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A Comparatre Study of Object-level Spatial
Context Techniques for Semantic Image Analysis

G. Th. Papadopoulos, C. Saathoff, H. J. Escalante, V. Mezaris, |. Kompatsiaris and M. G. Strintzis

Abstract—In this paper, three approaches to utilizing object- localizing and recognizing the actual objects that are depicted
level spatial contextual information for semantic image analysis in the image, have received particular attention. Their achieve-
are presented and comparatively evaluated. Contextual informa- ments and outcomes have been shown to significantly reinforce

tion is in the form of fuzzy directional relations between image ther i ioulati task - th id
regions. All techniques, namely a Genetic Algorithm (GA), a other image manipulaton iasks, since they can provide a

Binary Integer Programming (BIP) and an Energy-Based Model g0od foundation for boosting image classification [3], enabling
(EBM), are applied in order to estimate an optimal semantic the realization of complex queries [4] or facilitating further
image interpretation, after an initial set of region classification jnference [5], to name a few. However, the efficiency of
results is computed using solely visual features. Aim of this paper semantic image analysis approaches based on image seg-

is the in-depth investigation of the advantages of each technique . . A .
and the gain of a better insight on the use of spatial context. mentation and object recognition is significantly hindered by

For this purpose, an appropriate evaluation framework, which the ambiguity that is inherent in the visual medium. This is
includes several different combinations of low-level features and due to the fact that the localization and recognition of the
classification algorithms, has been developed. Extensive experi-real-world objects in unconstrained environments constitutes
ments on six datasets of varying problem complexity have been 4 cna|lenging problem. For overcoming this limitation, among

conducted for investigating the influence of typical factors (such th uti th f textual inf i has b
as the utilized visual features, the employed classifier, the number other solutions, the use or contextual information has been

of supported concepts, etc.) on the performance of each spatial Proposed [6].
context technique, while a detailed analysis of the obtained results  Image context includes all possible information sources that

is also given. can contribute to the understanding of the image content,
complementarily to the use of the visual features. In the setting
of semantic analysis, contextual information comprises any
kind of relations between the semantic entities that can be

.The.extensive prolifera_ti.o.n of.multime_dia_captu.ring deViceﬁresent in an image (e.g. spatial, co-occurrence, scene-type
with high storage capabilities in combination with the Cocqrmation, etc.). Following the context acquisition proce-
tinuously growing network access availability have resulteg,re contextual information can be used for: a) refining the
in the generation of literally vast image collections. Thg, 46 analysis results that have been computed based solely
Iattgr are being exchanged among |nd|\_/|duals or are.maglc-; visual features, by serving as a set of constraints that
avallgble over the Int_ern_et. At. the same time, common images former need to satisfy, and b) providing the appropriate
manipulation tasks, like indexing, search and retrieval in Suﬂ?ior knowledge that is required for performing inference
collections, ofte_r_l constitute an integral part of an i_ndividualand generating more detailed semantic descriptions. Out of
everyday activities at both personal or professional |evele gyailable contextual information types, spatial context is
As a consequence, new needs have_emerged regarding Jhgcreased importance in semantic image analysis. Spatial
development of advanced and user-friendly systems for 8§ ext represents and models the spatial configuration of the

efficient manipulation of the image content [1]. For tacklingea) world objects and facilitates in discriminating between
these challenges, approaches that shift image processing,§p.qts that exhibit similar visual characteristics.

a semantic level have been proposed and so far exhibitedsatia| contextual information can be divided into global-

promising results [2]. _ and local-level [7]. Global spatial context includes information
Among the approaches belonging to the latter categogy,,t the overall spatial layout of the image and facilitates

semantic image analysis techniques, i.e. techniques aimingr@‘identifying different scene configuration types. In [8], a
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I. INTRODUCTION



Computer Vision and Image Understanding, vol. 115, no. 9, pp. 1288-1307, September 2011, doi:10.1016/j.cviu.2011.05.005 2

local spatialcontext concerns relations derived from the arghe context acquisition procedure are detailed in Section V.
that surrounds the object to be detected. The latter may inclutiee selected spatial context exploitation techniques are de-
interactions between objects [11], [12], patches [13], [14] acribed in Section V. Experimental results from the performed
pixels [15], [16], [17], [18]. In this work, spatial contextualcomparative evaluation as well as detailed analysis of them

information at object-level is considered.

are presented in Section VI and conclusions are drawn in

Although a series of different and well-performing apSection VII. The main symbols used in the remainder of the
proaches to spatial context exploitation have been proposadnuscript are outlined in Table I.

[19], [20], [21], [22], the evaluation of each has been mostly

limited to very few datasets (usually one or two) or rather ||. OBJECTLEVEL SPATIAL CONTEXT TECHNIQUES

study examining under which circumstances the use of spa’gi
context is advantageous and how its resulting performance |

specific application cases. On the other hand, a comprehens’i%/ﬁ)

affected by typical factors such as the utilized visual features
the employed classifier, the number of supported objec%s
different datasets of varying complexity, the amount of dah';]t
used for spatial context acquisition or the number of region
that are present in the image, has not been performed.

In this paper, a comparative evaluation of three spati

bject-level spatial context approaches take into account
ormation about the spatial configuration of the objects, in
ofdler to facilitate in their discrimination. These techniques
an be roughly categorized using two main criteria: i) the
complexity of the utilized contextual information and ii)

e methodology followed for enforcing the acquired spatial
Bnstraints. With respect to the complexity of the spatial
iqformation, the following categories of methods have been

. L o roposed:
context techniques for semantic image analysis is conducﬁegp

with several different combinations of low-level features and 1a)

classifiers on six datasets of varying problem complexity. Aim
of this study is the in-depth investigation of the advantages of
each spatial context approach and the gain of a better insight
on the use of spatial contextual information. To achieve this,
the three considered spatial context techniques, i.e. a Genetic
Algorithm (GA), a Binary Integer Programming (BIP) and an
Energy-Based Model (EBM), are selected so as to cover the
main categories of the approaches that have been proposed
in the literature. An appropriate evaluation framework, whose
general structure is illustrated in Fig. 1, has been developed
for realizing this study. Additionally, a novel quantitative
measure, called Spatial Context Factor (SCF), is introduce
for indicating the degree to which the spatial configuration
of a given object is well-defined. As can be seen in Fig. 1,
the examined image is initially segmented and two individual
sets of visual features, namely MPEGIescriptors and SIFT-
based features, are extracted for every resulting segment. In
parallel, for every pair of image regions a corresponding set
of fuzzy directional spatial relations are estimated. Then, each
set of low-level features is in turn provided as input to three
different classification algorithms, namely a Support Vector
Machine (SVM), a Random Forest (RF) and a LogitBoost
(LB). Each classifier aims at associating every region with a

predefined high-level semantic concept based solely on visuailc)

information. The latter is used for denoting a real-world object

that can be present in the examined image. Subsequently,
the three aforementioned spatial context techniques, which
perform on top of the initial classification results and follow

different approaches for spatial context acquisition, are applied
in order to estimate an optimal region-concept assignment.
Extensive experiments have been conducted for investigating

methods examining adjacency characteristics: In
[23], [14], [24], [9], a series of methods that take into
account information about the adjacency between
image regions for assigning the appropriate semantic
concepts are proposed. Additionally, Galez-Oaz

et al. [25] present a generative model that consid-
ers the length of the common boundary between
pairs of regions. Examining the adjacency between
image regions results in reduced expressiveness of
the acquired contextual information, which in turn
limits the use of this category of methods in specific
application cases.

approaches that make use of binary spatial relations:
The methods of [26], [20], [27], [11], [28] follow a
frequency counting approach for estimating spatial
constraints between object pairs. Desai et al. [21]
formulate the learning of a set of weights, which
encode valid spatial configurations of individual
object classes, as a convex optimization problem.
Additionally, a maximum-likelihood approximation
is followed for the acquisition of spatial contextual
information in [13]. Saathoff et al. [29] use support
and confidence as selection criteria for obtaining a
set of binary constraints.

methods supporting the use of fuzzy relations: A sta-
tistical learning approach to spatial context exploita-
tion is described in [12], where fuzzy directional
relations are considered and the impact of every
acquired spatial constraint is adaptively adjusted. In
[30], a fuzzy spatial relation ontology is developed
for guiding image interpretation and facilitating the
recognition of the semantic concepts it contains.

the influence of a series of factors on the performance ofRegarding the methodologies followed for enforcing the
each spatial context technique, and a detailed analysis of 8fluired spatial constraints, these have been dominated by the

obtained results is given.

use of Machine Learning (ML) and probabilistic techniques.

The paper is organized as follows: Section Il presents i€ main categories that have been presented include:

overview of the relevant literature and discusses the selectiorfa)

of the considered techniques. Section Il outlines the visual
information processing. The spatial relations extraction and

graphical modeling-based methods: A CRF-based
approach is presented in [20] that incorporates both
co-occurrence and spatial contextual information.



Fig. 1.
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LEGEND OF MAIN SYMBOLS

Symbol Description
Sn, m € [1,N] createdimageregions after segmentation
Un, visual featurevector extracted for regios,,
¢k, k €1, K] definedsemanticconcepts

ok = P(Cklvn)

probability with which concept, is assigned to regios,,, using only visual features

R={r,, v€[L,I]} setof supported directional relations
7~ (Sn, Sm) degreeof satisfaction of relation, by the ordered region pails,, sm); this belongs to the continuous ranfie 1]
Gnk assignmenbdf concepicy, to regions,,, after spatial context exploitation

freq(cy) frequeng of occurrence of concepty

freq(ek, cr) co-occurrencdrequeng of concept pair(cg, ¢;)

CRFsarealso used in [13] for encoding the objects’ layout, and for fusing local visual information with
relative configuration and in [9] for incorporating the global geometric layout of a segmented image,
spatial adjacency information during the assignment respectively. Additionally, a method termed Mutual
of high-level objects to local image patches. Car- Boosting is presented in [34] for incorporating spatial
bonetto et al. propose a Markov Random Field contextual information during object detection.
(MRF)-model that combines image feature vectors 2c) methods that are based on optimization techniques
with spatial relations for the task of object recog- and methods for solving systems of linear equa-
nition in [14], while Heesch et al. [28] introduce a tions: Papadopoulos et al. [12] make use of a ge-
MRF with asymmetric Markov parameters to model netic algorithm for realizing image analysis as a
the spatial and topological relationships between global optimization problem, taking into account
objects in structured scenes. Additionally, Bayesian spatial contextual information. In [29], the problem
Networks (BNs) are employed in the works of [11] of spatial context exploitation is formalized follow-
and [19], for learning probabilistic spatial context ing a linear programming technique. Additionally,
models and for combining spatial context with visual a spectral theory-based method is proposed in [24]
and co-occurrence information, respectively. Torralba for incorporating spatial information in the image
et al. [31] introduce the so called Boosted Random labeling process. In [35], semantic image analysis is
Fields (BRFs) for exploiting both local image data realized as an arc consistency checking problem with
and spatial contextual information. Moreover, Yuan bilevel constraints, using qualitative spatial relations.
et al. [26] employ simple grid-structure graphical Moreover, the exploitation of spatial contextual in-
models to characterize the spatial dependencies be- formation between objects is formalized as a fuzzy
tween the objects depicted in the image. A tree constraint satisfaction problem in [36].

graphical model is proposed to learn the spatigd must be noted that more elaborate approaches, which com-
configuration of the different object categories imine characteristics from more than one of the aforementioned
[22]. categories, have also been proposed. For example, the GA

2b) statistical learning approaches: An extension of th@ethod of [19] that is among the ones examined in this work

original Latent Dirichlet Allocation (LDA) tech- follows a statistical learning approach for spatial constraints
nique, in order to incorporate spatial information, igcquisition, while it makes use of a set of BNs for combining
proposed in [32] for simultaneously segmenting anghe spatial with the visual and the objects’ co-occurrence
classifying objects that are present in the examinefformation.

image. Similarly, extensions of the traditional prob-

abilistic Latent Semantic Analysis (pLSA) techniquey  gelection of Considered Techniques

are proposed in [33] and [25] for detecting differ- . . . . o
ent object categories and their approximate spatigIThe core objective of this work is to gain a better insight and

erive general observations regarding the use of object-level
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spatialcontextual information. For achieving this, three differ-[20], [28] and [11]) follow a simple frequency counting
ent techniques are considered. These are a Genetic Algorithpproach of binary relations for spatial context acquisition.
(GA), a Binary Integer Programming (BIP) and an EnergyAlthough the aforementioned methods provide a more detailed
Based Model (EBM). Specifically, the GA realizes imageepresentation of the objects’ topology than the approaches
analysis as a global optimization problem [19]. This methaaf [25] and [32], the acquired spatial contextual information
incorporates a set of BNs for probabilistically adjusting theemains significantly simpler than the fuzzy constraints that the
impact of the spatial, visual and concepts’ co-occurren&BM and GA use. In parallel, a set of techniques rely on the
information, while a statistical learning approach is followedse of graphical models (i.e. the methods of [26], [20], [28],
for estimating complex fuzzy spatial constraints. The BIPL3] and [22]), where every image region is associated with
also formalizes spatial context exploitation as an optimizati@amnode of a model and spatial context exploitation is realized
problem and, in particular, it follows a linear programmindpy performing inference in this model. The main drawback of
methodology [29]. The latter technique makes use of binatlyese graphical modeling-based methods is that they often lead
spatial constraints, which are computed using support ardintractable partition functions, especially when images with
confidence as selection criteria. The EBM represents the imagany regions are involved. The EBM is a representative of
as a fully connected graphical model [37], which in its currenhis category of techniques. However, EBMs are advantageous
implementation is appropriately extended to include spatiebmpared to other undirected graphical models that are widely
information. Then, it estimates the objects’ expected relatiused, like MRFs. This is mainly due to the fact that they
position, by calculating a set of fuzzy spatial constraints. Aflllow the relaxation of the strict probabilistic assumptions
the aforementioned approaches make use of fuzzy directionall the avoidance of intractable partition functions [38].
relations. Singhal et al. [11] make use of a series of BNs, which are
The spatial context techniques that are included in tlygadually constructed and solved in an iterative manner, for
developed evaluation framework are selected so as to compproximating the final image interpretation. Nevertheless, the
the main categories of the approaches that have been propgeegosed greedy inference propagation scheme was shown to
in the literature. In particular, the EBM is representative dfe significantly outperformed by the GA [12], which realizes
category (29 described above, i.e. methods that associateage analysis as a global optimization problem. Moreover,
every image region with a node in a graphical model th#te techniques of [13] and [22], apart from the limitations that
represents the image and, subsequently, the semantic imdgeve from the usage of graphical models discussed above,
interpretation is estimated by performing inference in thigtilize relatively simple spatial contextual information. More
model. Additionally, the EBM constitutes also an instancgpecifically, the method of [13] learns a set of weights for the
of category (1¢), since it allows the use of fuzzy spatisgmployed binary spatial relations and the approach of [22]
constraints between the supported objects. On the other hamgks the height and the vertical position of the objects, while
the estimation and usage of a set of binary constraints classtigy both incorporate significant probabilistic assumptions for
the BIP to category (1b), while the formulation of regiorenabling the learning process. On the other hand, the technique
labeling as a linear programming problem is a typical case of [21], beside the use of relatively simple spatial contextual
class (2¢). Moreover, the GA is in principle a member 2f)( information, adopts a greedy search algorithm for finding the
and (L¢), since it adopts a global optimization methodologpptimal image interpretation. The latter characteristic consti-
for incorporating spatial information in the analysis processtes a limitation when the problem complexity increases (i.e. a
and supports the use of fuzzy spatial relations, respectivdptge number of objects or image regions is present), compared
However, the GA is also a member of (2b), since it followso the GA and the BIP that follow a global optimization
a statistical learning approach for acquiring complex spatiapproach. Furthermore, the BIP was experimentally shown
contextual information and also employs a set of BNs fdo outperform the method of [36], although using the same
probabilistically adjusting the impact of the spatial versus thmethodology for acquiring the spatial constraints [29]. This is
visual and the co-occurrence information. mainly due to the need of a monotonically decreasing objective
In Table Il, some of the most representative spatial contexinction by the adopted fuzzy constraint satisfaction approach,
techniques of the literature are presented, where the typesufhilarly to other common optimization methods. The BIP,
the contextual information and the constraints enforcementt the contrary, can use an arbitrary linear objective function,
procedure are given for every case. As can be seen, Hiece it constitutes a particular type of linear programs. At this
methods of [25] and [32] utilize adjacency characteristigmoint, it must be highlighted that the selected GA technique
(i.e. the length of the regions’ common boundary and th@resents a significant advantage over all the other methods
region adjacency property, respectively). This results in rpresented already. This is that it incorporates a probabilistic
duced expressiveness of the objects’ spatial configurati@pproach for efficiently adjusting the impact of the available
On the contrary, all selected spatial context techniques usmatial, visual and co-occurrence information on the final
fuzzy directional relations. Additionally, both the pLSA andutcome for every possible pair of objects. Taking into account
LDA techniques, which are used by the methods of [25]ll the aforementioned considerations, it is shown that the
and [32] respectively, frequently present overfitting problenthree selected spatial context techniques present advantageous
and use approximations of the solution, especially when thkaracteristics, compared to other similar methods of the
network complexity is increased (i.e. large number of regiotiserature; hence, they are suitable for deriving general remarks
or objects). A series of techniques (i.e. the methods of [2@]n the use of spatial contextual information.
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TABLE I
REPRESENTATIVE SPATIAL CONTEXT TECHNIQUES OF THE LITERATURE

Method Contet type Constraintsenforcement
[25] Length of the common boundary between the regions Extensmnoftékc\ﬁntirglgétlonal PLSA
) ; Latenttopic model, extension of the

(32] Region adjacency traditional LDA technique
[26] Frequeng counting of binary relations Gr'%%r_lﬁc&ﬁgﬁggcé'g}%dels
20 Frequeng matrices of pairwise relations CRF
28 Frequenyg counting of pairwise relations between neighboring regions MRF with asymmetric parameters
11 Frequenyg counting of binary relations Setof BNs solved iteratively

ML approximationof weights in the CRF’s pairwise potentials
(3] (Elpnary relations, differences of the region centroids) Two-layer CRF
[22] Models edgepotentials, by considering the object’s vertical location and height Tree graphical model

; ! ; ’ ot Non-maximasuppressioffNMS)
[21] Learningof weights for binary relations as a convex optimization problem post-processing heuristic
[36] Binary spatialconstraints, using support and confidence as selection criteria  Fuzzy constraintsatisfaction problem

[1l. VISUAL ANALYSIS classifier receives as input either one of the two region
A. Segmentation and Visual Feature Extraction feature vectors,, described in Section IlI-A and estimates for

every defined concept;, k£ € [1, K], a posterior probability
Vi = P(ck|vn). This probability denotes the degree with
ch concept, is assigned to region,,.

In order to perform the initial region-concept associatio
the examined image has to be segmented to regions
suitable low-level descriptions have to be extracted for ev- SVMs have been widely used in semantic image analysis
ery resulting segment. In this work, a modified K-Meanst-a

with-connectivity-constraint pixel classification algorithm has sks due to their reported generalization ability and their
y P 9 Suitability for handling high-dimensional data [42]. Under

been usec_i for seg_mentl_ng the image .[39]' Output of thy e proposed approach, an individual SVM is introduced for
segmentation algorithm is a segmentation mask, where the : : )
. . . every defined semantic conceptto detect the corresponding
created spatial regions,, n € [1, N], are likely to represent . . . ) .
i . i instances, and is trained under the ‘one-againstagproach.
meaningful semantic objects. . : X
. . Each SVM receives as input the region feature vectpand
Every generated image segment is subsequently repre- _ . . . .
; . . estimates the posterior probability,,, as follows: h,, =
sented with the use of a visual feature veetgr Two different 1 . . X .
e . . . ————, wherez,,, is the distance of the particular input
methods for estimating,, are considered. Regarding the firsf.+e 7 *nk . , .
. . eature vector,, from the corresponding SVM'’s separating
one, the following MPEG? descriptors are extracted an . .
. ) perplane and) is a slope parameter set experimentally.
concatenated to form the region feature vector: Scalable Color, = . . o e
. . is distance is positive in case of correct classification and
Homogeneous Texture, Region Shape and Edge Histogram, .. .
. . . . negative otherwise.
This results in a33-dimensional low-level feature vector. The Fs 1431 bel o th | cat ¢ ble cl
second method is based on the Scale-Invariant Feature Trang:' > [. ] Ieon_? 0 tr? tgint_al:ja ca tehgory 0 b‘?”st?m ef Ctr?s
form (SIFT) [40]. In particular, a set of keypoints are |n|t|aIIySI ers, 1.€. classiliers that burid on the combination of the

estimated for every regios),, usingapoint-of-interestdetectorouml.Jts O.f fT‘”'“p'e weak Iearner_s : I_n parUcqur, the RFS
as well as a pre-determined image grid, and a SIFT descrip{gpctlonallty is based on the combination of multiple decision
: ee classifiers, each of which is trained on different subsets

vector (with128 elements) is extracted at each keypoint. The e :

following the ‘Bag-of-Words' (BoW) methodology [41] aof training samples and/or different subsets of features. RFs

‘vocabulary’ of 300 visual words is constructed by performinga ) X : . ; :

clustering in thel 28-dimensional feature space. Subsequentl articularly suitable for data of high dimensionality or when
'IsmaII number of training instances is present [44]. In this

each region is represented by the histogram of the vis S e !
words that it contains, i.e. the set of words that correspor“\ﬁ)rk’ an individual RF classifier is defined for every supported

to the original SIFT descriptors extracted from it. The latte once_pt_ck, while the bne_—agamst-all approach |§_follovyed
histogram constitutes in this case the region feature vegtor or training. At the evaluation stage, the RF classifier estimates

The aforementioned visual features are in turn utilized by tﬁlae posterior probability:., . defined appve, by averaging the
%ltputs of the generated weak classifiers.

classification algorithms, i.e. they constitute a common dal . ; i o
set, for performing the region-concept assignment. . Boosting methods qopstltute a fam!l){ of classification tech-
nigues that make decisions by combining the results of weak
learners [45], similarly to the ensemble classifiers described
above. The main advantage of these methods is that they have
In this section, the initial region-concept association prdeen shown to be less susceptible to overfitting occurrences
cedure, i.e. the assignment of high-level semantic conceptdftan most learning algorithms. In the present analysis frame-
image regions based solely on visual information, is describedork, a particular boosting algorithm is selected, namely the
In the developed evaluation framework, three individual clagB classifier, which makes use of a logit transform (log-
sification algorithms are employed: Support Vector Machineslds ratio) for converting the weighted sum of the weak
(SVMs), Random Forest (RF) and LogitBoost (LB). Everyearners’ output to a probability [45]. Similarly to the SVM

B. Visual Classification
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andthe RF classification schemes, an individual LB classifie¢he following equation:
is constructed for every concepf, while the ‘one-against- Kl iy BINT crcl
all approach is again followed for training. The posteriocrov(r ) = Eltnm =T (nm —T7)7], V(sn, 5m) € B )

probability /.. is estimated this time by making use of therhe estimation of the covariance matrisw(r*') results in a

aforementioned logit transform. Among the several different . \ . i
more complete representation of the concepts’ spatial config-

options that are available for selecting the weak learners, .. .
. . . uration than using the mean vectd? alone.
regression trees were used in this work. . : X ) .
Having acquired the appropriate spatial constraints, each
technique aims at estimating an optimal region-concept as-
sociation, i.e. assigning a final conceptto every regions,,,

taking into account both visual and spatial information. This
The first step in the application of any spatial contex@ssociation of concept, with regions,, is denotedy,,.
technique is the definition of an appropriate set of spatial
relations. In the present analysis framework, fuzzy directional V. SPATIAL CONTEXT TECHNIQUES
spatial relations are used to denote the order of objects An Genetic Algorithm

space. The set of supported directional relations, denoted by; g have been used in a wide variety of optimization

R = {ry, v € [1,T]}, comprises the following relations: , opjems, where they have been shown to outperform other
Above, Right, Below, Left, Below-Right, Below-Left, Above- .5 itional methods [47]. Under the proposed approach, a
R|ght an_d Above—L(_aft. These are estlmated_for every ordergdh s employed for deciding on the optimal semantic im-
pair of image regions(s,,sm), n 7 m, in parallel 0 540 interpretation by treating image analysis as a global
V|s'ual feature. extraction. Relation estimated for the région ontimization problem, taking into account spatial contextual
pair (sn,sm) is denoted byr,(sn, s,) € [0,1]. A detailed information. GAs constitute one of the most widely known
description of their extraction procedure can be found in [46é1obal optimization methods [48], in the sense that in most
After the spatial relations extraction, a learning proceggses they achieve to find the optimal solution (or a solution
is typically followed by each technique for spatial contexfery close to the global optimum). The GA, being in principle
acquisition. For this purpose, a set of manually annotatgdstochastic process, is not always guaranteed to converge
image content, denoted by;. and for which the fuzzy g the global maximum, as no other stochastic optimization
directional relations have been computed, is used. For ev@Rthod is. However, through the tuning of the GA's parameters
possible ordered pair of concefiis:, ¢;) a corresponding set (jike selecting a sufficiently large number of chromosomes in
of relations, denoted by, is formed. This set compriseseyery population, choosing an appropriate selection operator,
all relationsr (sn,sm), n # m, that have been computedselecting a suitable crossover operator, adjusting the proba-
for all region pairs inDj,, where concepts; and ¢; have pjlities of mutation and crossover, etc.) the employed GA is
been manually assigned to regions and s,,, respectively. adapted to the problem of spatial context exploitation and
Additionally, sets R{» C R, v € [1,T], are also jt js shown experimentally that it is capable of reaching a
created, with respect to every individual spatial relation sojution close to the optimal one (if not the global maximum).
Subsequently, each of the selected spatial context techniqlegust be noted that GAs are generally more robust in finding
applies its learning approach for spatial context acquisitiofhe globally optimal solution, compared to other common
In particular, the BIP estimates a binary constraint for evefyca| search algorithms that iteratively shift among possible
concept pair(c,¢;) and every supported spatial relation,  sojutions and are thus more likely to converge to local maxima
which is denoted by’ (cx, ;). The latter is defined equal to(e g. gradient descend methods, quasi-Newton method, etc.)
1 if conceptsc, and¢; are ‘allowed’ to be connected through[48]_
relationr,, whereas it is set equal thotherwise. Constraints  The developed GA employs an initial population of ran-
T(ck,c;) are computed using support and confidence @®mly generated chromosomes. Every chromosamneep-
selection criteria, and making use of sé$-. On the other resents a possible solution, i.e. each gene assigns one of
hand, the EBM allows the use of fuzzy spatial constraintghe defined concepts;, to an image regions,; therefore
These are utilized to denote the concepts ‘expected’ spatial — {gnk, n € [1,N]}. After the population initialization,

IV. SPATIAL CONTEXT ACQUISITION

arrangement and are calculated as follows: new generations are iteratively produced by the application
T of evolutionary operators (selection, crossover and mutation)
Fnm = [11(Sn, 5m)s 72(Sns Sm) -7 (S0, Sm)] until the optimal solution is reached. The GA makes use of

i = [ AL PN = Elrm)s V(sn,sm) € R, (1) an appropriate fitness function for denoting the plausibility of
every possible image interpretation, which has the form:

where[.]T denotes the transpose of a matrix and an individual Y v )

mean vectorr*! is calculated for every ordered concept pair f(a) = =m Ik Jmt). (3)

(ck, ;). Moreover, the GA follows a more elaborate statistical N(N -1)

learning approach that takes into account, apart from the mesinereV (g,.x, gmi) € [0, 1] indicatesthe degree to which the

values, the variance and the correlations between the spagial, g..; region to concept mappings are consistent with the

relations. This is achieved by the calculation of the covarianeequired contextual and other (e.g. visual) information and

matrix cov(r*!) for every concept paitcy, ¢;), according to N(N — 1) denotes the number of ordered region pairs that
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are presentin the examined image and which contribute to CAy > CA
the summation in the numerator. Output of the GA is a final True \ / True
region-concept association which corresponds to the solutior = F al"se SChm (Yu'(GnksGmi)) F aise
with the highest fitness value. VAg, (i) SChm1 VA ()
Regarding the acquisition of the appropriate spatial con- VA - Va1
straints, a statistical learning approach is followed. This in- va‘\:m SCnma va‘n.r.;.o

volves the estimation of the set of value¥ and cou(r*)
(Section 1V) for every possible concept pdit, ¢;), which
represents the respective spatial constraint denotédFor Fig. 2. Developed BN structuréy, for combining spatial, visual and co-
evaluating the agreement of a given pair of region to coffE 1IN FNETE St - Serra TERE GEEE VB B2 R for
cept mappings (g.,g.;) With spatial constraintu*!, the V Apy and SCKL

following mahalanobis distance-based expression is used:

(Fnm — T, Yori(gor, gmt) € [0,1] denotes the degreea”alys's results (i.e. posterior probabilitiés,, and h,,;)

to which the pair of mappings {g,g.) is consistent with and the corresponding spatial constraint verification factor
1Jm . . . e

the acquired spatial contextual information. Greater values bf*! (9nk> gmi)- Then, it estimates the posterior probability

A . ; _ _ ki )
Y1t (gnies i) indicate more plausible spatial arrangements! (Cans = True, cami = Truelvank, vami, 5¢q,y,), DY per

L . forming inference. This probability constitutes a quantitative
1) Combination of Spatial, Visual and Co-occurrence In-_ . = . ; . i
formation: The GA combines the available spatial with th indication of how plausible the pair of region to concept map

: : . ings is, based on spatial, visual and co-occurrence
visual and the concepts’ co-occurrence information towar 9S (G gt) P

. ) . rﬁormation; the value oV (g,.x, gmi) in EQ. (3) is set equal
the detepuon of t.he most plausu?le pair of concep;;s@ for to this probability. A detailed description of the overall spatial
each pair of regions. Concepts’ co-occurrence indicates h

often a given pair of concepts is observed. For performinéglnteXt technique can be found in [19].

this, i.e. estimating the value df (g,.x, gmi) in Eq. (3), a
probabilistic approach is foIIowed._ In_particular,_ a series ¢f Binary Integer Programming
K? BNs are constructed, where an individual BN is introduced
for every possible ordered pair of concepts, ;) to learn the Linear programs are a well known methodology for solving
respective correlations. In the presented work, discrete sp&e@straint satisfaction problems. BIPs are a specific type of
BNs are employed [49]. For every BN the following randonfinear programs, which allow the definition of only binary in-
variables are defined: a) variablésd,,, and CA,.;: C A, teger variables. Despite the complexity of BIPs being generally
denotes the fact of assigning concepto regions,,; similarly NP-hard, for certain forms they can be solved in polynomial
for CA,. b) variable SC*. = which represents the valuetime [50]. Under the proposed approach, the problem of spatial
of the spatial constraint verification fact®t,« (g, gmi)- C) context exploitation is formalized as a BIP. For this purpose,
variablesV A, and V' A,,;: VA, denotes the value of the@ set of binary constraint®’, (cy,c;) (described in Section
estimated posterior probability,,;; similarly for V A,,,. For V), which model the concepts’ allowed spatial arrangement,
variablesC4,,;, and CA,,; the set of values that they canheed to be estimated. Then, the task of computing an optimal
receive is chosen equal {0a, 1, canke } = {Camir, camiz} = region—concept associatio'n' is expressed in t_he form of a BIP,
{True, False}. On the other hand, a discretization step i¢/hich can be solved efficiently and takes into account the
applied to the value¥, i (gny, gmi ), Ak andh, for defining initial c_IaSS|f|cat|on results as well as the acquired spatial
the discrete values of random variabl8§*! , VA, and constraints.
V A, respectively. The aim of the selected discretization For estimating the binary spatial constraifits(ck, ¢;), the
procedure is to compute a close to uniform discrete distributiggt of spatial relations that can connect every concgptith
for each of the aforementioned variables. The structure &y other concept, need to be determined. This is performed
the BN defined for the concept pair(«;) is denoted by using support and confidence as selection criteria. For this
Gy and is illustrated in Fig.2, where the direction of purpose, additional sets of relations, apart from the Béts”
the arcs defines explicitly the causal relationships amo#fgfined in Section IV, need to be generated from the image set
the introduced random variables. From the developed BRN. In particular, for every spatial relation, a corresponding
structureGy,, the joint probability distribution of the randomset of relationszS* is formed. This set comprises the relations
variables that it includes can be defined, according to thie(sn:sm), n # m, that have been computed for all region
Markov condition [49]. This probability distribution is denotedP@irs in Dj,, where concept,, has been manually assigned
DY Point (Clnks Cami, Vg, Vami, ScEL ), Where capy, can, 1O atleast one of the regions, or s,,. Similarly, setR:“ is

are the values of the variable§A,,,, Ccreated, which contains all relations(s,,s,) between any
CApi, VApk, VAu, SCF | respectively. It must be notedarbitrary regions,, and a regions,, associated with concept
that the BN requires a set of annotated image content, denotedThen, the confidence value, denotedday. £, (ck, 1), for
by DZ. (similar to the D}, set described in Section 1V), for Spatial relationr, and concept pai(cy, ;) is calculated as
training purposes. follows: con f,(ck,c1) = ‘R;gi,‘ where|.| denotes the num-

At the evaluation stage, the BN receives as input the visuzr of elements of a set. On the other hand, the corresponding

kl
VAnk, VAmls, SCphpy,
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supportvalue (sup, (ck, ¢;)) is estimated according to the fol-of the overall approach. A detailed description of this method

lowing expressionsup, (cx, ¢;) = 'ij;;cll‘. Spatialconstraint can be found in [29].
T, (cx, c;) is considered valid, i.€, (cx, ¢;) is set equal td, if
confy(cr,cr) > theons and sup.(cg, ;) > theyp; oOtherwise, C. Energy-based Model
T, (ck, c;) is set equal td. The values of the thresholds.,,, ; EBMs are structured prediction models that encode the
andths,, are estimated following an optimization procedurejependencies among the random variables that they include,
where image seb?, (Section V-Al) serves as a validation setwhile they can estimate an overall energy value for every
In order to represent the problem of concern, i.e. spati®ssible combination of values of their random variables [38].
context exploitation, as a binary integer program, a set of lindaBMs are defined in a way that more plausible sets of values
constraints for each spatial relation need to be defined [50].0htheir random variables lead to lower energy levels. Inference
particular, letO,, be the set of all outgoing relations for regioraims at estimating the values of the defined random variables
Sp, 1.6. Oy = {r(8n, $m), ¥Ym # n}, and E,, the respective that minimize the overall energy of the model. EBMs are ad-
set of incoming relations, i.6%,, = {r,(sm,s,), ¥m # n}. vantageous compared to other undirected graphical models that
Then, for every supported spatial relatien a corresponding are widely used, like MRFs. This is mainly due to the fact that
binary integer variablé’;’vm is defined, which represents thethey allow the relaxation of the strict probabilistic assumptions
region-concept mappings,... g.. With respect to relation and the avoidance of intractable partition functions that are
7y (S0, Sm)- b, = 1 denotes that the mappings.., g, Often encountered in MRFs [38].
are valid, whileb*. =~ = 0 that they are not. Since every In this work, an improved version of the approach proposed
binary variable)t’, | represents the assignment of concept pdit [37] is considered, which now incorporates information
(ck, ;) to the pair of regiongs,,, s,,) With respect to relation about the spatial arrangement of the image regions. The
7 (sn,5m), and only a single concept can be eventualljeveloped EBM reduces the region labeling problem to that

assigned to every region, this restriction has to be added@sgminimizing an energy function, which takes into account
a set of linear constraint§_, >, bﬁl'ym =1, Vry(s,,sn,). Vvisual, spatial and co-occurrence information. In particular,
These constraints ensure that there is only one pair of concelps EBM is represented with a graph, where each node corre-
assigned to a pair of regions with respect to every spatRfonds to a region,, of the examined image. Dependencies
relation. However, the aforementioned constraints do not @mnong regions are denoted by edges. Under the proposed
sure that a unique concept is associated with every regiondpproach, all possible connections between the nodes of the
the final image interpretation, since a pair of binary variablégodel are considered and its general structure is illustrated
for two spatial relations involving the same region mighh Fig. 3. Every node assigns one of the supported concepts
assign different concepts. In order to avoid that, additionat to every regions,; this assignment is denotegl:, as
constraints that ‘link’ the introduced variables need to béescribed in Section IV. Additionally, the energy-function
defined. This can be accomplished by linking pairs of relatior@f the EBM for a given image is defined according to the
For the case of the outgoing relations, this is performed E¥lowing equations:

follows: A reference relation, € O,, is arbitrarily chosen
v y E= _(Z tl(gnk) + ZtQ(gnkvgml))

and subsequently constraints regardingralle O, ¢ # 7,
are defined. Let.,(s,, 5,,) andr¢(s,, sp) be the two relations _ A, ' )

to be linked. Then, the following constraints are defined: t1(gnk) = B hnie +0 - freq(er)

> bR — >, bEL =0, Vei. The first sum receives the t2(gnk, gm1) = p- freq(ce, c) - hmi + v - ¢(gnk, gmi) ~ (5)

¢y “nCp
value 1 if ¢ is assigned tos, with respect to relation,. Term ¢,(g,,) in the above equations denotes the degree
The second sum has to receive the same value, since bgith which regions, is associated with concept;, taking
are subtracted and the whole expression has to be eqoal tthto account visual information (posterior probabilify,,
Therefore, if one of the relations assignsto s,,, the other has defined in Section 111-B) as well as the prior probability of
to do the same. Following the same approach, the incomiggcurrence of concepty, freq(cy). The latter is defined
relations, as well as the incoming with the outgoing onegs the percentage (relative frequency) of the overall regions
can also be linked. Eventually, an objective function, which, that are present in the images of sef,. (Section 1V)
denotes the plausibility of every possible image interpretatiofnd constitute instances of concept Parameters3 and &

is defined: adjust the degree to which,;, and freq(c) should affect
the value oft;(gnx), respectively. On the other hand, term

F= Z t2(gnk, gmi) indicates the consistency of thgx, g region

7 (Sn,5m) to concept mappings, based on spatialg(x, gni)) and co-

occurrence (freek, ¢;)) information. freq(ck, ¢;) is defined
Z Zmin(hnm Pant) T (8, $m) - Ty (cry ) - bEL (4)  equal to the percentage (relative frequency) of the region pairs
ko1 (sn, sm) that are manually associated with the conceptsd

. : . 9
This function rewards concept assignments that satisfy tie e images of seD,.. Additionally, factor ¢(gux, gm:)
acquired spatial context and exhibit high analysis values (i.'ﬁ. est|m.ated using a normz‘alllflkzle_? EHclldean distance-based
posterior probabilitiesh,,; and h,,;). The solution with the formulation:e(gny, gmi) = 1—"——Z===, where||.|| denotes

highest value of the objective function constitutes the outptite norm of a vector and the mean vectbt, which denotes
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e RREEELEL Rttt it © connect the concepts. Moving to a more detailed description
we """“"_‘_‘é‘"Q of the concepts’ spatial topology, the GA estimates, apart from
ST S MRRSEE L the values™, the variances and the correlations between the
_______ ‘-Q spatial relations (covariance matrixv(r*!) in Eq. (2)) for
“":__E_O t(g,,) every pair of concepts. In this way, the GA achieves a more
P S »r - o complete representation of the concepts’ spatial configuration
‘ _»;—’:/Q*;z_i)\% than the other techniques, since it encodes both the concepts’
t(g,,2.) g\'be:Q/’/’ expected relative position as well as the extent of the variation
e from it.
For combining the spatial, the visual and the concepts’ co-
Fig. 3. Developed EBM for spatial context exploitation. Filled nodes denoteccurrence information, the selected spatial context techniques
the region-concept assignment based only on visual information, while unfillﬁg”OW different fusion strategies. In particular, the BIP makes
ones represent the assignment after the EBM inference is performed. ) . ! . .
use of a product operator for combining the spatial with the
visual information, as described in Eqg. (4). This approach
the spatial constraint for concept pdif,, c;), is calculated Performs under the fundamental assumption that the visual
according to Eq. (1). The impact of factofseq(cy, ;) and féatures and the spatial relations for any pair of regions
&(gnk, gmy) ON the estimation of termy (g, gm:) is adjusted Constitute statistically independent quantities, regardless of the
through parameters andv, respectively. It must be noted thaSémantic concepts that are present in these regions. Addi-
for selecting the optimal values for parametérs, x andv, a tionally, the concepts’ co-occurrence information is taken into
grid search strategy is followed, where image B&t (Section account only implicitly and without gradation with respect to
V-Al) serves as a validation set. the individual concepts, through the value of the binary spatial

At the evaluation stage, the EBM receives as input the visug@nstraint T, (cx, ¢;). On the contrary, the EBM drops the
analysis results (i.e. posterior probabilitigs;), as well as aforement_loned statistical independence assumption and_ fol-
the spatial relations,, ,,, that have been computed for ever)}OW_S a welgh_t_ed sum approach fpr performing the mforma_tlon
possible region pair (s s,). Then, it assigns a particularfus'on- Specifically, the EBM estimates a set of glol:_;al Welght
concepte;, to every regions,,, ensuring that its overall energyfactors (parameters, 4, p and v in Eq. (5)) for adjusting
value E (Eg. (5)) is minimized. In the current implementationfhe impact of the visual features against the concepts’ prior
the Iterated Conditioned Modes (ICM) algorithm [51], i ePprobabilities and the co-occurrence information against the
an algorithm commonly used in EBM-based schemes ggatial context. The main drawback of this methodology is that
utilized for realizing inference. The latter was experimental{?® computed global weights are likely not to be appropriate

shown to outperform other widely used methods like simulatd@ &ll concepts. On the other hand, the GA follows a more
annealing and graph cuts. elaborate probabilistically-learning approach for efficiently

performing information fusion, separately for every possible
pair of concepts. In particular, the GA employs a set of BNs,
which enable it to identify concepts whose detection could
Having described the selected spatial context techniques,kenboosted by the incorporation of the spatial information and
in-depth theoretical analysis and comparison about the cagbsequently to adjust the impact of every information source.
idea behind each method is presented in this section. In p@his is carried out through the estimation of the probability
ticular, detailed comments are given regarding the followingjstribution P;,;n¢ (cank, cami, vank, vam, scit,) for the BN
key points in spatial context exploitation: a) the complexity daftructure in Fig. 2.
the utilized spatial contextual information, b) the combination The methodology followed for enforcing the acquired con-
of the spatial, visual and concepts’ co-occurrence informatiostraints also affects the efficiency of the spatial context ex-
and c) the spatial constraints enforcement procedure. ploitation procedure. In the present analysis framework, all
Regarding the complexity of the utilized spatial contextualpatial context techniques make use of machine learning
information, the BIP technique estimates a set of binamethods for this purpose. In particular, the EBM performs
constraints T, (cx, ¢;)), as described in Section V-B. Thesea mapping of every image region to an individual node
constraints define whether any two concepts can be conneatédch graphical model that represents the image. The main
through a given spatial relation or not. Inevitably, this choicdisadvantage of these models is that the maximum a posteriori
results into relatively coarse representation of the objects’ sgMAP) estimation is usually intractable, especially for models
tial configuration, since no information is included regardinthat contain many nodes, and the final solution can only be
the degree to which a spatial relation should be satisfied Agproximated. As a consequence, the inference algorithms
a particular pair of concepts. On the other hand, the EBMilized by the graphical models are in general locally optimal,
incorporates a finer representation by estimating the concefftshce, they can be easily misguided or substantially affected
expected spatial arrangement (vala€sin Eq. (1)). Although by the presence of noise in the data. Additionally, the EBM
this enables the quantitative description of the objects’ uswd#pends significantly on the concepts’ prior probabilities, due
relative position and allows the use of fuzzy spatial constraints, the initialization procedure of its nodes. On the other
this representation still does not include information abohiand, the GA is a global optimization method, as discussed
the variations that are observed in the spatial relations thatSection V-A. As such, the GA is generally expected to

D. Discussion



Computer Vision and Image Understanding, vol. 115, no. 9, pp. 1288-1307, September 2011, doi:10.1016/j.cviu.2011.05.005 10

be less likely to converge to local maxima than the EBM an ‘unknown’ region. The value of this threshold was
and to be less affected by the presence of noise, especially experimentally set equal &6%, while the respective
when the examined image contains a relatively large number value in the work of [54] was equal t&0%.
of regions. Moreover, the developed GA employs an initial iv) D, comprisess48 images belonging to the personal
set of candidate solutions, which are randomly distributed collection domain. An appropriate set Bf concepts
in the solution space and in this way render the method was defined for it and manual image annotation at
less dependent on the concepts’ prior probabilities. Similarly region-level was performed.
to the GA, the BIP is also a global optimization method. v) The PASCAL VOQ010? dataset Ds) for the seg-
Consequently, the BIP is also expected to be less affected by mentation competition. The dataset @oncepts) for
the presence of a relatively increased number of regions in the this particular competition was selected, since hand-
image than the EBM. made pixel-level image annotations were available

The experimental evaluation will show how the above algo- for it. In order to generate ground-truth image anno-
rithmic differences affect the performance of spatial context tations using an automatic segmentation algorithm, a
exploitation both in overall and for individual concepts. procedure similar to the case of tli¢, dataset was

followed.
V]. EXPERIMENTAL EVALUATION Vi) Finally, the MSRC v2 dataset was also used. For

this datasetDg) 21 semantic concepts are supported

A. Datasets and hand-made pixel-wise image annotations are
In the developed evaluation framework, six datasets denoted provided. To this end, a procedure similar to the cases

D:-Dg of varying complexity are utilized. Each dataset was of the D, and D5 datasets was performed again for

divided to three sub-sets, namdly,, D?. and D;.. The first generating region-level image annotations using an

one, D}, was used by the classification algorithms for training arbitrary segmentation algorithm.

and by the spatial context techniques for acquiring spatifhe partitioning of every utilized dataset to the image sets

contextu

al InfOI‘matIOI’].D%r was utilized for OptImIZIng the Dtl’l" th’r‘ anthe, as well as the Supported Concepts for each

parameters of the spatial context techniques, while was gataset, are illustrated in Table IIl.

used for

i)

ii)

Ihttp://m

evaluation. The selected datasets are: In order to examine the way that the supported concepts are
D, comprises535 images depicting only coastaldistributed among the images of each dataset, the concepts’ co-
scenes. An appropriate set dfconceptscy, which  occurrence frequencfreq(cx, ¢;) (Section V-C) is calculated,
represent meaningful real-world objects that can kieking into account this time all images of the respective
present in images of the formed set, was definedataset. The estimated values are depicted in Fig. 4. As can
Then, every image was manually annotated, i.ee seen from this figure, most concept pairsIl exhibit
after the segmentation algorithm described in Sectigslatively high co-occurrence frequency. This is due to the
IlI-A was applied, a single concept was associatefdct that the images of); depict only coastal scenes. On
with every resulting image region. the other hand, many frequency valugsq(cx, ¢;) are close
The SCEER dataset, which is denoted b§, and or equal to zero inD,y. This is caused by the fact that the
was introduced in [52]D, (10 concepts) constitutes images ofD, belong to different semantic categories; hence,
a broader dataset thaf,, including images that some concept pairs are likely not to co-exist. Moreover, it
belong to different semantic categories. can be seen that the co-occurrence matrices of Fig. 4 become
The LabelMe dataset [53], where tfié most dom- more sparse for datasei%;-Dg, as a result of the increased
inant concepts were considered (i.e. concepts wittumber of concepts that are supported for each of them.
at least approximately00 instances in the dataset).Especially for datasetds, Ds and Dg, the concepts’ co-

It must be noted that for this dataset {)Dhand- occurrence frequencies are particularly low (and many of them
made image annotation at region-level (i.e. the nunequal to zero). This is mainly due to each image of the
ber and the boundaries of the regions in the imaforementioned datasets depicting very few different kinds
age are also manually determined) was originallyf objects (usually no more than two or three), and to only
available. In order to generate ground-truth imagspecific concept pairs usually co-existing. Another important
annotations following the application of an automaticharacteristic that differentiates datasBts D5 and Dg from
segmentation algorithm, a procedure similar to théne remaining ones concerns the number of the regions that
‘figure-ground segmentation’ approach proposed #re present in the image and do not correspond to any one
[54] was followed. Specifically, every image wasf the defined concepts, i.e. the image regions considered as
initially segmented using the algorithm of [39]. Thenjunknown’ above. The percentage of these regions to the total
every created image region, was assigned one of number of segments is approximately equab$ds, 70% and

the supported concepts, if the percentage (%) of 42% in D3, Ds and Dg, respectively. This is caused by the
its area corresponding to concegt based on the significantly large number of image pixels that were manually
provided hand-made image annotation, exceededdatermined as ‘void’ during the original hand-made annotation
pre-defined threshold; otherwisg, was considered

2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/index.html
klab.iti.gr/project/scef Shttp://research.microsoft.com/en-us/projects/objectclassrecognition/



Computer Vision and Image Understanding, vol. 115, no. 9, pp. 1288-1307, September 2011, doi:10.1016/j.cviu.2011.05.005 11

TABLE Il
UTILIZED DATASETS

Numberof images
Dataset| DI D?. Dy Supportedconcepts
c1: sand co. Sea c3. boat
Dy 131 132 272 ¢4 vegetation cs: rock cg: person
cy: sky
c1: bullding c2. folle&ge c3: mc_)ll_mtatl)n
c4. person c5. roa ce. salling-boat
D2 230 230 462 c7: sand cg: sea cg: sky
c10. ShOwW
c1: building co! SKy c3: tree
cq: road c5: p]gnt " cg: window
c7. grass cg. Sidewal cg. water
Ds 1183 1183 1100 c10: ground c11. car c12: mountain
c13: wall c14: door c15: sea
C16. person
c1: building co. roof c3: grass
cy: vegetation cs: d{(ied-plant [ groiimd
c7: person cg: sky cg: roc
Dy 162 162 324 c1o: tree c11: trunk c12: sand
c13: sea c14: road c15: court
c16: gradin c17: board
c1. aeroplane co! bicycle c3: bird
cy4: boat c5: bottle cg: bus
c7:. car cg. cat cg: chair
D5 477 477 956 c10: COW c11: dining-table c12: dog
c13: horse c14: motorbike c15: person
c16: potted-plant c17: sheep c1g: sofa
cig: train cop: tv-monitor
c1: building co! grass c3: tree
c4: COW c5: sheep ce: sky
c7: aeroplane cg. water cg: face
Dg 148 147 296 c1g: car c11: bicycle c1o: flower
c13: sign c14: bird c15. book
c1g: chair c17: road c1g: cat
c19: dog co0: body co1: boat

of the images in these datasets. On the contrary, for datassignificantly increased problem complexity and the division
D1, Dy and D4 the corresponding value is lower tha6%. of a single object to multiple image segments in this case.
The latter observation is consistent with the one described in

[23], where the overall object recognition performance of the
roposed spatial context technique was reduced when using
%r—segmented images. On the contrary, when: a) the total

B. Effect of Image Segmentation

The segmentation performance is an important parame
in object-level context exploitation frameworks, while th

g ; he utilized datasets), and b) the remaining parameters of
to reduce the influence of the segmentation error, the emplo;iﬁg employed segmentation algorithm were selected so as to
segmentation algorithm [39] was selected after conducting &

irical luati ith oth techni F mpute accurate object localization, all the selected spatial
empirical evaluation with other common techniques o ontext techniques were shown to introduce their highest
literature (e.g. normalized cuts [55], extensions [56], [5

. . - concept detection performance improvement. Therefore, since
of the Recursive Shortest Spanning Tree (RSST) algor'ﬂ‘i@gmentaﬁon efficiency affects all techniques in a similar way,

[gg]’ etc.). A|dd|tt|%nally, th? lpa][ameters o{.IFhe da(;gc:r'thT (f) detailed quantitative evaluation study regarding the influence
[39] were selected separately for every utilized dataset a image segmentation on the performance of the selected

experimentation, in order to accomplish high Segmenta“%'ﬂatial context techniques was not included in the developed

accuracy. . . .evaluation framework.
Regarding the selection of the appropriate segmentation

level, an empirical evaluation with different sets of parameters ] .

for the employed segmentation algorithm was also performéer. Analysis of Overall Concept Detection Results

This resulted in various segmentations levels, ranging fromin Table 1V, quantitative performance measures from the
coarse segmentation masks to over-segmented images. Wdygplication of the spatial context techniques are presented in
very few segments were present in an image (e.g. up teyms of the overall concept classification accuracy for all pos-
three or four), the efficiency of the selected spatial contesible combinations of low-level features and classification al-
techniques was generally reduced. This was caused by ¢fwithms and all utilized datasets. Additionally, the difference
presence of multiple objects in a single region and the e accuracy, which is calculated by subtracting the detection
amination of very few spatial constraints. Additionally, theccuracy accomplished based only on visual features from
parameters that led to over-segmented images (e.g. more tthencorresponding one obtained after using spatial context, is
twenty regions per image on average) resulted in reducaldo given. The latter is depicted in parentheses. Accuracy
spatial context performance, too. This was mainly due to tie defined as the percentage of the image regions that are
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Fig. 4. Concepts’ co-occurrence frequency in the utilized datasets.

associated with the correct semantic concept. In Figs. 5-Iserved. For example, for the SIFT-RF combination, where
the respective detailed concept detection results are also illttee initial classification accuracy is equal &,60%, the
trated. It must be noted that for each regignargmaxy(h,;) corresponding performance improvement accomplished by the
is considered to indicate its concept assignment based solélx, BIP and EBM approaches 5 55%, 0,52% and0, 45%,
on visual features. respectively. The latter improvements are lower than the cor-
From the results presented in Table IV, it can be seé@sponding ones attained for the MPEGRF combination.
that the application of all spatial context techniques leads T#is suggests that when the initial classification accuracy
a significant improvement in the overall concept classific@xceeds an upper bound, which is indicated by the conducted
tion accuracy for most feature-classifier combinations in @kperiments to be close ®0% for D, then the efficiency
datasets. The highest performance improvement is achie@dspatial context techniques in introducing a performance
by the BIP approach for the SIFT-SVM combination irimprovement over these results is reduced. On the other hand,
D,, where an increase df,25% is observed. Additionally, when not exceeding this upper bound, it can be seen that
the highest performance in absolute values is accomplistibe highest initial classification performance (obtained for any
by the combination of SIFT features, RF classifier and thossible feature-classifier combination) also leads every spatial
GA method for all datasets. The above results highlight tfe@ntext technique to its highest exhibited performance in all
effectiveness of spatial context exploitation in improving théatasets. The only exceptions to this observation are the BIP
region-concept association results that have been generdfe®s, D5 and EBM in Ds.
based solely on visual information. Comparing the performance of the presented spatial context
Another important remark concerns the performance inechniques among the utilized datasets, it is shown that the
provement introduced by the spatial context techniques witlrerall concept detection improvement that they achieve over
respect to the initial concept classification results. In particuldihe initial classification results tends to increase when the
for a given classifier in a given dataset, the low-level featuresrresponding number of supported concepts decreases. In
resulting in better initial classification performance tend algmarticular, it can be seen from Table IV that for most cases the
to lead to greater performance improvement. The highest symrformance improvement increases concerning a particular
difference is noticed for the BIP i®5, where for the MPEG- technique and a given feature-classifier combination, when
7-SVM combination the introduced overall performance inmoving from dataseDg to D;. This is mainly due to the fol-
provement is0, 17%, while for the SIFT-SVM combination lowing reasons: a) Considering the datasets figgro D1, the
the respective improvement is equal §951%. Examining number of concepts reduces, which results in a corresponding
the above observation together with the results depicted reduction of the problem complexity. As a consequence, the
Figs. 5-10, it can be seen that the aforementioned differersmected spatial context exploitation approaches become less
in performance occurs when the initial classification results dikely to be misguided when searching for the optimal image
good for most supported concepts and not only for a relativalyterpretation, which in turn facilitates them in efficiently
small subset of them. Sound exception to this observatidiscriminating between the defined concepts. b) Increase in
is noticed in Dy, where despite the significant difference inhe total number of supported concepts renders more likely
performance between the MPEG-7- and the SIFT-based clagaany different concept pairs to present very similar spatial
fication results, no corresponding increase in the performarareangements. For example, the concept pairs road-building
improvement introduced by the spatial context techniquesasd sand-sea i, share very similar spatial configurations,
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TABLE IV
OVERALL CONCEPT CLASSIFICATION ACCURACY

[ Il D, dataset Il D, dataset |
Features Classifier Spatialcontet Classifier Spatialcontet

GA: 79,25%  (7,7T%) GA: 63,68%  (6,48%)

SVM: 71,54% BIP: 76,85%  (5,31%) || SVM: 57,20% BIP: 59,39%  (Z,19%)

EBM:  73,48% (1,94%) EBM:  58,58% (I1,38%)

GA: 76,03%  (3,52%) GA: 63,38%  (4,02%)

MPEG-7 || RF: 72,51% BIP: 73,78% (L,27%) || RF: 59,36% BIP: 59,29% (-0,07%)

EBM:  73,56% (1,05%) EBM:  60,51% (I,15%)

GA: 75,43%  (3,89%) GA: 62,33%  (4,32%)

LB: 71,54% BIP: 72,88% (1,34%) || LB: 58,01% BIP: 59,76%  (I1,7/5%)

EBM:  72,66% (1,12%) EBM:  59,32% (1,31%)

GA: 83,00%  (6,60%) GA: 70,74% — (7,94%)

SVM: 76,40% BIP: 80,00%  (3,60%) || SVM: 62,80% BIP: 65,78%  (2,98%)

EBM:  77,83% (1,43%) EBM:  ©6557% (2,77%)

GA: 83,15%  (2,58%) GA: 74,49%  (7,73%)

SIFT RF: 80,60% BIP: 8L,T2% (0,52%) || RF: 66,76% BIP: 70,07/%  (3,31%)

EBM:  81,05% (0,45%) EBM:  69,66%  (2,90%)

GA: 82,55%  (4,42%%) GA: 73,58%  (7,63%)

LB: 78,13% BIP: 80,15%  (Z2,02%) || LB: 65,95% BIP: 67,74%  (1,79%)

EBM: 79,48% (1,35%) EBM: 68,28%  (2,33%)

\ I D3 dataset I D, dataset \
Features Classifier Spatialcontext Classifier Spatialcontext

GA: 60,53%  (8,80%) GA: 55,91%  (5,10%)

SVM:  51,73% BIP: 52,23%  (0,50%) [| SVM:  50,81% BIP: 53,39%  (Z,58%)

EBM: 53,0/%  (1,34%) EBM: 51,94%  (1,13%)

GA: 60,51%  (4,92%) GA: 54,78%  (5,00%)

MPEG-7 || RF: 55,61% BIP: 55,31% (-0,30%) || RF: 49,78% BIP: 49,57%  (-0,21%)

EBM: 56,17/%  (0,56%) EBM: 51,34%  (1,56%)

GA: 53,37% _ (5,0%%) GA: 52,37% _ (4,8%%)

LB: 48,35% BIP: 47,93% (-0,42%) || LB: 47,53% BIP: 50,1T%  (Z,58%)

EBM: 49,73%  (1,38%) EBM: 50,38%  (Z,85%)

GA: 65,83%  (5,70%) GA: 64,89%  (7,58%)

SVM:  60,13% BIP: 61,18% (I,05%) [| SVM:  57,31% BIP: 66,56%  (9,25%)

EBM: 60,67/%  (0,54%) EBM: 58,76%  (1,45%)

GA: 69,22%  (4,48%) GA: 67,53%  (8,50%)

SIFT RF: 64,74% BIP: 65,13%  (0,39%) RF: 59,03% BIP: 60,9/%  (1,94%)

EBM: 65,26%  (0,52%) EBM: 61,18%  (Z,15%)

GA: 59,03%  (4,5%%) GA: 64,89%  (7,79%)

LB: 54,49% BIP: 55,08%  (0,59%) LB: 57,10% BIP: 61,24%  (4,14%)

EBM: _ 55,61% (L,12%) EBM: _ 60,54%  (3,44%)

[ Il Ds dataset I D¢ dataset |
Features Classifier Spatialcontet Classifier Spatialcontext

GA: 27,82%  (9,22%) GA: 47,88%  (5,89%)

SVM:  18,60% BIP: 18,77% (0,17%) || SVM:  41,99% BIP: 41,3T% (-0,68%)

EBM: 21,07%  (2,47%) EBM: 43,24%  (1,25%)

GA: 22,08%  (4,Z/%) GA: 45,37%  (5,5T%)

MPEG-7 RF: 17,81% BIP: 18,726%  (0,45%) RF: 39,86% BIP: 37,64%  (-2,22%)

EBM: 18,85% (1,04%) EBM: 43,44%  (3,58%)

GA: 13,71%  (3,9%%) GA: 41,41%  (5,50%)

LB: 9,72% BIP: 6,32% (-3,40%) || LB: 35,91% BIP: 34,07% (-1,84%)

EBM: TI,60% (1,88%) EBM: 38,I3% (2,22%)

GA: 34,14%  (5,69%) GA: 47,78%  (5,21%)

SVM:  28,49% BIP: 34,00% (5,5I%) [| SVM:  42,57% BIP: 45,46%  (2,89%)

EBM: 30,57%  (2,08%) EBM: 4431% (1,74%)

GA: 35,49%  (6,18%) GA: 48,46%  (5,41%)

SIFT RF: 29,33% BIP: 31,24% (1,.91%) [| RF: 43,05% BIP: 46,72% _ (3,67%)

EBM: 29,58%  (0,25%) EBM: 47,01% (3,96%)

GA: 20,82%  (6,0/%) GA: 42,18%  (5,60%)

LB: 14,75% BIP: 12,39% (-2,36%) || LB: 36,58% BIP: 33,98%  (-2,60%)

EBM: 16,35%  (1,60%) EBM: 38,51%  (I,93%)

sincethefirst concept usually corresponds to an image region images of these datasets, it is less likely to be eventually
that is bellow a segment that corresponds to the second cona@gsigned the correct concept through the exploitation of spatial
in each pair. It must be noted at this point that the performancentextual information, compared to a similar case of images
improvement obtained by each technique for most pairs bélonging toD,. b) The percentage of ‘unknown’ regions in
features-classifier is significantly higher iny than the corre- images of D3, D5 and Dg is approximately more than four
sponding ones achieved i3, D5 and Dg. This is observed times the respective percentagelly, as described in Section
despite the fact that the total number of supported conceptsMhA. This type of regions contribute to the misleading of
all these datasets is comparable (1&.17, 20 and21 concepts the inference procedure of all techniques; hence, limiting the
are defined inD3, D4, D5 and Dg, respectively). The latter effectiveness of spatial context i3, D5 and Dg.

is mostly caused by the following facts: a) Each image of ) )

datasetsD;, Ds and D depicts very few different kinds of From the re_sults presentedlln Table IV, it can be seen that
objects and only particular concept pairs tend to co-exist, ¥ GA technique performs significantly better than the BIP
discussed in Section VI-A. As a result, if regions are associat@gd the EBM ones for most feature-classifier combinations in

with an incorrect concept with a high posterior probabilify. all datasets. The reason for this is twofold: a) The GA follows
a more sophisticated statistical learning-based procedure for
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acquiringcomple fuzzy spatial constraints, compared to th€, 3054 and 0, 3070, respectively. This is due to the fact
simpler fuzzy constraints estimated by the EBM and the setthfat sand instances in coastal scene types usually correspond
binary ones acquired by the BIP. b) The GA makes use oft@ regions at the bottom of an image and are connected
BN-based approach for probabilistically adjusting the impautith relation below with most other concepts; similarly, sky

of the spatial, visual and concepts’ co-occurrence informatiamstances are mainly connected with relation above with most
on the final outcome, separately for every pair of supportether concepts. On the other hand, concept vegetation presents
concepts. On the contrary, the EBM estimates a set of glollaé highestSCF(¢,) value, which is equal td), 5139. The
weight factors and the BIP employs the product operator fogason for this is that vegetation may correspond to image
performing the same task. The above observations indicate treggions with significantly different spatial configurations (e.g.
acquiring complex spatial contextual information as well asee foliage, bushes, etc.); hence, significant variations can be
efficiently adjusting its weight against the other informationbserved in their spatial relations with other concepts.
sources (e.g. visual, co-occurrence) can lead to a signifi-Examining the performance of the different spatial context
cant increase in the region-concept association performaniezhniques separately for every supported concept, it can be
Moreover, these observations are also in accordance to theserved that the detection of some concepts is particularly

theoretical analysis given in Section V-D. favored by the application of each technique, regardless of the
employed features-classifier combination. In particular, it is
D. Discussion on Individual Concept-level Results shown that concepts with more well-defined spatial context,

cording to the values of facto®”'F'(c;) depicted in Table
exhibit the highest in percentage improvement over the

Having discussed the overall performance of each spa%ﬁ
9 _'géal classification results when the GA approach is applied.

context technique, their corresponding concept-level perf

mance is examined here. The detailed concept detection res ts include: d and oinb d and
for all utilized datasets are given in Figs. 5-10, as describ ese concepts include: &) sand and persaiiyb) sand an

in Section VI-C. From the presented results, it can be sere%ad in Dy, €) ground and mountain i, d) court, board

that the selected spatial context techniques accomplish d grass Dy, €) bus inDs, and f) car and aergpl_ane n
significantly increase the detection rates for most of tHes" This suggests that the more sophisticated statistical learn-

supported concepts for any combination of low-level featurd® atpp,“iac,t} fpllowetld f(l)rt'obtalfrl ',Qg thde GA’zfuz;y ?patlal
and classifiers in all datasets. This fact demonstrates again {R8>" ansu™, 1.€. calculation or= an cou(r™) (Section

effectiveness of spatial context exploitation in improving th% ), is more suitable for modeling the spatial configuration

region-concept association results that have been compu?I hese cpnclcaptls. AQd|t|onaIIy, tht?] EBt';]/l ac|;o'£r?ach, W.h .'Ch
based on visual features. ollows a simpler learning process than the or acquiring

In order to evaluate the performance of every techniqlflléZZy spatial contextual information (i.e. only tﬁé values
for each concept individually, a gradation of the support € calculate_d), tends als_o to favor concepts with more well-
concepts for each dataset is performed, with respect to h W'?ﬁd stp;]atlarl] co dntet:;:t, ngFe) fonhce_pts skyh_aad rof a0 f
well-defined their spatial configuration is. Although there is n n tef %. er han t | € ¢ 'e(t: n;q_ue, whic hma ets Ltj)se 0
generally applicable formula for that purpose, the followin§ S€! ©' Pinary spatial constrain Sy(Zk 1), is shown to be

quantitative measure, called Spatial Context Factor (SCF) gvantageous for localizing concepts with not so well-defined
considered in this W(;rk' 'spatial context, like sea, person and buildingl, D, and

Iy I Dg, respectively.

_ 2tr(cou(r™)) + 32, tr(cov(r™)) ©) From the presented results, it can also be seen that signif-

2K 7 icant performance improvement can be obtained for concepts
where tr(.) denotesthe trace of a matrix and the covari-that exhibit low initial classification rate by the applica-
ance matricesov(r*') and cov(r'*) are calculated accordingtion of the GA, like concepts: a) building, sailing-boat and
to Eq. (2). Concepiy, is considered to have well-definedsnow in D,, b) building in Dy, and c) bicycle, flower and
spatial context if the facto6CF(c;,) receives relatively low chair in Dg. Significant contribution towards this performance
values, i.e. the spatial relations of conceptwith all other improvement is induced by the probabilistic approach that
conceptsc; of the respective dataset do not present signiis followed by the GA for adjusting the impact that the
icant variations in their values. In Table V, the values ofisual cues should have on the detection of every supported
the factorsSCF'(c;), which are calculated for all supportedconcept. On the contrary, marginal changes or decrease in the
conceptsy, in all utilized datasets, are presented in ascendimgtection performance may be observed by the application
order. Additionally, the weighted average value of the factot§ all techniques for concepts whose initial classification rate
SCF(c) is also given for each dataset. The latter consigxceeds an upper bound similar to the one discussed in Section
tutes a global quantitative indicator of the degree to whiclil-C (e.g. concept sky in most datasets).
the supported concepts have well-defined spatial context for
every dataset and is calculated according to the foIIowinEq _
expression:Y", freq(cy) - SCF(cy,), where SCF(cy,) and E: Effect of the Number of Ir_ngge Regions and the Amount of
freq(ey) (Section V-C) are calculated, taking into account af@t@ Used for Context Acquisition
images of the respective dataset. For example, concepts sand this section, the performance of each technique is exam-
and sky exhibit relatively low values of fact&tC F'(c) (i.e. ined with respect to the number of regions that are present
they have more well-defined spatial context) i, namely in the examined image, and with respect to the amount of
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Fig. 5. Concept classification results in the, dataset.

the available image content that is used for spatial contekis is twofold: a) When very few regions are present in the
acquisition. image (e.g.N = 2,3), the final region-concept associations
. i ] ] are strongly dependent on the initial classification results, since

Regarding the first experiment, the images of test 88fS yery few spatial constraints can be taken into account. On the
for Dy to D are initially grouped with respect to the totaleontrary, when more regions exist, spatial relations between
number of regions they contain. Subsequently, the concept dgynificantly more region pairs are considered before reaching
tection accuracy, as defined in Section VI-C, is calculated fg{a final decision; hence, it is more likely for regions that
each group of images and for every possible feature-classifigiye peen misclassified based on visual information to be
combination with respect to every spatial context techniqugyentually associated with the correct concept. b) The GA is a
Then, for each technique a weighted average classificatigighal optimization method (Section V-A); therefore, it is less
value is estimated for every corresponding group of imageigely to converge to local maxima in the solution space and
using the number of images in each group of every datage¢an efficiently utilize the increased number of the available
as weight. Thg obtaineq results are iIIustr_ated in Fig. 11(a) #atial constraints wheV receives high values. The BIP,
terms of the difference in concept detection accuracy, i.e. B} the other hand, presents its highest average performance
subtracting the average classification obtained based on ViSH%rovement when the number of regions is significantly
features from the corresponding one accomplished by ea}gbh (i.,e. N > 10), since it is also a global optimization
_spatial context techniqL_Je. Additionally, the total_number Shethod (Section V-B). However, the reason that it fails to
images of all datasets in each of the aforementioned groypgoduce performance improvements comparable to those of
is given in Fig. 11(b). From the presented results, it can Bge GA is mainly the limitation of the binary spatial constraints
seen that for the GA, which performs better on average th?Q(ck,cl) (Section 1V) that the BIP makes use of to model
the other two methods in all datasets (as discussed in SeciQ8 concepts’ spatial arrangement, as discussed in Section
VI-C), a gradual increase in its performance improvementyg.c, on the contrary, the EBM exhibits a relatively constant
observed, when the number of image regions increases. In frformance improvement with small variations around the
ticular, it is shown that when the number of regid\visis equal \31ue of 1,50% for any N. This is mainly caused by: a) the
to 2, the GA introduces a decrease of approximately58% ggm, as being a graphical model-based approach, depends
in the classification accuracy, compared to the initial classﬂea\,”y on the concepts’ prior probabilities, and b) the ICM
fication results. On the other hand, significant performang@orithm (Section V-C), which is used by the developed EBM

improvement is observed wheN > 4, exhibiting a highest for performing inference, is a local search method; hence, it
value of approximatelyl4,46% for N = 27. The reason for
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Fig. 6. Concept classification results in the, dataset.

can not exploit efficiently the large number of constraints thand the initial classification based only on visual features
are available in images with many regions, as opposed to feealso illustrated (asterisks in Fig. 12). This is computed
GA that follows a global optimization methodology. The abovby subtracting the detection accuracy achieved when using
observations suggest that the adoption of a global optimiz&;, for spatial context acquisition from the detection accu-
tion approach, while using more complex spatial contextuedcy obtained prior to the application of any spatial context
information, can lead to significant performance improvementischnique. Bars higher than the respective asterisk in Fig. 12
over the initial classification results, when not very few regiorindicate that the corresponding technigue improves the initial
exist in the examined image. These observation also justify tblassification results, after the reduction in the amount of
theoretical analysis given in Section V-D. image content used for spatial constraints learning. From the

presented results, it can be seen that reducing the size of the

The performance of the spatial context tech_niques is alggt D} to half results in small changes (i.e. changed %)
evaluated when the amount of the available image contgfthe performance of the GA for all possible feature-classifier
(i.e. the number of images used) that is utilized for spatighmbinations in all datasets. Additionally, its exhibited overall
context acquisition is reduced. For this purpose, the image ggissification accuracy remains in all cases significantly higher
Dy,., which is used for spatial constraints learning (Sectiofan the baseline visual classification (i.e. the asterisks in Fig.
IV), is reduced to a corresponding;. one of half size, 17) These observations indicate that the statistical learning
by randomly discarding half of its images. Then, the spatighproach followed by the GA for spatial constraints acquisition
context acquisition process of each technique is repeated, Us@ighains almost unaffected by the reduction in the amount of
Dj, instead ofDj,., and new region-concept association resulige available training data, despite the relatively more complex
are computed after the application of the GA, BIP and EBMnq sophisticated procedure that is followed, compared to the
techniques, as described in Section V. It must be noted thaker two methods. The EBM follows the GA in the extent of
the initial classification results were maintained for ensuringe deviations in performance that it exhibits, with the highest
a fair comparison. In Fig. 12, the obtained region-conceptyyction (—319%) being observed inDg. This is mainly
association results are given in terms of the difference e to the fact that the EBM supports the usage of fuzzy
overall concept detection accuracy. The latter is calculated gyatia constraints (similarly to the GA), following a simpler
subtracting the detection accuracy accomplished when Usiegming approach though, as described above. On the other
D}, for spatial context acquisition from the correspondingand’ the BIP technique is shown to be affected the most by

one obtained whe;, is utilized. Additionally, the relation he reduction in the size of the available image content used
between the performance of the spatial context techniques
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Fig. 7. Concept classification results in the; dataset.

for spatial context acquisition. From the presented results.tlie training procedure of the employed BNs for information

can be seen that the highest reductions in performance fargion. On the contrary, the BIP appears to be the fastest
observed inD4 and Dy, i.e. datasets with large number ofmethod during training, since it adopts a significantly more

supported concepts. In particular, a decrease in the ovegthple approach for estimating a set of binary constraints.
performance equal to-6,62% and —5,12% is measured Regarding the time performance during the evaluation stage,
for the SIFT-LB combination inD, and Dg, respectively. it can be seen that the BIP is the slowest approach. This
These observations indicate that the set of binary spatifnotes that the deterministic methodology followed by the
constraints used by the BIP, i.e. spatial relations that are eitlBdP for the constraints enforcement procedure is less efficient
acceptable or not between two concepts, are more susceptthbn the evolutionary approach of the GA and the local-search
to reductions in the amount of training data, compared to thgethod of the EBM. Significant contribution to the latter have

fuzzy constraints of the other two techniques. the binary constraints that the BIP technique makes use of,
which have reduced expressiveness and which can hinder the
F. Time Efficiency efficient search of the optimal solution. On the other hand,

In this sect.ion, the _time gfficiency of the selected Spa“a e to the fact that the EBM uses a local search algorithm
context tec'hmques 'S mvespgated. In Table VI the measurg ring its inference procedure, i.e. it does not follow a global
execution times of all techniques for both training and evalug—

i : o . timizati h like the BIP and the GA techni t
tion stages are given for all utilized datasets. The experuf‘]en}%J Imization approacn fike the and e echniques

were conducted using a PC with Intel Quad Core processorv\?gSt be noted that the time efficiency of the GA, i.e. the most
9 4GHz and a total 0BGB RAM. ll-performing technique, depends heavily on the desirable

. . . level of the solution quality. The latter is mainly affected by the
From the re;ults given in Taple VI, it can pe seen that tnﬁjmber of the chromosomes in the respective GA's population.
GA presents in general the highest execution times duri

o i9the current evaluation framework, more emphasis was given
the training stage and the BIP the lowest ones. The form ﬁreaching increased concept detection results than estimating

is mainly d.ue- o the mpreased computathnal complexity n optimal trade-off between time efficiency and recognition
a) the statistical learning approach that is followed by t%e

GA for acquiring complex fuzzv spatial constraints. and erformance for the GA technique (i.e. significant time im-
q 9 P y sh ’ rovements can be achieved with relatively low decrease in
4Although the three spatial context techniques were executed with differénte concepts’ recognition rates).
PC configurations, appropriate time normalization based on hardware perfor- ) .
mance has been applied. Regarding the time performance of each method among the

tr%e EBM is shown to perform the fastest. This is mainly
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different datasets, it can be observed that the GA efficienoy factors on their region-concept association performance.
during the evaluation stage generally decreases as the nuniier main outcomes of this work regarding the exploitation
of images and the number of concepts increases. On tifespatial context in semantic image analysis are summarized
other hand, the BIP tends to present more intense and lassfollows:

consistent changes in time performance. Despite the inevitable ) ) o o ) S
randomness in the actual problem complexity in each datasett SPatial context is efficient in improving the initial (i.e.

this is mainly due to the significant variations in the number of
the valid binary constraints that are learned for every dataset
and which are likely to lead to significant time performance

based solely on visual features) region-concept associa-
tion results; exhibiting an overall increase of upt@5%
in the current evaluation framework.

alterations. Additionally, it is shown that the time efficiency * The highest on average performance is achieved when

of the EBM mainly depends on the number of images in each
dataset and it is not significantly affected by the number of the

complex spatial constraints are acquired and their weight
against the visual and co-occurrence information is effi-

supported concepts. The latter is due to the local search strat- ciently adjusted (this is better accomplished by the BN-

egy that it follows, which aims at estimating an approximation
of the optimal solution when the problem complexity increases
significantly. It must be highlighted though that the execution

based approach followed by the GA, rather than the
global weights of the EBM or the product operator of
the BIP).

times between the datasets are not directly comparable, since The overall concept detection improvement over the

the distributions of the total number of regions per image are

different in every utilized dataset.

In this paper, three approaches to spatial context exploitation

VIl. CONCLUSIONS

initial classification results tends to increase when the
number of supported concepts decreases.

o For a given classifier, the visual features that result in

better initial classification performance also tend to lead
to greater performance improvement when applying a
spatial context technique.

that make use of fuzzy directional relations were presenteds When the initial classification accuracy exceeds an upper
and comparatively evaluated. The selected techniques include bound (either overall, or at concept-level), the efficiency

a GA, a BIP and an EBM, and each of them is applied after an
initial set of region classification results based solely on visual

of spatial context in introducing a performance improve-
ment over these results is reduced.

features is computed. Extensive experiments on six datasets For a given dataset, the highest initial classification per-

of varying complexity demonstrated the influence of a series

formance leads also to the highest performance after the
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Fig. 9. Concept classification results in thes; dataset.

application of spatial context techniques. [6]

o Fuzzy spatial constraints are less likely to result in

performance decreases when the amount of training datd

is reduced, compared to binary constraints.

Additionally, the major differences in performance among thé®!
selected spatial context techniques, with respect to a seri
of individual factors, are given in Table VII. Future work
includes the investigation of additional contextual information

nation with spatial context for achieving further performance

improvement. [11]
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FACTORS

Dataset Concepts Average
sand(c1): 0,3054 sky (¢7): 0,3070 sea(cp): 0,4271
D, boat(c3): 0,4505 person(cg): 0,4509 rock (cs): 0,4909 0,3978
vegetation(c4): 0,5139
sand(c7): 0,2831 sky (cg): 0,3192 mountain(cz): 0,4026
D sea(cg): 0,4150 road (c5): 0,4261 sailing-boat(cs): 0,4586 0.4255
2 person(cy): 0,4767 building (¢1): 0,5029 snow (c10): 0,5070 ’
foliage (c2): 0,5188
sea(cs): 0,2492 water (cg): 0,2880 sky (c2): 0,3570
ground(cip): 0,3571 grass(cy): 0,4006 mountain(ci2): 0,4022
D. road (c4): 0,4089 sidewalk (cg): 0,4394 wall (c13): 0,4485 0.4409
3 building (c1): 0,4543 plant (¢5): 0,4622 door (c14): 0,4778 ’
tree (c3): 0,4923 person(cig): 0,5092 car(ci1): 0,5113
window (cg): 0,5234
sand(ci2): 0,3081 road (c14): 0,3319 court (c15): 0,3454
sky (cg): 0,3743 board(cy7): 0,3749 roof (c2): 0,3825
D sea(c13): 0,3853 ground(cg): 0,3922 rock (cg): 0,4059 0.4334
4 grass(cs): 0,4060 gradin (c16): 0,4187 building (¢1): 0,4638 ’
dried-plant(cs): 0,4669 vegetation(c4): 0,4825 trunk (c11): 0,4906
person(cr): 0,5063 tree (c10): 0,5378
car (c7): 0,3946 sheep(ci17): 0,4040 cat (cg): 0,4290
boat(cy4): 0,4365 dog (c12): 0,4572 aeroplang(c; ): 0,4580
bus (cs): 0,4658 dining-table(c11): 0,4668 motorbike (c14): 0,4816
Ds horse(ci3): 0,4858 bicycle (¢2): 0,4865 potted-plant(cig): 0,5002 0,4951
bottle (¢5): 0,5011 tv-monitor (c20): 0,5118 sofa(ci1g): 0,5343
bird (¢3): 0,5383 train (c19): 0,5496 cow (c10): 0,5537
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TABLE VI

TIME EFFICIENCY OF THE SELECTED SPATIAL CONTEXT TECHNIQUES IN MINUTE$TRAINING‘EVALUATION)

[ Datasets |
Techniques|| Dy I Dy I D3 I Dy I Ds I Dg |
GA 0,363,48 [ 0,6(026,53 | 3,80[126,90] 1,09]120,30] 4,60248,19 ] 3,04131,85
BIP 0,016,02 0,0478,40 | 0,1870,96 0,04|371,45] 0,28525,16 | 0,02154,17
EBM 0,78[27,32| 0,7946,38 | 1,31[88,62 | 0,7840,50 1,16]73,67 | 0,6321,57
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Fig. 12. Concept classification accuracy when using training set of reduced size (CB1: MPEG-7-SVM, CB2: MPEG-7-RF, CB3: MPEG-7-LB, CB4: SIFT-
SVM, CB5: SIFT-RF, CB6: SIFT-LB). The asterisks represent the difference of the initial classification performance based only on visual features from the
one accomplished when usirg},. for spatial context acquisition (i.e. bars higher than the respective asterisk indicate that the corresponding spatial context
technique improves the results of the initial visual-based classification, after the reduction in the amount of image content used for spatial context acquisition).
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TABLE VI

DIFFERENCES IN PERFORMANCE AMONG THE SPATIAL CONTEXT TECHNIQUES

Factors Spatialcontet techniques |

Considered || GA BIP EBM |

Conceptswith more

Concepts well-defined spatial Conceptswith less Conceptswith more
favored context and concepts well-defined spatial well-defined spatial

with low initial context context
classification rate
Increasan performance Performancemprovement :

Numberof improvement, when the only when the number Eelatvely constant t
image number of regions of regions is per ?rmanCIe |mpfr(g\éemen
regions increases significantly high njr%%ereos%srg ne

(N > 4) N > 10 gions
- Significantperformance Performanceeduction

Eeg#]%tl'ﬂz ‘Small changes reductionin datasets in datasets with

of training in performance with many concepts many concepts
data (changes< 1%) can be observed can be observed
(up to —6, 62%) (up to —3, 19%)
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