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ABSTRACT
In this paper a joint content-event model for the automatic
indexing of multimedia content with events is proposed. This
model treats events as first class entities and provides a
referencing mechanism for automatically linking event el-
ements (represented using the event part of the model) with
content segments (described using the content part of the
model). The emphasis of the paper is on this mechanism,
which uses trained concept detectors to represent content
segments with model vectors, and the subclass discriminant
analysis algorithm to derive a discriminant subspace facili-
tating the indexing of content segments with event elements.
The use of this referencing mechanism for associating multi-
media content with five sport events is demonstrated on the
MediaMill dataset.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.2.10 [Computing Methodolo-
gies]: Vision and Scene Understanding

General Terms
Algorithms, Theory

1. INTRODUCTION
With the rapid progress of hardware technology and the

popularity of related multimedia devices, the quantity of
multimedia data has surged into an unprecedented level.
These data reside on local personal computers or global
large scale repositories, and large amounts of them are daily
consumed within the framework of networked media. For
manipulating this information, sophisticated algorithms are
needed for supporting the automatic indexing of multimedia.
However, this is to some extent still beyond the capabilities
of the current state-of-the-art in multimedia management.
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This is mainly due to the so-called semantic gap between
the descriptions of multimedia data provided by automatic
analysis tools and the meaning of the same multimedia data
to humans. Recent studies in neuroscience have shown that
humans remember real life using past experience structured
in events [22]. For this reason, event-based indexing of mul-
timedia content is expected to help reduce the semantic gap
between human and machine interpretations.

The necessity of formal event models for describing real
life events has been recently acknowledged, and a number
of such models have been developed, e.g. [3, 21, 15, 9]. In
[3], the IPTC G2 family of news exchange standards are
provided, including EventML, the respective standard for
describing events in a journalistic fashion. In [21], the event
model E and a number of common event model require-
ments are presented. In [15], the event model F is proposed,
which is based on the DOLCE foundational ontology [10]
to provide formal semantics and representation of context.
In [9], the video event representation language (VERL) is
presented for the description of events in videos.

The models reviewed above present some drawbacks, in-
cluding: a) they treat events as second class entities, i.e.,
the existence of the events depends on the content they de-
scribe [9], b) they provide little or no support for capturing
the structure of multimedia content [3, 21, 15]. Most impor-
tantly, though, these models do not provide a mechanism for
automatically associating the multimedia content with the
events or event elements that the model represents. This
is partly addressed in [5] where the temporal, casual and
spatial aspects of the event model E are implemented and
used for representing “Gunshot” and “Walkthrough” events
in videos.

On the other hand, several researchers have proposed al-
gorithms for automatically recognizing events in multimedia
data, however, without explicitly providing a model for de-
scribing events, e.g. [20, 6, 7]. In [20, 7], HMMs are used to
recognize ice hockey or wedding ceremony events in video.
In [6], a video is represented as a sequence of Bag-of-Words
(BoW) histograms and SVMs are used to learn the desired
events. The algorithm is evaluated on a subset of the Medi-
aMill video dataset and on a soccer video dataset collected
by the authors.

In this paper, we propose a joint content-event model
to address the limitations of the current event models ad-
dressed above, i.e., a model that treats events as first class
entities, allows the description of multimedia content and of-
fers a referencing mechanism for automatically linking event
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Figure 1: Use of the proposed joint content-event model.

elements with relevant content segments. This mechanism
consists of a set of pre-trained concept detectors for semanti-
cally describing multimedia content, and an algorithm based
on the subclass discriminant analysis (SDA) [23] for indexing
content segments with events.

The rest of the paper is organized as follows. In section 2
the proposed joint content-event model is presented, while in
section 3 the referencing mechanism of the proposed model is
evaluated on the MediaMill dataset and several experimental
results and comparisons are provided. Finally, concluding
remarks are drawn in section 4.

2. JOINT CONTENT-EVENT MODEL
The joint content-event model has been designed to satisfy

a number of requirements extracted after reviewing relevant
literature, especially the work of [21]. It consists of a content
part, an event part and a referencing mechanism linking the
two parts. The content part of the model has a hierarchical
graph structure consisting of nodes and edges, as shown on
the left side of Figure 1. Content nodes are structurally alike,
i.e., they all consist of the same set of properties, and each
node is used to convey information for exactly one content
segment. Edges between nodes are used to reflect content
segments’ compositional and temporal relations. The event
part of the model has a more general graph structure, as
shown on the right side of Figure 1. An event node cor-
responds to one real-life event element, e.g. a sub-event,
and all event nodes have the same structure. Edges between
nodes indicate a variety of relationships, e.g., temporal or
causal. The properties of the event and content nodes are
depicted in Figure 2. We observe that there is a number
of properties that are common in both the content and the
event node. There is also a number of event node proper-
ties that their values can be inferred from the values of the
respective content node properties. This set of properties
supports the referencing mechanism of the proposed model:
the values of these properties can be used to associate one
or more content nodes with an event node (based on, e.g.,
“absolute time” values of both the content and event nodes),
in parallel to the process discussed in section 2.3, and, in the
case of association, initialize several properties of the event
node (Figure 1).

2.1 Content node properties
A type taxonomy similar to the Segment Description Sche-

me (DS) of MPEG-7 Multimedia DS (MDS) is deployed to
characterize the type of content segments, e.g., video seg-
ment, moving region, or further specializations such as scene,
shot, etc. Content segment type information is recorded in
the contentType property. The ID property is filled with

a URI to index content nodes in a uniform manner, while
the technicalDetails property holds technical details of the
multimedia data, e.g., frame rate, aspect ratio, etc. The
properties hasParent, isChild, precedes and follows receive an
URI to reflect the relative position of content nodes in the
content graph. The mediaSpatialLocation property is used
to describe a region of an image or frame, e.g., a rectan-
gular area around a human body. The mediaTemporalLo-
cation property records information regarding the temporal
position of a content segment, e.g., it may record the start
and the end frame of a shot. The properties creatorName,
textAnnotation, absoluteLocation and absoluteTime hold in-
formation extracted from the metadata accompanying the
content segment; the two latter are used to hold geospatial
and time-related information respectively. Finally, concepts
extracted from the content segments using trained concept
detectors are described in the conceptIDs property.

Figure 2: Event and content node properties.

2.2 Event node properties
Event node properties have been selected to cover a num-

ber of real-life event aspects. The informational aspect of
the event is modelled with the properties hasID, hasName,
hasType and hasRole. The hasID property receives a URI to
represent the event node in a global scope. Three classes of
the ultra light version of DOLCE (DUL) are used to model
the type of an event element, i.e., Event, Agent or Place
[10]. Following DUL, an event element of type Event is used

Proc. ACM Multimedia 2010, Events in MultiMedia Workshop (EiMM10), Firenze, Italy, October 2010.



to model any physical, social, or mental process, event, or
state. The Agent class is used to represent any agentive ob-
ject participating in the event, either physical or social, e.g.,
a gun or a corporation. The Place class is used to denote
a generic location, e.g., Paris. This information is recorded
in the hasType property. The hasName property holds the
name of the event element after its instantiation, and the
hasRole property, also adopted from DUL, is used to classify
the event element in different context, e.g., it can classify
a person as a policeman during a robbery event, or as the
victim of a gunshot event.

The experiential aspect of an event is captured using six
properties, namely, hasContentID, hasCreatorName, hasTex-
tAnnotation, hasContentType, hasTechnicalDetails, hasCont-
entLocation. These properties are automatically filled with
information directly transferred from the respective proper-
ties of the content node, as shown in Figure 2. A connection
between a content node and an event node is automatically
established using the referencing mechanism of the model
described in section 2.3. We should note that the hasTech-
nicalDetails and the hasContentLocation properties capture
all the necessary information to locate and use the content
segment itself, avoiding the overhead for accessing the con-
tent description part of the model again during a retrieval
operation (query).

The absolute time of an event is recorded in hasAbsolute-
Time property using the W3C Datetime Format profile of
ISO 8601 standard [2], while relative temporal event infor-
mation is captured using Allen’s Time Calculus [4]. Sim-
ilarly, the hasAbsoluteLocation property captures the abso-
lute spatial location of an event in (latitude, longitude) form
defined in Basic Geo (WGS84 lat/long) Vocabulary [1], and
the nearTo and farFrom DUL properties along with the Re-
gion Connection Calculus (RCC) properties [14] are used to
denote relative spatial relations between event elements.

Compositional information between events is captured us-
ing the properties hasParent and hasChild to record immedi-
ate super- or sub-events respectively, while causal informa-
tion is captured using the properties causedBy and causes.
Finally, to allow different interpretation of same event, we
use the properties isInstantiatedBy and hasInstantiationTime
to capture the creator and the creation time of an event
node, and the sameAs property to link two or more event
nodes representing the same entity in different context.

2.3 Referencing mechanism
The target of the referencing mechanism is to automat-

ically index a content segment with an event element. To
achieve this, it takes advantage of trained concept detectors
[13] which may exploit audiovisual or other information of a
content segment to derive a model vector representation of
it [17]. The resulting model vector serves as input, according
to the developed referencing mechanism, to a discriminant
subspace learning algorithm, which is used for obtaining a
low dimensional feature space where different event classes
are expected to separate better. The motivation behind the
choice of SDA [23] for learning the low dimensional feature
space is: a) Similar to other subspace methods, classifica-
tion of testing samples is performed in a reduced feature
space, thus allowing for low storage requirements and fast
processing times. This advantage is especially important
when computationally intensive classifiers, such as Nearest
Neighbor (NN), are used in combination with large-scale

training datasets. b) SDA approximates any data distri-
bution with a mixture of Gaussians, in contrast to other
discriminant analysis (DA) algorithms, e.g. linear discrimi-
nant analysis (LDA) [8], applicable to only specific data dis-
tribution types. Moreover, compared to kernel DA methods,
such as [12], that can also be used to fit various data distri-
butions, SDA has lower computational complexity. c) The
optimal number of mixture components (subclasses) in SDA
is automatically identified using an optimality criterion, in
contrast to heuristics used by competing DA methods. d) In
particular for our problem, the possibility to associate event
elements with SDA subclasses may worth further investiga-
tion, e.g., by exploiting real-world event element relation-
ships (spatial, temporal, etc.) to improve the effectiveness
and efficiency of the referencing mechanism.

The proposed indexing mechanism has to be trained first
for a number of different event classes or specific events of
interest, and can then be used for automatically indexing
non-annotated content with one or more of these events.

2.3.1 Training
Let U = {(s1, y1), . . . , (sN , yN )} be an annotated train-

ing database of N content segments belonging to one of C
event classes, where si is the feature vector representation
of the i-th content segment and yi ∈ {1, . . . , C} its class la-
bel. We assume that a set G = {(dκ(), hκ), κ = 1, . . . , K}
of trained concept detectors is given, where dκ() is the κ-th
concept detector functional and hκ is the respective con-
cept label. The trained concept detectors are used to rep-
resent the i-th content segment with a model vector xi =
[xi,1, . . . , xi,K ]T , xi ∈ �K , where xi,κ = dκ(si) is a number
in the range [0, 1] expressing the degree of confidence (DoC)
that the κ-th concept is present in the i-th content segment.

The model vectors are used as the feature vectors in the
input space of SDA. SDA initiates with the eigenanalysis of
the sample covariance matrix ΣX for obtaining the respec-
tive eigenvectors uκ:

ΣXU = UΛX → U = [uκ] . (1)

An iterative algorithm is then used to estimate the optimal
subclass division of event classes. At each iteration a dif-
ferent subclass division is evaluated. The r-th iteration of
SDA consists of three steps:

1) The application of a Nearest Neighbor-based clustering

algorithm, to partition each event class to H(r) subclasses.
2) The computation of the between-subclass matrix,

Σ
(r)
B =

C−1∑
i=1

H(r)∑
j=1

C∑
k=i+1

H(r)∑
l=1

(
p
(r)
i,j p

(r)
k,l ×

(m
(r)
i,j − m

(r)
k,l )(m

(r)
i,j − m

(r)
k,l )

T
)

, (2)

and its eigenanalysis for deriving the respective eigenvectors

w
(r)
i , where p

(r)
i,j and m

(r)
i,j are the prior and mean of the j-th

subclass of the i-th class.
3) The computation of a subclass partitioning evaluation

criterion,

O(r) =
1

a(r)

a(r)∑
i=1

i∑
j=1

(uT
j w

(r)
i )2 , (3)

where a(r) < rank(Σ
(r)
B ) [23].
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After several iterations the optimal subclass partitioning
H(ro) is the one corresponding to the iteration ro given by

ro = arg min
r

(O(r)) . (4)

To this end, the following generalized eigenvalue problem is
solved

Σ−1
X Σ

(ro)
B V = VΛ , (5)

where Σ
(ro)
B is the between-subclass matrix that corresponds

to the ro-th iteration, and the final projection matrix V∗ is
formed by taking the eivenvectors of V that correspond to
the q largest eigenvalues.

The training samples are then projected to the discrimi-
nant subspace

zi = V∗T
xi, i = 1, . . . , N , (6)

and stored in the database in order to be used during the
testing stage for automatically associating non-annotated
content segments with one or more of the learned events.

2.3.2 Indexing of non-annotated content
Given a set of multimedia data that is possibly related

with one or more of the events learned during the training
stage (section 2.3.1), automatic analysis techniques, such as
temporal segmentation to shots and scenes [16, 19] in case of
video content, are initially applied to derive a set of content
segments. Each content segment is then represented with
a model vector using the trained concepts detectors, and
these model vectors are further projected to the discriminant
subspace using the SDA projection matrix. The n-th test
content segment with feature vector representation źn in
the discriminant subspace and unknown label ýn can then
be associated with one or more of the learned event classes
by examining the quantity zT

i źn for every i. Assuming that
every content segment can be associated with only one event
class, in this work the following NN classifier is used to this
end:

ýn = arg min
i∈[1,...,N]

(zT
i źn) . (7)

As a result, the automatic association of each content seg-
ment with an event or sub-event is achieved, exploiting the
results of realistic, non-perfect concept detectors.

3. EXPERIMENTAL RESULTS
In this section we use the MediaMill Challenge dataset [18]

as a testbed for evaluating the referencing mechanism of the
proposed model. Five sport events are considered in this
preliminary evaluation, namely basketball, soccer, football,
baseball and golf.

3.1 Dataset description
The MediaMill Challenge dataset has become a popular

benchmark set due to its extensive ground truth annota-
tion provided at the shot level. It contains about 85 hours
of news broadcasts from 13 international TV programs in
Arabic, Chinese, and English, and is annotated with 101
concepts covering a wide range of topics ranging from ab-
stract one (e.g., indoor, outdoor) to more specific one such
as sport events (e.g., golf, baseball) or names of well known
people (e.g., B. Clinton, T. Blair). Ground truth data are
provided at the shot level, where a shot may be annotated

with multiple concepts, e.g., a shot may be labelled simulta-
neously with the concepts soccer, grass, people, and other.
In overall, this extended annotation effort offers a collection
of more than 40 thousand multi-labelled shots.

We split this annotated shot database to two equally sized,
independent datasets, D1 for training the concept detectors,
and D2 for evaluating the model referencing mechanism. For
the evaluation of the referencing mechanism we are inter-
ested in the shots with the following labels: h6 = baseball,
h7 = basketball, h41 = football, h42 = golf, h82 = soccer; it
is these labels that we treat as event classes in our experi-
ments with the proposed content-event model. Shots anno-
tated with the above 5 labels are extracted from D2 to form
an event evaluation set U of 492 shots in total (N = 492).
This process yields a set of disjointed event classes, i.e., each
shot in U belongs to only one event class but is also anno-
tated with multiple concepts out of the remaining 96 ones
that we do not treat as event classes. The number of shots
in each event class are shown in Table 1.

basketball soccer football baseball golf
119 198 71 53 51

Table 1: Event dataset.

For applying concept detectors to this dataset, we use one
keyframe per shot; one exemplary keyframe for each event
class is shown in Figure 3.

3.2 Training of the concept detectors
One of the methods used in the TRECVID experiments

of [13] is applied on the D1 dataset for training one concept
detector dκ() for each concept hκ. This method is briefly
described in the sequel.

A Bag-of-Words (BoW) procedure is used to represent
each shot keyframe with a 100-dimensional feature vector.
This is done by firstly extracting keypoints from each key-
frame and describing each keypoint with a 128-dimensional
SIFT vector, secondly clustering the SIFT vectors to create
a vocabulary of 100 Visual Words, and thirdly using the
created vocabulary to represent each shot on the basis of
the keypoints extracted from it.

The feature vectors described above are used for train-
ing 101 SVM-based concepts detectors (K = 101) using the
one-against-all method. That is, the κ-th SVM is trained
considering all shot keyframes labelled with the concept hκ

as positive samples and the rest of the keyframes as nega-
tive samples. The output of the each SVM is a number in
the range [0, 1] expressing the DoC that the concept hκ is
present in the keyframe, as explained in section 2.3.1. From
our TRECVID 2008 experiments it has been shown that
the employed concept detection method [13] ranks close to
the median, hence, it generates moderately accurate concept
detectors compared to the current state-of-the-art.

3.3 Evaluation of the referencing mechanism
The performance of the referencing mechanism is evalu-

ated on the U dataset (described in section 3.1) by applying
a 50-fold cross-validation procedure. At each validation cy-
cle 20% of the samples from each event class are removed to
form the test set, while the remaining 80% of the samples
form the training set.

The BoW procedure described in section 3.2 is used to rep-
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Baseball Basketball Football Golf Soccer

Figure 3: Shot keyframes of the five events.

resent each training shot keyframe with a 100-dimensional
feature vector, and the 101 trained concept detectors are
used to further map the BoW feature vectors to 101-dime-
nsional model vectors, as explained in section 2.3.1. The
resulting model vectors are used by the referencing mecha-
nism for learning the event classes. During testing the same
procedure is followed to represent the test shot keyframe
with a 101-dimensional model vector and the trained refer-
encing mechanism is used to index the non-annotated shot
with one of the considered events.

For comparison purposes we also evaluated the perfor-
mance of three other approaches described in the following:

1) Concept-based indexing using the Max Rule: The n-
th test shot keyframe is represented with a 100-dimensional
feature vector sn using the BoW method described in sec-
tion 2.3.1. The concept detectors that correspond to the
five event classes are then evaluated, x́n,κ = dκ(śn), κ ∈
[6, 7, 41, 42, 82], and the Max Rule [11] is used to assign the
test keyframe to the event class with the maximum DoC

ýn = arg max
κ∈[6,7,41,42,82]

(x́n,κ) . (8)

2) Event-based indexing in the Input Space: The test model
vector x́n is perceived as a feature vector representation of
a non-annotated keyframe belonging to one of the five event
classes (i.e., we do not only consider the x́n,κ components
that correspond to the five event concepts). The NN clas-
sifier is directly used in the input space to index the test
keyframe

ýn = arg min
i∈[1,...,N]

(xT
i x́n) . (9)

3) Event-based indexing using LDA: The training model
vectors are used to compute a linear projection matrix W
using LDA [8]. LDA seeks for the linear projection W that
maximizes the criterion JLDA(W) =| WT SbW | / | WT SwW |,
where Sw, Sb, are the within and between scatter matrices
respectively. In case that the number of the training samples
N is adequately larger than the dimensionality of the input
space K, W is formed by the generalized eigenvectors that
correspond to the largest eigenvalues of S−1

w Sb. The index-
ing of a test model vector x́n is then done by first projecting
it in the discriminant subspace using W and then applying
the NN classifier. That is, the equations (6), (7) are used
respectively, where V is replaced by W.

In order to analyze the results of event detection accord-
ing to the proposed approach and the three others discussed
above, confusion matrices are shown for each approach in
Table 2. From the confusion matrices we observe the follow-
ing: a) Most of the soccer event shots are correctly classified;

Concept-based indexing (Max Rule)

baseball basketball football golf soccer
baseball 9.3% 11.8% 32% 31.4% 15.4%

basketball 16.2% 52.3% 12.8% 4.7% 13.9%
football 6.3% 21.4% 54.6% 3.4% 14.3%

golf 27.4% 7.6% 10% 51.2% 3.8%
soccer 5.5% 2.1% 3.6% 4.8% 83.9%

Event-based indexing (Input Space)

baseball basketball football golf soccer
baseball 33.6% 16.3% 11.4% 17.6% 20.9%

basketball 6.9% 64% 8.2% 4% 16.8%
football 7.3% 12.1% 58.6% 3.7% 18.3%

golf 7.6% 6.2% 2.4% 69.4% 14.4%
soccer 5.8% 5.8% 2.9% 2.6% 82.7%

Event-based indexing (LDA)

baseball basketball football golf soccer
baseball 30.2% 18.7% 13.1% 20.9% 17.1%

basketball 7% 62.7% 11.2% 4.2% 14.9%
football 11.3% 18.7% 54.3% 3.6% 12.1%

golf 14.6% 8.4% 6.4% 56.2% 14.4%
soccer 5.8% 8.1% 4.1% 4.2% 77.6%

Event-based indexing (SDA)

baseball basketball football golf soccer
baseball 38.3% 12.2% 14.7% 14.9% 19.8%

basketball 5.3% 62.6% 10% 3% 18.9%
football 5.4% 14.4% 67% 0.8% 12.3%

golf 7.4% 8% 2.8% 68.6% 13.2%
soccer 4.2% 6.5% 3.5% 2.7% 83.1%

Table 2: Confusion matrices.

however, a very large portion of the shots of the other event
classes are misclassified as soccer events. This is probably
expected as soccer, football, baseball and golf are all out-
door sports involving a green playfield, while both soccer
and basketball are also intensive sports, many times involv-
ing groups of people in action. b) The basketball, football
and soccer are quite distinct from golf (less than 5% of their
shots are misclassified as golf for all the approaches), prob-
ably because they are team, intensive sports, in contrast
to golf which involves individuals moving rather slowly. c)
The golf event is highly confused with the baseball event
when the Max Rule and the LDA-based approaches are used
(27.4% and 14.6% of the golf shots are confused as baseball
shots respectively). This is probably due to the fact that
golf and baseball shots most of the times depict individuals
holding a club (a bat or a golf club) moving rather slowly
on a green playfield. d) The baseball event is often con-
fused with the others, especially in the case of the Max Rule
approach, where only 9.3% of the baseball test samples are
correctly classified.

The overall performance of each approach is measured us-
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ing the average correct classification rate (ACCR) for the
whole 50-fold cross-validation procedure. This is done by
first computing the correct classification rate (CCR) at each
validation cycle, and then averaging them over all the vali-
dation cycles. The CCR for one validation cycle is computed
by dividing the number of correctly classified test samples
by the number of all test samples in this cycle. The AC-
CRs of the four methods are given in Table 3. We observe
that the best ACCR is provided by the approach using SDA,
indicating that event classes have indeed a subclass struc-
ture that is appropriately captured by SDA. Moreover, it is
verified that event-based indexing provides superior results
in comparison to directly examining the concept detector
scores (Max Rule).

Max Rule Input Space LDA SDA
ACCR 60.5% 67.9% 63.2% 69.4%

Table 3: Comparison of the four methods.

4. CONCLUSIONS
A joint content-event model for indexing multimedia con-

tent was proposed that addresses several limitations of the
current state of the art models. The core of the model is
a referencing mechanism that allows automatic indexing of
multimedia content with events. This mechanism has been
evaluated on the MediaMill dataset for indexing video con-
tent with five sport events, providing promising results.
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