence between an interest point φm ∈ Φt and
one interest point of the previous frame can be established by local
search in a square spatial window of dimension 2 · σ + 1 of frame
It−1, i.e. by examining if one or more φn ∈ Φt−1 exist that satisfy:

|φx
m − φx

n| ≤ σ, |φy
m − φy

n| ≤ σ, d(φd
m, φ

d
n) ≤ dsim (1)

where d(.,.) is the Euclidean distance. The latter is chosen for con-
sistency with the K-Means clustering used in section 4.2 for assign-
ing the extracted tracks to Words of the BoSW model. If multiple
interest points satisfying Eq. (1) exist, the one for which quantity
d(φd

m, φ
d
n) is minimized is retained. When such an interest point φn

exists, the interest point φm ∈ Φt is appended to the feature track
where the former belongs, while otherwise (as well as when process-
ing the first frame of the shot) the interest point φm is considered to
be the first element of a new feature track.

Repeating the temporal correspondence evaluation for all inter-
est points and all pairs of consecutive frames in S results in the ex-
traction of a set Ψ of feature tracks, Ψ = {ψk}K

k=1, where ψk =
[ψx

k , ψ
y
k , ψ

d
k]. ψd

k is the average descriptor vector of a feature track,
estimated by element-wise averaging of all interest point descriptor
vectors φd

m of the feature track as in [12], while ψx
k is the corre-

sponding time series of camera-motion-compensated interest point
displacement in the x-axis between successive frames of S where
the feature track is present, and similarly ψy

k for the y-axis. Thus,
ξk = [ψx

k , ψ
y
k ] is the long-term trajectory of the interest point that

generates the feature track: ψx
k = [ψ

x,tk1
k , ψ

x,tk1+1
k , ... ψ

x,tk2
k ]

where tk2 > tk1 (and similarly for ψy
k). The values ψ

x,t
k are esti-

mated for any given t by initially using the differences φx
m − φx

n,
φy

m − φy
n for all identified valid pairs of interest points between

frames It, It−1 to form a sparse, non-regular motion field for the cor-
responding pair of frames; subsequently, the 8 parameters of the bi-
linear motion model, representing the camera motion, are estimated
from this field using least-squares estimation and an iterative rejec-
tion scheme, as in [6]. Then ψx,t

k and ψy,t
k are eventually calcu-

lated as the differences between the initial displacement of the cor-
responding interest point’s centroid between times t − 1 and t, and
the estimated camera motion at the location of the centroid.

The objective of estimating the camera motion in the above pro-
cess is to ensure that the extracted feature tracks are invariant to cam-
era motion. The latter (i.e. camera motion) may also be an important
cue, but should probably be described separately for the entire shot;
if it was encoded in every feature track, not only would there be du-
plication of information, we would also be unable to differentiate
between object and camera motion in the feature tracks’ description.

3.2. Feature Track selection

The described feature track extraction process typically results in
the extraction of a large number of feature tracks (e.g. in the order
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Fig. 1. Example of the distribution of feature tracks extracted for a
shot according to their temporal duration.

of tens of thousands) for every shot. These exhibit significant dif-
ferences in their temporal duration, with the track length tk2 − tk1

ranging from 0 to T − 1, T being the number of frames in the shot
(Fig. 1). Besides the practical problems associated with storing and
using such a large number of descriptors for every shot, the possible
presence of noisy or otherwise erroneous tracks among those orig-
inally extracted may adversely affect concept detection. Therefore,
selecting a suitable subset of these feature tracks is proposed.

One possible criterion for selecting a subset of feature tracks is
their repeatability under variations (e.g. perspective, scale, and illu-
mination variations). Repeatability is among the main requirements
for any descriptor. In this work, it is proposed that the repeatability
of a track is approximated by examining the temporal duration of it.
More specifically, let us assume that R denotes the real-world scene
that is depicted in shot S. Under constant illumination conditions
and assuming no local (object) motion, the result of capturing scene
R with an ideal static camera would be an ideal image Ir . Then,
every image It ∈ S can be seen as a different noisy observation of
Ir , affected by image acquisition noise and possible global and lo-
cal motion as well as perspective, scale, and illumination variations.
Similarly, every interest point in image It that is part of an extracted
feature track ψk can be perceived as the (successful) result of de-
tecting the corresponding ideal interest point of Ir under the specific
variations affecting image It. Consequently, the probability of a spe-
cific feature track being present in one frame of S can be used as a
measure of the repeatability of the interest point that defines this fea-
ture track, thus also as a measure of the relevant repeatability of the
feature track itself in comparison to other feature tracks of the shot.

Following this discussion, in this work the probability of a spe-
cific feature track being present in one frame of S is calculated as
the number of frames in which the track extends, divided by the total
number of frames of the shot,

p(ψk) =
tk2 − tk1

T − 1
, (2)

and is used as a measure of the feature track’s repeatability. Conse-
quently, the feature tracks of set Ψ generated for shot S are ordered
according to p(ψk) (equivalently, in practice, according to tk2−tk1)
in descending order and the N first tracks are selected for generat-
ing the BoSW model of the shot. This track selection strategy is
evaluated against two others in the experimental results section.

It should be emphasized that repeatability is just one possible
criterion for selecting feature tracks, and the most repeatable features
are not necessarily the most informative ones as well; thus, jointly
considering repeatability and additional criteria may be beneficial.
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Fig. 2. Filter bank used for capturing motion at different time-scales.

4. BAG-OF-SPATIOTEMPORAL-WORDS

4.1. Feature Track representation

The selected feature tracks are variable-length feature vectors, since
the number of elements comprising ψx

k and ψ
y
k is proportional to the

number of frames that the feature was successfully tracked in. This
fact, together with other possible track artefacts (e.g. the extraction
of partial tracks, due to failure in interest point matching between
consecutive frames, occlusions etc.) make the matching of feature
tracks non-trivial and render their current representation unsuitable
for direct use in a BoW-type approach. To this end, each motion
trajectory is transformed to a fixed-length descriptor vector that at-
tempts to capture the most important characteristics of the motion.

To capture motion at different time-scales, ψx
k and ψ

y
k are ini-

tially subject to low-pass filtering using a filter bank shown in Fig.
2, based on the lowpass Haar filter H(z) = 1

2
(1 + z−1). This re-

sults in the generation of a family of trajectories, ξk,q = [ψx
k,q, ψ

y
k,q],

q = 0, ..., Q− 1, as shown in Fig. 2, which due to the simplicity of
the Haar filter are conveniently calculated as follows:

ψx
k,q = [ψ

x,tk1+2q−1
k,q , ψ

x,tk1+2q

k,q , ... ψ
x,tk2
k,q ] (3)

ψx,t
k,q =

1

2q

2q−1∑
i=0

ψx,t−i
k (4)

The y-axis elements of the trajectory are calculated similarly.
For any trajectory ξk,q , the histogram of motion directions at

granularity level θ is defined as a histogram of π
θ
bins: [0, θ), [θ, 2 ·

θ),..., [π− θ, π). When π ≤ θ < 2 ·π, θ′ = θ−π is used instead of
θ for assigning the corresponding elementary motion to the appro-
priate bin of the histogram. The value of each bin is defined as the
number of elementary motions [ψx,t

k,q, ψ
y,t
k,q] of the trajectory that fall

into it, normalized by division with the overall number of such ele-
mentary motions that belong to the examined trajectory. λ(ξk,q, θ) is
defined as the vector of all bin values for a given ξk,q and a constant
θ.

Then, the initial trajectory ξk can be represented across different
time-scales as a fixed length vector μk,

μk =

[
λ(ξk,0,

π

2
), λ(ξk,1,

π

2
), ... λ(ξk,Q−1,

π

2
)

λ(ξk,0,
π

4
), λ(ξk,1,

π

4
), ... λ(ξk,Q−1,

π

4
), ...

λ(ξk,0,
π

2J
), λ(ξk,1,

π

2J
), ... λ(ξk,Q−1,

π

2J
)

]
(5)

and the corresponding Local Invariant Feature Track (LIFT) descrip-
tor is defined as

LIFT (ψk) = [ψd
k, μk] (6)

This descriptor is invariant to scale and camera motion, but not to
the orientation of local motion, since the latter is considered to be an
important cue for dynamic concept detection.

4.2. Shot representation

The LIFT descriptors of the feature tracks extracted and selected ac-
cording to the processes of section 3 for a video shot can be used
for generating a Bag-of-Spatiotemporal-Words (BoSW) model. This
will essentially describe the shot in terms of classes of “similarly-
moving, visually-similar local regions”, rather that simply “visually-
similar local regions” (detected by either spatial or spatio-temporal
interest point detectors), as in the current state-of-the-art, e.g. [7, 9].
The BoSW model is expected to allow for the improved detection of
dynamic concepts in video, in contrast to the traditional keyframe-
based BoW that by definition targets the detection of static concepts.
Furthermore, since the shot features used in the BoW and BoSW
models are different and, to some degree, complementary, it is ex-
pected that combining the two models can result in further improve-
ment of the detection rates for both dynamic and static concepts.

For the generation of the BoSW model, the typical process of
generating BoW descriptions from any set of local descriptors is fol-
lowed. Thus, K-Means clustering using a fixed number of clusters
is performed on a large collection of LIFT descriptors for initially
identifying a set of Words (i.e. the centroids of the clusters). Hard-
or soft-assignment of each one of the LIFTs of a given shot to these
words can then be performed for estimating the histogram that repre-
sents a given shot on the basis of the defined spatio-temporal words.

5. EXPERIMENTAL RESULTS

In the experimental evaluation of the proposed techniques, the
TRECVID 2007 training and test datasets were employed (compris-
ing 50 hours of video each, and 18120 and 18142 shots respectively)
together with the 20 concepts that were defined on this dataset for the
TRECVID 2009 contest1. In extracting the feature tracks, parameter
σ defining the local window where correspondences between SIFT
descriptors are evaluated was set to 20, and parameter dsim used
for evaluating the similarity of SIFT descriptors in different frames
was set to 40000. Using four different timescales (Q = 4) and
three granularity levels θ (i.e. J = 3 in Eq. (5)) for representing the
trajectory information of the extracted feature tracks resulted in the
LIFT descriptor of each feature track being a 184-element vector.

A first series of experiments was carried out to evaluate the ap-
propriate number of feature tracks that should be used for represent-
ing each shot, given the above feature track extraction and represen-
tation parameter choices. A BoSWmodel using hard assignment and
500 words was used to this end, together with standard Support Vec-
tor Machine classifiers. It should be noted that this is only a baseline
configuration; it is used for efficiently evaluating certain character-
istics of the proposed BoSW, and is neither optimal not in par with
SoA works such as [7], where 4000 words, soft assignment, multi-
ple color SIFT variants, and additional techniques such as pyramidal
decomposition are combined, increasing the dimension of the vector
representing each shot from 500 (as in our baseline configuration) to
about 100000. The results (average precision@2000 [5]) are shown
in Fig. 3(a), where it can be seen that using 2500 feature tracks per
shot leads to the best results overall.

A second series of experiments was carried out to evaluate
the soundness of the feature track selection process of section 3.2.
Specifically, the selection of the 2500 tracks with the highest prob-
ability p(ψk), as proposed in section 3.2 (denoted as selection
criterion “BB” in the sequel) was compared with a) the selection of
the 2500 tracks with the highest probability p(ψk) after removing

1http://www-nlpir.nist.gov/projects/trecvid/
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from setΨ those feature tracks used by selection criterion “BB” (de-
noted as “SB” in the sequel), and b) the random selection of 2500
feature tracks from set Ψ (selection criterion “RR”). The LIFT de-
scriptor was used in all the above cases for representing the selected
tracks and for forming a 500-word BoSW model. Experimentation
with the 500-word keyframe-based BoW model that uses SIFT de-
scriptors was also carried out, for comparing BoSW and BoW when
used in isolation. The results (Fig. 3(b)) show that selection criterion
“BB” significantly outperforms criteria “SB” and “RR”. The BoSW
model using selection criterion “BB” by itself performs comparably
to the keyframe-based BoW model overall, but considerably better
when considering only dynamic concepts.

In a third series of experiments, the merit of combining the
BoSW and BoW models was evaluated. The combination of the
two was performed by concatenating the shot descriptions produced
by each of them, similarly to how different BoW models based on
different color SIFT variants are combined in [7]. In Table 1, BoW
and the combination of BoW and BoSW (using selection criterion
“BB”) are compared using a) the baseline configuration used in the
previous experiments: 500 words and hard assignment, and b) 500
words, soft assignment, a spatial pyramid of 2 levels for BoW and,
in a similar fashion, a temporal pyramid for BoSW. Additionally, in
the latter case 5 granularity levels θ (i.e. J = 5 in Eq. (5)), instead of
3, are used. The results of Table 1 document the contribution of the
proposed BoSW model to improved performance when combined
with the BoW model, compared to the latter alone, as well as the
applicability of techniques such as soft assignment and pyramidal
decomposition (particularly temporal pyramids) to BoSW.
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Fig. 3. Evaluation of a) the impact of the number of feature tracks
used for representing each shot, and b) the impact of different shot
representation techniques, on concept detection performance.

Table 1. Comparison between BoW, combination of BoW and
BoSW (average precision@2000 for all 20 / 6 dynamic concepts).

BoW BoW+BoSW(BB)
considered concepts: 20 6 20 6
500 words, hard assign. 0.054 0.041 0.068 0.056
500 words, soft assign.,
pyramidal decomp.

0.084 0.088 0.102 0.113

6. CONCLUSIONS

In this work the use of feature tracks was proposed for jointly captur-
ing the spatial attributes and the long-term motion of local regions

in video, and in particular techniques for the extraction, selection,
representation and use of feature tracks for constructing a Bag-of-
Spatiotemporal-Words model for the video shots were presented.
Experimental evaluation of the proposed approach on the corpus of
TRECVID 2007 revealed its potential for concept detection in video,
particularly when considering dynamic rather than static concepts.
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