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ABSTRACT

This paper describes a method to temporally align photo
collections that have been created during the same event by
different users using their own unsynchronized digital photo
capture devices. Using multiple similarity measures, we
identify pairs of similar photos from different collections. We
then temporally align the photo collections by traversing a
graph, whose nodes represent the collections, and edges rep-
resent the similar photo pairs between collections. Outcome
of this process is a set of modified timestamps for the pho-
tos, which could be used in applications such as time-based
clustering and sub-event detection in multi-user photo col-
lections. We evaluate the proposed synchronization method
on benchmark datasets and we compare it to state-of-the-art
methods, demonstrating its superiority.

Categories and Subject Descriptors

I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing

Keywords

Temporal synchronization; photo collection; weighted graph

1. INTRODUCTION
People attending large-scale social events collect dozens of

photos and video clips with their smartphones, tablets and
cameras, to be later exchanged and shared in a number of
different ways. The metadata that is automatically attached
to these media items at capture time, such as timestamps
and geo-coordinates, constitute valuable information for the
consumption of the visual content in social networking ap-
plications, e.g. for generating multi-user timelines and sum-
maries of the captured events, and other similar applications
related to social sharing and digital memory preservation.
However, the timestamps in particular, despite being among
the most valuable information, are not necessarily directly
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comparable between media items captured by different de-
vices of different users. Time offsets are introduced by user
neglect and time-measurement differences across the world
(e.g. does everyone bother to introduce summer/winter time
changes twice a year, or time-zone changes during every
trip, to his digital camera?), or also differences in the way
that different classes of photo capture devices handle time
(e.g. some mobile phones, depending on their settings, auto-
matically get up-to-date time information from the network
provider; other phones are set to not use such network in-
formation, and traditional digital cameras typically do not
offer such an option). Being able to remove this noise, i.e.
accurately aligning photo collections of different users for the
same event in chronological order, is important for making
time information directly usable in applications.

The alignment and presentation of the photo collections of
different users in a consistent way, so as to preserve the tem-
poral evolution of the event, is not straightforward. Besides
the capture time information attached to some of the media
being possibly wrong (due to the different photo capturing
devices not being synchronized, as explained), geolocation
information may also be missing, since not all photo capture
devices can or are set to record GPS metadata. Further-
more, photos belonging to the same or other events, despite
being semantically similar, may be visually dissimilar; and
vice versa. For example, different and temporally distant
sub-events may take place in the same setting, resulting in
very similar photos being captured.

In this paper we propose a synchronization method for
multi-user photo collections that are captured during a sin-
gle, often large, event and we introduce two novelties: 1)
the combination of multiple features and similarity mea-
sures to identify very similar photos, 2) the employment of a
weighted graph-based method that, based on the identified
pairs of similar photos, is able to synchronize multiple photo
collections even when each individual collection exhibits low
coverage of the overall event.

The rest of the paper is organized as follows: Section
2 reviews related work. Section 3 describes our proposed
method for the temporal synchronization of photo collec-
tions. In Section 4 we experimentally evaluate different de-
sign choices of our method and compare it to the most recent
related works. Finally, we draw conclusions in Section 5.

2. RELATED WORK
The problem of temporally synchronizing multi-user photo

collections is typically addressed at two stages: At the first
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stage features are extracted from the photos in order to dis-
cover similar photos across different collections. At the sec-
ond stage, assuming that a sufficient number of similar photo
pairs has been identified, an estimation of the temporal off-
sets between different collections is generated.

The first works identifying and attempting to address the
problem of synchronizing photos that carry potentially erro-
neous timestamps are [4] and [20]. In [4], the authors present
a content-based synchronization algorithm that extracts fea-
tures from the photos using a Color and Edge Directivity
descriptor [5] and the SURF descriptor [3]. The difference
in the capture times of similar photos (belonging to different
collections) is treated as a possible temporal offset between
the collections. The temporal offset estimation among mul-
tiple collections is calculated by selecting the most frequent
value from a histogram of temporal offsets for each collec-
tion, and averaging the offsets at a window of one minute
around the selected frequent value. In [20], the authors ex-
tract color histograms, GIST [13] and Locality-constrained
Linear Coding descriptors [19] to describe photos and find
similar photo pairs between collections. They employ a
sparse bipartite graph to find the informative photo pairs
and a max linkage selection competing procedure to prune
the false pairs. However, the bipartite graph construction
they propose involves solving a series of optimization prob-
lems, whose number is proportional to the number of images
in every possible photo collection pair, making the overall
method computationally expensive. Photo datasets from
the Picasa Web album are used for evaluation; nevertheless,
only the percentage of aligned galleries is assessed, without
considering the accuracy of the synchronization.

In [10], a method is proposed to construct a collective
storyline of media found in the social web. The authors
focus on segmenting each image in foreground objects and
background, so as to assess photo similarity by detecting
any instances of the same objects, possibly appearing in dif-
ferent areas of photos with different poses. A user-defined
parameter K denotes the number of foreground areas to split
each photo to, using a Multiple Foreground Cosegmentation
algorithm [9]. They extract color histograms and SIFT lo-
cal descriptors [11] using dense sampling on the foreground
areas. Building a nearest neighbour similarity graph that
connects the photo collections to be aligned, they formulate
the alignment of the photo collections as an energy mini-
mization problem. Belief propagation on the graph is uti-
lized to solve the problem and achieve temporal alignment.
They compare their method to three baseline methods, on a
Flickr outdoor recreational activity dataset, demonstrating
good alignment. Nevertheless, real-world photo collections
are not always centred on objects that can be easily seg-
mented, e.g. photos of a music festival may contain several
faces from the audience as well as the musicians faces along
with a complex background. This, together with the known
imperfection of any segmentation algorithm and the absence
of a single segmentation algorithm that can effectively be ap-
plied to any kind of photos without parameter tuning (e.g.
K) make the method of [10] difficult to automatically apply
to any possible photo synchronization scenario.

Several recent works that study the synchronization prob-
lem on generic multi-user photo collections have been pro-
posed and evaluated in relation to the MediaEval 2014 SEM
benchmarking activity [6]. For example, various different
features were used in [21, 1, 12, 16] for photo similarity

assessment. Specifically, in [21], the MPEG-7 Color Struc-
ture Descriptor and a Joint Composite Descriptor are used.
In [1, 12] the SIFT local descriptor is used, while in [16]
the SURF local descriptor and HSV color histograms are
used. Furthermore, different methods are used for estimat-
ing the temporal offsets between collections on the basis of
photo similarity assessment results. An Agglomerative Hi-
erarchical Clustering method is proposed in [21] that uses
the lowest-level clusters as links between different collec-
tions and the highest-level clusters as sub-events. In [1],
the authors select the most similar photos between different
collections and employ a graph of photo similarities to find
paths between each collection and the reference one. In [12],
temporal offsets are expressed as a non-homogeneous linear
equation system and an approximate solution is calculated.
In [16], the authors build a probabilistic graphical model
in which each temporal displacement is identified by a set
of nearest-neighbour photo pairs across photo collections.
They estimate the temporal offsets among photo collections
through exact inference.

Looking a bit beyond still images, there are methods in the
literature that deal with the temporal synchronization of au-
dio information. In [8], two graph-based approaches for syn-
chronizing multiple audio signals are presented. The graphs
are constructed atop the over-determined system resulting
from pairwise signal comparison using cross-correlation of
audio features. In [7], an approach for the temporal align-
ment and management of shared audiovisual streams is pre-
sented that is based on audio-visual bimodal segmentation.
Although such methods cannot deal with photo collection
synchronization, they show that temporal synchronization
of multi-user media is useful in practice.

Finally, it is worth noting that temporal synchronization
of multi-user photo collections and their presentation in a
single timeline is an important step prior to any kind of
multi-user collection summarization [20, 17] and event clus-
tering [18, 14, 15].

3. PROPOSED METHOD

3.1 Method Overview
Figure 1 shows the overview of the proposed method for

photo collection temporal synchronization. Initially, similar
photos between different collections are identified. We assess
photo similarity combining multiple visual similarity mea-
sures and also taking into account the geolocation metadata
of photos, when available, as discussed in detail in Section
3.2. Then, very similar photos from different collections are
considered as links between the photo collections. Subse-
quently, we construct a graph, whose nodes represent collec-
tions and whose edges represent the discovered links between
them. Finally, temporal synchronization of the collections is
achieved by appropriately traversing the collections’ graph,
as explained in Section 3.3.

3.2 Photo Similarity Assessment
To identify similar photos of different collections, we com-

bine the information of four similarity measures.
1) Geometric Consistency of Local Features Simi-

larity (GC): We encode the SIFT descriptors [11] extracted
from each photo, using VLAD encoding [2]. The nearest
neighbours of each photo’s VLAD representation are refined
by checking the geometrical consistency of SIFT keypoints
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Figure 1: Proposed method overview.

for each pair of photos using geometric coding [22]. Out-
put of this process is the WGC matrix, which holds the GC
similarity score of each possible pair of n given photos.

2) Scene Similarity (S): We extract the GIST descrip-
tor [13] from each photo. A DS matrix holds the pairwise
Cosine distance of the photos’ GIST descriptors. We con-
vert the distance matrix DS to the similarity matrix WS as
WS(i, j) = exp(−DS(i, j)),∀i, j ∈ [1 . . . n].

3) Color Allocation Similarity (CA): We split each
photo to three equal-height strips, extracting an 48-bin HSV
histogram from each strip. We compute the Cosine distance
between the concatenated HSV histogram vectors for each
pair of photos, constructing a distance matrix DCA. We
convert the distance matrix DCA to the similarity matrix
WCA as WCA(i, j) = exp(−DCA(i, j)),∀i, j ∈ [1 . . . n].

4) Physical Location Similarity (PL): We construct
a WPL matrix that holds the distances of capture locations
for all pairs of photos with geolocation information avail-
able. For a pair of photos where geolocation information
is not available, we set the respective value in WPL to a
negative value so that PL similarity will not be taken into
consideration for the specific pair of photos.

We calculate the aforementioned similarity measures on
the union of photos of all collections to be synchronized.
After calculating theWGC , WS, WCA, andWPL matrices we
combine them into a single similarity matrix W ′, using the
following procedure: for each (i, j) pair of photos, W (i, j) is
initially assigned the value of WGC(i, j). If scene similarity
(WS(i, j) value) is significant (above a tS threshold) and
greater than the current value of W (i, j), then W (i, j) is
updated with the WS(i, j) value. The same is subsequently
repeated using color allocation similarity (WCA(i, j) and a
tc threshold). The thresholds used in our experiments are
discussed in Section 4.

In order to subsequently combine photo capture location
distances and visual similarity we do the following: we con-
struct the histogram of all photo’s pairwise capture location
distances. We estimate a Gaussian mixture model of two
Gaussian distributions on this histogram. The Gaussian dis-
tribution with the lowest mean (m1) presumably signifies
photos captured in the same sub-event while the Gaussian
distribution with the highest mean (m2) presumably corre-
sponds to photos captured in different sub-events. Based
on this hypothesis, we weigh each visual similarity value
(W (i, j)∀i, j ∈ [1 . . . n]), so that the total similarity of photos
with distance of capture locations lower than m1 will be em-

phasized, while the total similarity of photos with distance
of capture locations significantly above m1 will be zeroed.
To weight the matrix of the visual similarity of photos, W ,
with the distance of photos capture locations we compute:

W ′(i, j) = W (i, j) · a · exp
(

− WPL(i,j)2

2m12

)

,∀i, j ∈ [1 . . . n] for

a = 1.1. The a parameter is a factor by which the similarity
of photos that exhibit geolocation proximity is increased.

The whole procedure of photo similarity assessment is de-
scribed in Algorithm 1. The output of this algorithm, the
W ′ matrix, holds the similarity for all pairs of photos, com-
bining the information of all the aforementioned similarity
measures. Each value of the W ′ matrix for photos i and j
where i and j do not belong to the same user collection and
W ′(i, j) > t, is treated as a potential link between photo
collections. The t parameter is calculated for each pair of
collections, by finding the maximum value in the interval
[0.8, . . . , 0.7] with step tstep = −0.01, that allows the dis-
covery of at least three potential links. It should be stressed
here that the above procedure does not guarantee that three
(or even one) potential links will be found for every collec-
tion pair.

Algorithm 1 Similarity Matrices Combination

Input: WGC , WS, WCA, WPL, n, tS, tc, a, m1
Output: W ′

for i← 1 to n do
for j ← i+ 1 to n do

W (i, j)← WGC(i, j)
if WS(i, j) > tS then

if WS(i, j) > W (i, j) then
W (i, j)←WS(i, j)

end if
end if
if WCA(i, j) > tc then

if WCA(i, j) > W (i, j) then
W (i, j)←WCA(i, j)

end if
end if
W ′(i, j)←W (i, j)
if WPL(i, j) ≥ 0 then

W ′(i, j)←W ′(i, j) · a · exp
(

− WPL(i,j)2

2m12

)

end if
end for

end for
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3.3 Graph-based temporal offset estimation
Having identified potential links for at least some col-

lection pairs, it is relatively straightforward to construct a
weighted graph, whose nodes represent the collections, and
its edges represent the links between collections. The weight
assigned to each edge is calculated as the sum of similari-
ties of the photos linking the two collections. Using this
graph, the temporal offsets of each collection will be com-
puted against a user collection which is considered as the
reference. Any collection can be used as reference, since we
are aiming for relative synchronization; we neither assume
nor need one collection to accurately match the true time.

Figure 2 shows the graph constructed for one of the test
datasets used in this work. The first collection of this dataset
is arbitrarily chosen as the reference collection in this exam-
ple, and the corresponding node C1 is shown as a yellow
circle. Nodes corresponding to collections that have direct
links to the reference collection, identified using the proce-
dure of Section 3.2, are depicted as blue rectangles. All
other nodes of the graph are depicted as white rectangles.
As can be seen from this example, attempting to directly
compute the pairwise offsets between the reference collec-
tion and each other collection would not work, since only
a portion of the collections is directly connected with the
reference collection (and this would be the case regardless of
which collection was chosen as the reference one, since the
graph of Fig. 2 is a sparse graph). Instead, we must find a
way to properly traverse the graph in order to estimate an
offset for each collection.

Figure 2: Graph representation of a test dataset.

Given a connected, undirected graph, a spanning tree of
that graph is a subgraph that is a tree and connects all the
vertices. A single graph can have many different spanning
trees. Assuming that the edge weights represent how un-
favorable each edge is, a minimum spanning tree (MST) is
defined as a spanning tree with weight less than or equal to
the weight of every other spanning tree. An MST ensures
the traversal of all nodes with minimum effort. In our case,
the edge weights represent how favorable each edge is (the
higher the better); thus the MST leads to the traversal of
the graph along the edges with the highest weights.

We can compute the temporal offset of each collection by
traversing the MST of the collections graph as follows: Start-
ing from the node corresponding to the reference collection,
we select the edge with the highest weight. We compute the

temporal offset of the node on the other end of this edge
as the median of the capture time differences of the pairs
of similar photos that this edge represents. We use the me-
dian of capture time differences as a measure which is less
sensitive to extreme offset values of erroneous photo pairs.
We add this node to the set of visited nodes. The selection
of the edge with the highest weight is repeated, considering
any member of the set of visited nodes as possible starting
point, and the corresponding temporal offset is again com-
puted, until all nodes are visited. We denote this graph
traversal method as MST-Med in the sequel.

The MST contains the minimum effort path from the ref-
erence collection to any other collection. As an alternative
way of traversing the graph, we can average the offsets from
all possible paths from the reference collection to any col-
lection. We can follow the aforementioned procedure, ad-
ditionally checking if there are connected nodes in the set
of visited nodes every time a node is considered and aver-
age the offset computed from the MST path and all other
discovered paths. Having computed the offset of all collec-
tions, we are able to estimate the aligned timestamps for all
photos and finally sort the photos of the entire collection by
capture time. We denote this traversal method as MST-Av.

Figure 3 shows the two above graph traversal methods
on a toy graph. Assuming the C1 node is the node corre-
sponding to the reference collection, the MST-Med method
traverses the graph following the path C1→ C3, C1→ C2,
C3 → C4 while the MST-Av method traverses the graph
following the path C1 → C3, {C1, C3} → C2, C3 → C4.
Thus, using the MST-Av method, the C2 collection offset
is computed as the average of the C1 → C2 and C3 → C2
offsets.

(a) (b)

Figure 3: Toy example of graph traversal methods
(a) MST-Med and (b) MST-Av.

4. EXPERIMENTS AND RESULTS

4.1 Datasets and Evaluation Framework
For experimentally evaluating the proposed methods we

use the MediaEval 2014 SEM task datasets [6], consisting of
photos from various users taken during two Olympic Games
events. All photos are organized in collections (each collec-
tion captured using a single device) and come with times-
tamps, which are consistent within each collection but may
have considerable temporal offsets across different collec-
tions. Furthermore, some collections include geolocation in-
formation, while others do not. The photos are organized
in one training dataset and two test datasets. We strictly
followed the experimental setup and evaluation procedure of
the MediaEval 2014 SEM task, making our results directly
comparable to the results of the task participants.
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The training dataset includes a subset of photos down-
loaded from Flickr, depicting different phases of the London
Olympic Games of 2012. It totals 304 photos arranged into
10 collections, each collection containing a variable number
of photos. The first test dataset, the Vancouver dataset is
about the Vancouver Winter Olympics Games, consisting of
1351 photos arranged in 35 collections, while the second, the
London dataset, is an extension of the training dataset, with
a richer variety of competitions, consisting of 2124 photos
arranged in 37 collections. As part of the adopted experi-
mental setup, in all datasets the first collection is considered
as the reference one. Based on preliminary experiments on
the training dataset we empirically set the parameters of
the proposed method; specifically, we set the scene similar-
ity significance threshold ts = 0.90, and the color allocation
similarity significance threshold tc = 0.85.

The evaluation measures we used, as defined in [6], are:
1) Precision (P ) is the ratio between the number of syn-
chronised collections (M), and the total number of collec-
tions (N −1, excluding the reference collection) in a testset.
A collection is considered to be synchronized if the differ-
ence between the estimated timestamps of each of its photos
and the corresponding ground truth is lower than a maxi-
mum accepted temporal offset (maxError). The value of
maxError is estimated as in [6], equalling to 1800 seconds.
The Precision measure is defined as: P = M/(N − 1). 2)
Accuracy (A) is the average temporal offset calculated over
the synchronized collections, normalized with respect to the
maximum accepted temporal offset (maxError). The syn-
chronization error for a collection i with respect to the refer-
ence collection r is defined as ∆Eir = |∆Tir −∆T ∗

ir|, where
∆T ∗

ir is the offset between collection i and collection r cal-
culated on the ground truth. Thus, the Accuracy measure
is defined as: A = 1− (

∑M

i=1 ∆Eir)/(M ·maxError)
3) Harmonic mean (H). We combine the aforemen-

tioned measures using: H = (2 · P ·A)/(P +A).

4.2 Comparison of similarity measures
We conducted tests using each one of the GC, S, CA sim-

ilarity measures together with PL similarity, discussed in
Section 3.2, against using the proposed combination of all
similarity measures to discover links between different user
collections. PL similarity cannot be used alone, since the
fact that two photos were taken in the same or close-by lo-
cation does not suffice for reliably discovering links between
photo collections (e.g. during an Olympic Games event, sev-
eral competitions take place in the same stadium). For syn-
chronization in this set of experiments we used the first of
the two graph traversal algorithms of Section 3.3.

The results are shown in Table 1. The first three columns
show the evaluation results on the Vancouver dataset and
the last three on the London dataset. We can see from these
results that, for instance, the CA+PL similarity measure
combination scored H = 0.865 for the Vancouver dataset,
while scoring only H = 0.257 for the London dataset, in-
dicating that using a single visual similarity measure does
not suffice for performing temporal synchronization across
significantly different datasets.

4.3 Comparison of graph traversal methods
We continued with experimentally comparing the two graph

traversal algorithms of Section 3.3. For this set of experi-
ments we used the combination of all photo similarity mea-

Table 1: Results of the proposed method using dif-
ferent combinations of photo similarity measures

Vancouver London
Features P A H P A H

GC+PL 0.235 0.776 0.361 0.167 0.694 0.269
S+PL 0.206 0.527 0.296 0.250 0.513 0.340
CA+PL 0.912 0.622 0.865 0.167 0.559 0.257

All 0.971 0.860 0.912 0.639 0.750 0.690

sures, which was shown in the previous section to be bene-
ficial. The results are shown in Table 2. It is evident that,
out of the two traversal algorithms, the MST-Med performs
the best, and for this reason MST-Med is adopted in all
subsequent experiments.

Table 2: Results of the proposed synchronization
method using different graph traversal approaches

Vancouver London
Features P A H P A H

MST-Med 0.971 0.860 0.912 0.639 0.750 0.690
MST-Av 0.743 0.715 0.729 0.324 0.513 0.340

4.4 Comparison to other methods
We compare the proposed method against the majority

of the literature methods discussed in Section 2 ([4, 21, 1,
12, 16]). For those of the above papers that present more
than one variations of their techniques, we report in Ta-
ble 3 the results of the best-performing technique of each
paper. As already mentioned we strictly followed the exper-
imental setup of the MediaEval SEM task and used their
datasets and ground truth annotations, which makes our re-
sults directly comparable with those published in [21, 1, 12,
16]. For comparing with [4], we re-implemented the method
proposed in this paper and tested it under the same experi-
mental setup used for the proposed and all other compared
methods. We can see from Table 3 that the proposed method
scores the best P and H measures out of all the tested meth-
ods. The method presented in [12] scored the best A measure
for the London dataset, but managed to synchronize only a
small subset (P = 0.15) of the collections.

Table 3: Comparison between the proposed method
and the methods of [4, 21, 1, 12, 16]).

Vancouver London
Method P A H P A H

[4] 0.618 0.816 0.703 0.333 0.886 0.484
[21] 0.941 0.792 0.860 0.472 0.875 0.613
[1] 0.912 0.728 0.810 0.611 0.713 0.658
[12] 0.050 0.650 0.093 0.150 0.920 0.258
[16] 0.350 0.860 0.605 0.250 0.890 0.390

Proposed 0.971 0.860 0.912 0.639 0.750 0.690

5. CONCLUSIONS
We presented a method to temporally align different user

collections of photos captured during the same event. The
proposed approach was tested on two benchmark datasets
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(a) (b)

Figure 4: Indicative example pairs of photos where
S or CA similarity are higher than GC similar-
ity. In (a), GC=52.24% while S=82.39%. In (b),
GC=62.52% while CA=83.85%.

and is shown to outperform the most recent literature meth-
ods. The superiority of the proposed method is due to
two introduced novelties: 1) The combination of multiple
photo similarity measures; this allows for different aspects
of similarity to be captured (for an indicative example see
Fig. 4). 2) A weighted graph-based representation of photo
collections that helps us to synchronize photo collections,
even those with low coverage of the event. Furthermore,
the weighted graph-based representation may be seen as a
first step towards multi-user photo collection organization,
enabling the application of sub-event clustering and sum-
marization methods even on the same graph, following the
synchronization of the photos’ timestamps.
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