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ABSTRACT
In this work we deal with the problem of summarizing im-
age collections that correspond to a single event each. For
this, we adopt a clustering-based approach, and we perform
a comparative study of different clustering algorithms and
image representations. As part of this study, we propose and
examine the possibility of using trained concept detectors so
as to represent each image with a vector of concept detector
responses, which is then used as input to the clustering algo-
rithms. A technique which indicates which concepts are the
most informative ones for clustering is also introduced, al-
lowing us to prune the employed concept detectors. Follow-
ing the clustering, a summary of the collection (thus, also of
the event) can be formed by selecting one or more images per
cluster, according to different possible criteria. The combi-
nation of clustering and concept-based image representation
is experimentally shown to result in the formation of clusters
and summaries that match well the human expectations.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.3 [Information Search and Retrieval]: Clustering;
I.4.10 [Image Processing and Computer Vision]: Im-
age Representation

Keywords
Image collection summarization; image clustering; model
vectors; image representation; concept selection

1. INTRODUCTION
Summarization of image collections, especially collections

related to an event (e.g. a social event, or a personal event
such as a trip), is increasingly becoming an important topic
due to the widespread availability of various digital image
capture and consumption devices (e.g. smartphones, tablets,
cameras) and the proliferation of media communication chan-
nels such as the Internet. Users are inundated with thou-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
HuEvent’14, November 07, 2014, Orlando, FL, USA.
Copyright 2014 ACM 978-1-4503-3120-3/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660505.2660507.

sands of images, and efficient ways to organize them are
necessary. The main goal of our study is the clustering and
summarization of event-related image collections, in order to
facilitate users to have an overview of the collections’ con-
tents and consume this summary in a wide range of related
applications, from slideshow generation to digital preserva-
tion applications [9].

Image clustering has been studied in the context of several
diverse applications. In order to facilitate the image retrieval
task, in [14, 27] visual features were used for grouping im-
ages into meaningful clusters. More specifically, [27] uses
low-level color features, such as the HSV color histogram, to
represent each image, while [14] makes use of the SIFT local
descriptor. Effective browsing within large image collections
is the motivation of [18] and [20]; visual and textual features
are combined and are used for clustering in [18], while in [20]
local visual features are extracted using the SURF descrip-
tor in order to represent the visual properties of the image,
and the tags which are related with the images are used as
additional features. In [29] the pixel values of the subsam-
pled images are directly used as features for clustering. A
technique which is oriented specifically towards the organi-
zation of event-related image collections is proposed in [3]:
a split-n-merge algorithm is introduced, which uses the date
and the time that the image was taken, the geographic co-
ordinates of the images and the user who uploaded them on
the Internet as basic features of the images.

Specifically for image collection summarization, clustering
algorithms in combination with low-level visual features are
often used for the selection of representative images from
the collection [1, 24]. For example, at the MediaEval 2013
Retrieving Diverse Social Images task, most works use clus-
tering methods applied to low-level visual and textual fea-
tures in order to produce a summary characterized by diver-
sity [11, 28]. In [22], textual features or user information in
addition to visual features are used for composing a graph,
on which the Random Walker algorithm with restart is ap-
plied to select representative images. For the summarization
of social events, in [5], features such as the time, the geo-
graphical coordinates and textual information are used in
order to collect and cluster the event-related images. The
final selection of images for the summary is based on visual
features and the number of views or likes of each image.

In this study, we compare the usage of low-level visual fea-
tures for image representation, which is a technique adopted
by many existing works, with the combination of clustering
techniques and a concept-based approach to image represen-
tation, which builds on confidence scores provided by trained
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Figure 1: Clustering examples. (a) Typical image clustering approach. The clustering algorithm is applied
directly to the low-level visual features. (b) Proposed concept-based clustering approach. The clustering
is performed on the responses of a pool of automatic concept detectors. These detectors are not manually
selected to match the contents of the image collection, and their introduction into the clustering pipeline
does not require any kind of user interaction (i.e. the entire clustering process remains fully automatic).

visual concept detectors. Although the concept detectors are
far from perfect, this approach bridges to some extent the
gap between the low-level representation of images and the
high-level concepts that are perceived by humans when look-
ing at them, and relies on the latter concepts for effecting
a clustering and summarization that better matches human
expectations. Throughout the study, we deliberately refrain
from using any time or geolocation metadata that might ac-
company the images, so as to examine how well we can do
by just considering the visual content of the images, and
also to avoid being affected by any errors due to poor time
synchronization across different image capture devices [2].

The rest of the paper is organized as follows. The pro-
posed approach to image clustering and summarization is
presented in Section 2. The set up of our experimental
study and the extensive experiments and results that were
obtained are reported in Section 3. Finally, conclusions are
drawn in Section 4.

2. PROPOSED APPROACH

2.1 Overview
The traditional approach to clustering-based summariza-

tion has three steps. Suppose a collection I of N images
I = {I1, I2, ..., IN} that we want to cluster into K clus-
ters. Low-level visual features are extracted, which means
that each image is represented as a vector of arithmetic val-
ues. These vectors are used as input to a clustering al-
gorithm. The result is the formation of a set of clusters
G = {G1, G2, ..., GK}. Finally, a set of representative im-
ages R = {R1, R2, ..., RM} are selected for summarizing the
image collection (often, for simplicity, one representative im-
age per cluster, i.e. M=K). Figure 1 (a) presents the stages
of typical image clustering for summarization.

In our work, we introduce a new processing stage which
is inserted after the feature extraction one. Having at our
disposal a pool of trained concept detectors C = {C1, C2, ...,
CJ}, where J is the number of concepts and is typically in
the order of hundreds, we apply them to the images of col-
lection I and receive the prediction scores for each concept.
Thus, each image can be represented as a J-element vector of
detector confidence scores (model vectors [25]), e.g. for the
i-th image the corresponding model vector has the form of

C(Ii) = [C1(Ii), C2(Ii), ..., CJ(Ii)], where Cj(Ii) is the con-
fidence score produced by the j-th concept detector Cj [25].
The confidence score is defined as the degree of confidence
that a concept is depicted in the image and takes values in
the range [0,1]. The clustering algorithm is then applied on
these vectors and the representative images are selected as
above. Figure 1 (b) shows the proposed clustering approach.

2.2 Visual Concepts for Clustering
The concept detection procedure that we used in our work

is that of [15]. Three image representations (low-level de-
scriptors) are employed for the concept detection task, based
on SIFT, RGB-SIFT and OpponentSIFT. These represen-
tations are combined with two strategies for the detection
of interest points, dense sampling and Harris-Laplace cor-
ner detector [8]. Additionally, two assignment methods are
used in order to assign these low-level descriptors to the
vocabularies created by K-means clustering, hard and soft
assignment. In all cases we adopt a spatial pyramidal 3× 1
scheme [12]. As a result for each combination of descriptor,
point detector and assignment method, a 4000-element vec-
tor per image is formed, which is the concatenation of the
3 bag-of-words (BoW) feature vectors from the 3 horizontal
bands of the image and the one which is created using the
whole image (each of them has 1000 elements). Then, each
such vector is used as input to the set of concept classifiers,
which are linear SVMs. As for the training, we trained our
framework on the TRECVID 2013 Semantic Indexing (SIN)
ground-truth annotated development set [19]. The 346 con-
cepts that we used are those defined in the TRECVID SIN
task (i.e., a generic set of heterogeneous concepts, not chosen
specifically to match the image collections we experimented
with). Thus, each image is represented by a 346-element
vector of confidence scores.

In our approach, these vectors of confidence scores are the
input to the various clustering algorithms that we examine
(e.g. K-means, Hierarchical). For this, the distance measure
to be used during clustering has also to be defined. When
working with low-level features, the squared Euclidean or
the Euclidean distance, depending on the clustering algo-
rithm, are typically used in the literature. However, for the
model vectors we use an alternative distance measure which
was introduced in [17], and was shown to be appropriate
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(a) Image collection (k=12)
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(b) Image collection (k=10)

Figure 2: Curves of NMI in relation with the num-
ber of concepts.

for confidence scores comparison. According to it, if C(Ii)
and C(Ik) are two model vectors for the images Ii and Ik
respectively, the distance D of C(Ii) and C(Ik) is defined
as:

D(C(Ii), C(Ik)) =

√√√√ J∑
j=1

(Cj(Ii)− Cj(Ik))2

Cj(Ii) + Cj(Ik)
(1)

where J is the total number of concepts.

2.3 Finding a Compact Concept Bank
Inspired by the technique that was presented in [16] for

finding an informative concept bank for video event detec-
tion, we adopt a similar approach for discovering the con-
cepts which are the most useful ones for clustering. We
consider that the measure that should be optimized in our
case during concept selection is the same one that we use
in the sequel for evaluating the clustering results, i.e. the
Normalized Mutual Information (NMI) [26].

Suppose that a subset of concept detectors is denoted by x
and f(x) is the objective function that we want to optimize.
The random variable x is characterized by the distribution
p(x; Θ) where Θ is a variable that controls the importance of
each concept detector to the final score f(x). This random
variable is modeled by the cross-entropy optimization [21].
This method has three basic steps:

• Generate n random samples according to p(x; Θ) which
is modeled by a binomial distribution, i.e. each sample
x is a binary vector.

• Evaluate each sample x using f(x). Take the top m
samples that give the best results.

• Use the m samples in order to re-estimate Θ.

This method is repeated for a number of iterations and in

each iteration q the utility Θ
(q)
i of the concept i, taking into

account the m top best samples, is calculated as:

Θ
(q)
i =

1

m

m∑
j=1

x
(j,q)
i (2)

where x
(j,q)
i has the value 1 if the concept i takes part to

the solution and 0 otherwise. At the end of this iterative
process, the higher values of Θi indicate more informative
concepts.

2.4 Clustering-based Summarization
Following clustering, a set of images summarizing the col-

lection needs to be selected. These are typically images
belonging to different clusters, for ensuring their diversity.
For the clustering algorithms that do not directly provide
a representative sample for each cluster (e.g. K-means, Hi-
erarchical), the image that is closest to the cluster’s center
is selected. For algorithms that indicate which member of
each cluster is the closest one to all other items of the same
cluster (e.g. Partitioning Around Medoids, Farthest First
Traversal Algorithm) or is representative for a set of items
(e.g. Affinity Propagation), we select the indicated represen-
tative images. In this way, a collection summary comprising
as many images as the number of clusters is formed.

3. EXPERIMENTAL RESULTS

3.1 Datasets and Evaluation
We perform our experiments on 14 image collections, each

capturing a different event. The first 8 of them are image col-
lections of personal travel events whose size varies from 104
to 254 images, and the other 6 are image collections of social
events (e.g. concerts) retrieved from the Internet and whose
size varies between 159 and 325 images. For each collection
two ground truth clusterings have been created manually
(by one annotator for each image collection), with different
numbers of clusters: one for a fixed number of clusters (k=10
for each collection), and one for a variable number of clus-
ters (denoted k=var; the annotators were given the freedom
to choose the number of clusters that would prefer for each
collection). In both cases, the annotators were instructed to
create the ground truth by considering the visual content of
the images and how the entire collection of images of each
given event could be summarized in the best way, rather
than look at the time information and try to break down
the collection to time-centered sub-events.

For the clustering procedure, the clustering algorithms
that we studied and evaluated are: K-means [13], Hierar-
chical clustering using complete linkage (hier-comp) [4], Hi-
erarchical clustering using single linkage (hier-single) [23],
Partitioning Around Medoids (PAM) [10], Affinity Propa-
gation (AP) [6] and the Farthest First Traversal Algorithm
(Far. First) [7]. Three types of image representation are
combined with each one of the above algorithms and are
compared: low-level color features (HSV histogram), a BoW
representation (created from SIFT features extracted on a
dense grid and assigned to words using soft assignment), and
the proposed approach, that is based on model vectors.

We evaluate the clustering results by computing the Nor-
malized Mutual Information (NMI) [26] between each of the
resulting clusterings and the manually-created ground truth.
For evaluating the image collection summarization results,
the Cluster Recall (CR) [30] is used. This measure allows us
to assess how many clusters of the ground truth are repre-
sented in the generated summary. E.g., assuming 10 clusters
in the ground truth and an automatically created summary
comprising 10 images, if these 10 images belong to 7 differ-
ent clusters of the ground truth, then CR(k=10) is equal to
0,7.

For the concept selection method, we set the parameters
of the cross-entropy algorithm as in [16], i.e. 20 iterations,
1000 concept samples per iteration, and 200 top best samples
per iteration. For the calculation of NMI during concept
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Table 1: Mean and variance of the evaluation measures NMI and CR over all image collections in our dataset,
separately for each possible combination of clustering algorithm - image representation.

All event-related image collections

image representation clustering algorithm
NMI

(k=10)
CR

(k=10)
NMI

(k=var)
CR

(k=var)

HSV Histogram

(similar to e.g. [27])

k-means 0,30 ± 0,10 0,53 ± 0,10 0,24 ± 0,11 0,56 ± 0,13
hier-comp 0,26 ± 0,12 0,56 ± 0,14 0,19 ± 0,11 0,54 ± 0,16
hier-single 0,18 ± 0,07 0,53 ± 0,10 0,13 ± 0,05 0,53 ± 0,15

PAM 0,30 ± 0,11 0,56 ± 0,14 0,25 ± 0,11 0,58 ± 0,12
AP 0,30 ± 0,10 0,59 ± 0,15 0,23 ± 0,10 0,59 ± 0,12

Far. First 0,25 ± 0,12 0,53 ± 0,11 0,19 ± 0,09 0,63 ± 0,16

SIFT+BoW
(similar to e.g. [18])

k-means 0,26 ± 0,10 0,54 ± 0,13 0,21 ± 0,09 0,52 ± 0,17
hier-comp 0,22 ± 0,08 0,49 ± 0,11 0,17 ± 0,07 0,50 ± 0,15
hier-single 0,16 ± 0,04 0,51 ± 0,08 0,12 ± 0,04 0,56 ± 0,10

PAM 0,25 ± 0,09 0,51 ± 0,11 0,20 ± 0,09 0,55 ± 0,13
AP 0,25 ± 0,09 0,50 ± 0,14 0,20 ± 0,09 0,51 ± 0,18

Far. First 0,21 ± 0,07 0,52 ± 0,13 0,16 ± 0,07 0,51 ± 0,17

Model Vectors
(all 346 concepts)

k-means 0,36 ± 0,10 0,58 ± 0,14 0,31 ± 0,10 0,55 ± 0,17
hier-comp 0,35 ± 0,09 0,57 ± 0,14 0,29 ± 0,10 0,56 ± 0,12
hier-single 0,21 ± 0,10 0,54 ± 0,16 0,16 ± 0,06 0,57 ± 0,13

PAM 0,35 ± 0,09 0,54 ± 0,13 0,28 ± 0,10 0,56 ± 0,18
AP 0,35 ± 0,08 0,56 ± 0,11 0,28 ± 0,10 0,55 ± 0,14

Far. First 0,30 ± 0,10 0,61 ± 0,12 0,26 ± 0,10 0,63 ± 0,17

Model Vectors
(# concepts=100,

selected as in
section 2.3)

k-means 0,36 ± 0,11 0,56 ± 0,07 0,33 ± 0,13 0,58 ± 0,16
hier-comp 0,34 ± 0,10 0,59 ± 0,11 0,30 ± 0,10 0,65 ± 0,13
hier-single 0,21 ± 0,10 0,55 ± 0,15 0,15 ± 0,05 0,57 ± 0,12

PAM 0,34 ± 0,10 0,57 ± 0,11 0,29 ± 0,10 0,57 ± 0,17
AP 0,35 ± 0,11 0,57 ± 0,10 0,29 ± 0,11 0,56 ± 0,14

Far. First 0,33 ± 0,10 0,61 ± 0,13 0,25 ± 0,10 0,65 ± 0,17

Model Vectors
(# concepts=200,

selected as in
section 2.3)

k-means 0,35 ± 0,10 0,54 ± 0,14 0,30 ± 0,10 0,64 ± 0,16
hier-comp 0,35 ± 0,10 0,59 ± 0,11 0,30 ± 0,10 0,62 ± 0,13
hier-single 0,21 ± 0,11 0,57 ± 0,12 0,14 ± 0,06 0,59 ± 0,14

PAM 0,34 ± 0,10 0,57 ± 0,12 0,28 ± 0,09 0,57 ± 0,16
AP 0,35 ± 0,10 0,58 ± 0,13 0,28 ± 0,09 0,58 ± 0,16

Far. First 0,31 ± 0,10 0,62 ± 0,11 0,25 ± 0,10 0,64 ± 0,14

selection, we use K-means as the clustering algorithm. In
order to select the X most informative concepts for a given
collection, we use as input to the algorithm of section 2.3
the images and ground truth clustering of all other image
collections of the same type of event (i.e. personal travel, or
social event) in our dataset.

3.2 Clustering Results
Table 1 presents the clustering results for all the image

collections. We compute the mean value and the standard
deviation of NMI over all image collections, separately for
the default number of clusters (k=10), and for k=var. The
last two horisontal blocks of the table present the results ob-
tained when we apply the clustering algorithms to a subset
of the total pool of concepts (100 and 200 concepts, respec-
tively), which are selected using the learnt concept ordering
for each collection (section 2.3).

As can be seen in Table 1, the model vectors in combina-
tion with the K-means algorithm give the best results (NMI).
Generally, the use of model vectors gives better results in al-
most all cases. Specifically, using model vectors outperforms
using the HSV histogram and the BoW in 134 and 158 out
of 168 experiments (6 clustering algorithms × 28 ground
truth clusterings of the 14 image collections), respectively.
The standard deviation of NMI when using model vectors is
also lower in most cases than that obtained using the HSV
histograms. It should be noted that the use of Euclidean
or squared Euclidean distance in model vectors would give
slightly worse results than using the distance of Eq.(1). E.g.
the K-means (k=10) in combination with model vectors and

Eq.(1) gives mean NMI = 0,36, while using the squared Eu-
clidean distance would result in mean NMI = 0,35. Finally,
we observe that in some cases using a reduced number of
concepts (i.e. 100 or 200, rather than all 346) gives better
results. This can be attributed to the fact that the origi-
nal pool of 346 concepts contains many concepts that are
irrelevant to our dataset; pruning these concepts using the
procedure of section 2.3 results in more meaningful input to
the clustering algorithms.

For the concept selection technique, Fig. 2 (a) and (b)
show how the NMI changes for an example image collection
when we vary the number of concepts being used. For any
number of concepts (shown on the horizontal axis), the ex-
act set of concepts is selected using the procedure of section
2.3 applied on either the images and ground truth annota-
tions for all other collections (separately for travel and social
events) in our dataset (as for the Table 1 experiments; these
curves are denoted “learnt concept ordering” in Fig. 2) or
using the images and the ground truth clustering of the same
test image collection (which gives us the maximum possible
NMI that could be achieved if the concepts that are most
appropriate for the given test collection were selected; these
curves are denoted “optimal concept ordering”). The “ran-
dom concept ordering” curve is created by randomly select-
ing a concept ordering (this experiment is repeated 10 times
and the average results are shown in Fig. 2). The “optimal
concept ordering” curves indicate that by carefully selecting
a subset of the available concepts, we can have significant
gains in NMI. In practice, performing this selection on dif-
ferent datasets does not produce such pronounced gains, but
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Figure 3: Summarization of an image collection of a personal travel event produced using the model vectors
in combination with the farthest first algorithm.

Figure 4: Summarization of an image collection of a social event produced using the model vectors in
combination with the farthest first algorithm.

does allow the reduction of the computational cost of cluster-
ing by reducing the number of concepts being used without
significantly affecting the clustering effectiveness.

3.3 Summarization Results
The summarization results are also presented in Table 1.

We can see that the CR evaluation measure generally takes
its best value when we use the model vectors as image rep-
resentation and the Farthest First Traversal Algorithm as
clustering algorithm. Overall, for the image collections, the
use of model vectors outperforms the use of the HSV his-
togram and the BoW in 113 and 128 out of 168 experiments,
respectively. Figures 3 and 4 depict representative examples
of the type of images in our collections and the summaries
that are generated.

4. CONCLUSIONS
In this work, we examined the problem of event-related

image collection summarization using a clustering approach.
While most of the existing approaches in the literature use
low-level visual features for image representation, we have

employed concept detection confidence scores as image fea-
tures. Our experimental results give evidence that the K-
means algorithm combined with model vectors gives the best
clustering results, and the Farthest First algorithm com-
bined again with model vectors gives the best summariza-
tion results. Finally, we showed that selecting a subset of
the available concept detectors for forming the model vec-
tors can give us similar results to using the complete set of
them, at evidently lower computational cost (since lower-
dimensional feature vectors are used for clustering).
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Summarization of real-life events based on
community-contributed content. In Proc. Fourth Int.
Conf. on Advances in Multimedia (MMEDIA), pages
119–126, 2012.

[6] B. J. Frey and D. Dueck. Clustering by passing
messages between data points. Science,
315(5814):972–976, 2007.

[7] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science,
38:293–306, 1985.

[8] C. Harris and M. Stephens. A combined corner and
edge detector. In Proc. of the 4th Alvey Vision
Conference, pages 147–151, 1988.

[9] N. Kanhabua, C. Niederée, and W. Siberski. Towards
Concise Preservation by Managed Forgetting:
Research Issues and Case Study. In Proc. 10th Int.
Conf. on Preservation of Digital Objects (iPRES),
2013.

[10] L. Kaufman and P. J. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis. John
Wiley & Sons, 1990.

[11] C. Kuoman, S. Tollari, and M. Detyniecki. UPMC at
MediaEval 2013: Relevance by Text and Diversity by
Visual Clustering. In Proc. MediaEval Workshop,
2013.

[12] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing
natural scene categories. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, volume 2,
pages 2169–2178, 2006.

[13] J. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proc. 5th
Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, pages 281–297. CA, USA, 1967.

[14] K. Makantasis, A. Doulamis, and N. Doulamis. A
non-parametric unsupervised approach for content
based image retrieval and clustering. In Proc. 4th
ACM/IEEE Int. Workshop on Analysis and Retrieval
of Tracked Events and Motion in Imagery Stream,
pages 33–40, 2013.

[15] F. Markatopoulou, A. Moumtzidou, C. Tzelepis, and
et. al. ITI-CERTH participation to TRECVID 2013.
In Proc. of TRECVID Workshop, 2013.

[16] M. Mazloom, E. Gavves, K. V. D. Sande, and
C. Snoek. Searching Informative Concept Banks for
Video Event Detection. In Proc. 3rd ACM Int. Conf.
on Multimedia Retrieval, pages 255–262, 2013.

[17] V. Mezaris, P. Sidiropoulos, A. Dimou, and
I. Kompatsiaris. On the Use of Visual Soft Semantics
for Video Temporal Decomposition to Scenes. In Proc.

4th IEEE Int. Conf. on Semantic Computing (ICSC),
pages 141–148, 2010.
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