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Abstract—In this work we deal with the problem of video of the analysis community lies the development of methods
concept detection, for the purpose of using the concept detection for the fast and accurate detection of large numbers of diverse
results towards more effective concept-based video retrieval. The high-level video features, termed concepts. Concept detection

key novelties of this work are: 1) The use of spatio-temporal der this definiti timating f h i
video slices (tomographs) in the same way that visual keyframes under this definition, means estimating tor each concept a

are typically used in video concept detection schemes. Thesedegree of confidence in the hypothesis that this concept is
spatio-temporal slices capture in a compact way motion patterns suitable for describing the contents of a given elementary piece
that are useful for detecting semantic concepts and are used for of a video stream.
training a number of base detectors. The latter augment the — The mytitude and diversity of the concepts that need to be
set of keyframe-based base detectors that can be trained using detected. ai th trained nat f th tent
different frame representations. 2) The introduction of a generic etec ? . Q'Ve” € uncons ralng nature of the c':on ent, cre-
method0|ogy’ built upon a genetic a|go|'ithml for Contro”ing ates S|gn|f|Cant Cha”enges both in terms of effectiveness and
which subset of the available base detectors (consequently, whichcomputational efficiency. These challenges are highlighted, for
subset of the possible shot representations) should be combinedinstance, in the TRECVID Semantic Indexing task [1], which
for developing an optimal detector for each specific concept. This pa5 peen focusing on the development and benchmarking of
methodology is directly applicable to the learning of hundreds t that Id be able to handle | ts of vid
of diverse concepts, while diverging from the “one size fits all” systems that wou € able 1o han .e arge amoun S ot video
approach that is typically used in problems of this size. The data and detect hundreds of semantic concepts efficiently (e.g.
proposed techniques are evaluated on the datasets of the 20112], [3]). As a result of this and other efforts towards solving
and 2012 Semantic Indexing Task of TRECVID, each comprising the large-scale concept detection problem, several powerful
several hundred hours of heterogeneous video clips and ground- yo-ppiques have emerged. For example, in order to exploit
truth annotations for tens of concepts that exhibit significant lor inf fi - dditi to | L truct th
variation in terms of generality, complexity, human participation. color information in adadition 10 focal Image s rug UIfe, e
The experimental results manifest the merit of the proposed Opponent-SIFT and RGB-SIFT (or Color-SIFT) variations of
techniques. the well-known SIFT descriptor [4] were proposed in [5]. In
order to further reduce the computational cost of extracting
such local descriptors, techniques such as Speeded Up Robust

|. INTRODUCTION Features (SURF) [6] and DAISY [7] were introduced as fast

The main goal of the video analysis community is th&!FT approximations, whereas in parallel the use of corner
development of techniques that make possible the autom&tftectors for interest point detection (e.g. Harris-Laplace [8])
understanding of the visual content and the semantic infdl@s in many schemes been either replaced or complemented
mation conveyed by unconstrained video streams. By “ullY dense sampling (i.e. the sampling of image patches on
constrained” we mean here videos that are not restricted&oregular dense grid). At the front of machine learning,
a specific known domain (e.g. soccer videos), and therefd¥ich is key to finding the mappings between such low-level
can vary significantly both in their low-level visual propertie§éatures and the high-level concepts that we want to detect,
and in their interpretation. Since for such unconstrained vidednilar effectiveness and efficiency considerations have lead
there is no restricted vocabulary that would be sufficient fép interesting developments; for instance, chi-square kernels,

describing their content and meaning, in the root of the efforidat were originally considered to be optimal for use in support

vector machines (SVM) [9], [10], are now often replaced by
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cessitatesat the very minimum, the processing of a significan () () | TR

number of frames per shot), compared to the disproportiol s :

ately low gains in accuracy that such descriptors introduce ov > N Set -

the simpler keyframe-based approach. However, taking sor - Classifiet

form of motion information into account when trying to make 9|52, é’; :

sense of the video content is evidently desirable, and findir§ 2 8, i Set2 ~

a way to do this with a computational cost comparable to thiz>|3 g E ClEEiET Final

of processing a single keyframe represents a major challen( SNyl 3 : concept

Set A detection

Moreover, in order to reach high accuracy levels, current a| I Classifier A score

proaches to concept detection typically describe each keyfrar g bsss datetiors T

with numerous different low-level features, which are thern

used separately for building a number of base detectesg 1. The pipeline of a typical concept detection system. Initially the video
that produce an abundance of intermediate detection resigam is sampled (e.g. keyframes are extracted) usingjfferent sampling
for each concept; these intermediate results are subsequelifie9ies (abelesh, ss,... s in this figure). Subsequently, sets of features

. . ! . ~are‘extracted to represent the visual information samples (labgeled,...ry ).
combined in order to generate the final concept detecti®Re set of features are used as inputs to base detectors that are trained off-
output (e.g. [12], [13], [5]). While this strategy of generatindjne. Finally, the base detector outputs are combined and an overall concept
an over-complete description of each keyframe, rather th&ffection score is estimated.
using a single low-level descriptor alone, has been shown to

boost detection accuracy, one can intuitively assume that not [l. RELATED WORK

of such intermediate results for each specific concept, whi@_g_ SIFT [4], SURF [6]). These features form the input to
could introduce improvements in both the effectiveness agd,mper of classifiers (i.e. base detectors), which typically
the computational efficiency of the concept detection procegge gpnort vector machines. The parameter sets that control

In this work we propose the use of video tomographs [13ITe employe@ cIas;if!ers are predefined, i.e. have bgen It_—zarned
(i.e. spatio-temporal slices with one axis in time and one g} the classifier training stgge for each' concept, using similar
space) to represent video motion patterns. These tomograffﬁg”res extracted from training da_lta. FlnaIIy,_ the base detector
are effectively and straightforwardly extracted from the videBUtPUts are fused to estimate a final detection score for each

stream. Contrary to previous works on tomographs, we tr&gncept. o
them as another form of keyframes and we apply to themFrom the above description it becomes apparent that large-

the usual pipeline of feature extraction and transformatiopc@l€ concept detection systems encompass multiple video and

for building a number of tomograph-based base detectdfe9e analysis techniques. These include techniques for inter-

for each concept. As we will show, the processing of the§St Point selection in keyframes [15] or video volumes [16],
\g?]; image descriptors such as Color-SIFT and Opponent-

tomographs is not computationally costlier than processi s X _
a single keyframe and, when used in combination with v FT [18] or also spatio-temporal descriptors [19], [20]; vector

sual keyframes, can significantly enhance concept detect{§Qdeling and quantization [21], [12]; code-book construction

accuracy. Moreover, to take advantage of the diversity K2l classifier selection and parametrization [11], etc.

the concepts that need to be detected, and of the possiblEloWever, little work has been done in the first component

redundancy that exists in a typical over-complete shot rept the pipeline, i.e. the sampling of the video stream. The

resentation (comprising multiple visual descriptors extractég0St common approach is to use a single keyframe per shot
from keyframes and tomographs) with respect to detecting af§9- [°l: [2]), thus transforming the video concept detection

single one of these concepts, we introduce a novel technidfiek Into image concept detection. This approach is fast and
built upon a genetic algorithm that selects for each concédi” ;trwghtforwardly take advantag.e .of feature .extractlon

independently the respective optimal base detector subdgghniques thatwere developed for still images, but it does not
instead of invariably using all possible base detectors for &3Ke into account motion, which may cause the visual content

concepts. As will be shown, this again has benefits in bofh @ Single shot to vary significantly. On the contrary, the
detection accuracy and computational cost. authors of [12] propose using all video frames as keyframes.

Whereas this enhances the accuracy, it also disproportionately
The rest of the paper is organized as follows. Relatédcreases the computational cost. A better balance between
work is reviewed in Section Il. Visual tomographs and the#ccuracy and efficiency can be achieved by using a limited
proposed use for video concept detection are describednumber of keyframes per each shot, as in [3], in which the
Section lll, followed in Section IV by the introduction of theuse of up tol0 keyframes per shot was proposed.
proposed base detector selection technique. Experimental reFechniques that employ only keyframes as video samples
sults and comparisons on two large-scale datasets are presendéedile the video stream as a mere collection of photos
in Section V and, finally, conclusions are drawn in Section V(keyframes), failing to take advantage of the dynamic nature
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of video that makes it particularly expressive. Consequently;, regression analysis [13].

several techniques that involve also the motion modality have

been introduced (e.g. [23], [24]). However, motion descriptor [Il. EMPLOYING VIDEO TOMOGRAPHS AS ADDITIONAL
extraction is typically associated with high computational cost, SHOT SAMPLES

and the gains in precision that are attained by introducing yse of tomographs

motion descriptors in the concept detection process are ofter?n this work we show how kevframe-based concept detec-
not on par with the added computational complexity. In & y P

) : ; lon can be improved by augmenting the set of keyframes with
recent review [19] a number of spatio-temporal interest POINT_ -~ tio-temporal tvoe of image. the video tomodraph. Video
detectors and descriptors were examined both in terms ofP P yp g€, grapn.

) . mographs were introduced in [14] as spatio-temporal slices
accuracy and computational cost and it was reported that the . NS
and have been used for optical flow estimation [26], camera
fastest among them could proces$ frames per second. In

. . . motion classification [27] and video copy detection [28], [29].
this case (assuming a mean shot duratiorb of 7 seconds . : : . S
. .~ A video tomograph is defined in [14] as a cross-section image
and a frame rate of5 frames/second), the motion descripto

extraction procedure would require more than half a minu{"e' an image defined by the intersection between a plane

e
per shot, a significantly longer time than that associated wi

nd the video volume) which is additionally smoothed using
the estimation of the most common image-based descripta high-pass filter. The cross-section image is generated by
(e.g. SIFT, SURF) at keyframe level. Even if B® interest

?&Slng a 1-D line on the image plane and aggregating the video
) o . . content falling on the corresponding line for all frames of the
point detection is performed and dense sampling of the vidé . . ) . :
. : ; - shot. In this work video tomographs are re-defined in a slightly
volume is used instead (as proposed in [17]), the requir .
[fferent and somewhat more general way, and are used in a

computational time is still much higher than that associate . . o
: : . . completely new way for a different application. A preliminary
with descriptor extraction at keyframe level. To alleviate this~ " _—
; ) . version of the proposed definition and use of tomographs was

drawback in [23], [24] fast global motion descriptors were .
introduced by the authors in [30].

:Jhseed de(teégﬁorr?og(?:urzstog;ﬁrensgu?#(;r;h(e)?e[zf]lIzcljs;o ?thgg 4 ideo tomograph re-definition is based on the fact that the
. cy- . . PTOPOSGRe 4 volume is not continuous, but is formed by a finite set of
the sampling of the video volume in spatio-temporal Sampl?r%mes. Consequently, a tomograph can be defined as a set of

called short-term audio visual atoms (S-AVA); although th . . . . .
ine segments, which are recursively estimated as intersections

use of S-AVA |_n stegd o.f keyframes resulted |_n higher aCcura%létween lines and frames. More specificallyf;ifs the current
the S-AVA estimation is based on a sophisticated and compu:

tationally demanding point tracking algorithm that has to beo e Vi1 the line defining the |nters_ect|0n m_the previous
applied to all video frames. In general, even the fastest motiorﬁme' R the current tomqgraph rotation "T‘at”x "?‘“@' the
descriptors cannot compare with the fastest keyframe-ba cg&renF tomograph translation vector then the ¢/ line can
. . ) . sPe estimated as:

ones in terms of computational cost, often being practically
inapplicable to large-scale video analysis problems.

Another part of the concept detection pipeline that has vi=fin (Ri-via + ) (2
received little attention is the selection of the most appropriatelf v, is the initial line segment and alR;, 7; are known,
set of features for each concept, rather than adopting en a tomograph image can be straightforwardly extracted.
“one size fits all” strategy. For instance, approaches such Hss tomograph definition encompasses the definition of [14],
those discussed in the above paragraph can possibly increakere the latter corresponds to settiRg= I, 7; = [0 07 Vi
the detection accuracy for motion-related concepts. However,Eq. 1, I being the two-dimensional identity matrix and
large-scale video concept detection techniques should be ahlperscriptl” denoting the transpose matrix. The advantage
to handle multiple concepts which may or may not be related the above definition is that complex motion patterns can be
to motion (or to any other specific low-level visual property)projected into meaningful images. For example, a tomograph
Despite this need, in most of the relevant literature a processuld be formed by lines chosen so as to be always perpen-
such as the one illustrated in Fig. 1 is executed invariabtijcular to the camera motion direction, thus generating an
for all concepts of interest, despite their qualitative diffeiimage that captures the objects being followed by the camera.
ences. More specifically, the complete base detectors seSigh an approach would require knowledge of the camera
employed for each and every concept and the base detectngion, but this is not prohibitive since several methods exist
scores are combined to estimate the overall output throufgin automatically detecting camera motion parameters from the
averaging (e.g. [5], [3]) or linear combination using weightgideo (e.g. [31], [32]), including methods that can be applied
that are globally tuned for the complete set of concepts (edjrectly on the motion vectors encoded in the MPEG stream
[2]); in only a few approaches, these weights are selectézlg. [33]) and therefore having limited computational cost.
independently for each concept through an off-line tuning Putting aside the possibility of taking into account camera
process. For example, in [12] a brute-force search usingption, the two simplest tomograph images are the centralized
cross-validation was proposed for selecting the weight valuémyrizontal (CH-tomograph) and the centralized vertical (CV-
which is computationally feasible only because the numbtmograph) one. A CH-tomograph is constructed by aggre-
of the employed base detectors in [12] is very limited. Ogating into a 2D image the visual content of the horizontal
the other hand, when a large number of base detectors lme passing from the frame center, for all frames of a shot
employed, weights may be tuned through gradient ascent [Zb¢. R; = I>,T; = [0 0]T Vi and v, is the liney = H/2,
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where H is the frame height). A CV-tomograph is constructetkast for CH-tomographs and CV-tomographs. As a matter of

in an analogous way, with the only difference being thdact, if W and H is the frame width and height,is the frame

vo IS perpendicular to the x-axis, instead of parallel to itate andr, the duration of shot then the total number of

Examples of CH- and CV-tomographs are shown in Fig. pixels for keyframeK, CH-tomographi g and CV-tomograph

In the left example the shot shows a man that crosses thg would be:

camera field of view following direction from right to left.

His motion is mapped into the CV-tomograph as a human . ]

silhouette, which regardless its slight deformation is huma w(K)=WH, piz(Kn)=r7s]W, piz(Kv) = [rr|H

understandable and can be processed using the same tools that . . . (2)
Ferepzx(.) denotes the number of pixels apd the integer

are used for traditional images or keyframes. On the oth¥| .

hand, the main theme of the video shot of the right examd?@rt of a real number. In th? ex}enswe TRECVI.D SIN 2012
is cloud movement. In this case the CH-tomograph achievesdl%taset’ the mean shot duratior i seconds. If typical \_/alues
express this motion into another human-understandable ima%e}:,_ 25, 7 » 5.1, W = 352, H = 288) are replaced in the
depicting primarily the moving clouds. We should stress he ove equations then the number of pixels of a CH'. and_a
that, in the presence of arbitrary object or camera motioﬁ\/—tomograph together, compared to the number of pixels in
the extracted tomographs are generally not expected to ebgeyframe, would be:

human-understandable images; nevertheless, they do contain

information that can help with concept detection, as our (piz(Kv) + piz(Kn))/piz(K) ~ 0.8 ©)

experiments will show. Consequently, the descriptor extraction computational cost
For the purpose of concept detection in this work, both thghen using a pair of tomographs is similar to the cost of
CH- and CV-tomographs are processed in the same waymgcessing a single keyframe. Finally, it should be noted
keyframes. More specifically, image patches are estimatggat the formation of the tomographs starting from the video
followed by descriptor extraction and vector quantizatioRtream is also very fast, particularly when simple CH- and
The vocabulary (visual words) employed at this stage \.tomographs are used and therefore no processes such as
constructed by clustering local descriptors extracted from t@g@mera motion estimation are required. In such a case, apart
corresponding tomograph type (e.g. a random sample of G¥om decoding the video stream into frames, this only requires
tomograph SIFT vectors are clustered in order to generate fi@essing and placing in a 2D matrix a small set of frame
Vocabulary used for vector quantization of SIFT deSCfiptOfS b’]xe|s (one fixed line Segment per frame)' as per Eq (1)
CV-tomograph images). The resulting Bag-of-Words (BoW)
feature vectprs are the mp_qt to .tomograph—based Support |, SELECTING BASE DETECTORS FOR BUILDING A
Vector Machine (SVM) classifiers (i.e. base detectors). These CONCEPT CLASSIFIER
classifiers are also independently trained for each tomograph .
type, using annotated samples taken from tomographs of fie COMbining base detectors
corresponding type. As will be detailed in the experimen- The pipeline of Fig. 1 can be considered as a late fu-
tal evaluation section, through this process we generate €ddn scheme that involves multiple base detectors executed
tomograph-based base detectors for each concept (as oppasdependently, prior to combining their results. Late fusion
to only 12 in [30]), in addition to 12 similar keyframe-represents the method of choice in state-of-the-art concept
based ones (plus a 13-th keyframe-based one that uses simplection, as most related techniques use it either exclusively
color histograms rather than local image features). Finally, te in combination with some early fusion (e.g. [13], [12], [2],
output of all (i.e. up to 37) base detectors is fused following[&]). The use of multifarious information content as input to
simple late fusion scheme that does not discriminate betwedis fusion mechanism is guided by the need to be able to
keyframe and tomograph-based detectors. handle multiple concepts which may demonstrate significant
diversity, for instance concepts that are either static (e.g.
“forest”) or dynamic (e.g. “running”); rather specific (e.g.
“George Bush”) or quite generic (e.g. “building”); human-
Concerning the computational cost of introducing video tdased (e.g. “two people”), object-based (e.g. “motorcycle”) or
mographs in the concept detection process, it is straightforwdoackground-based (e.g. “static background”); etc. Invariably
that the processing time required for feature extraction frofusing the output of all available base detectors for a given
tomographs depends on the total number of pixels in eacbncept, as is typically the case in the literature, is based
tomograph. Consequently, an estimation of the tomograph s the assumption that different base detectors can contribute
can be used to compare the computational cost of tomograpithe accurate classification of concepts of a certain subset
based classification with the computational cost of keyframge.g. detectors that use motion-based descriptors can contribute
based classification. Keyframe size is constant for a givém detecting concepts that are related to motion), while they
video and can be adjusted during the decoding process. Onwild not deteriorate the detection accuracy of all other
other hand, tomograph size is not constant, since it depemdsicepts (e.g. it is assumed that having some motion-based
not only on frame size and frame ratio (that are typicallgletectors in the set of base detectors whose scores are fused
constant) but also on the current shot duration. Howeverwauld not adversely affect the final detection accuracy of static
rough estimation of the mean tomograph size is possible,caincepts). Thus, for each concept all base detectors scores

B. Computational concerns
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Time

Fig. 2. Two tomograph examples, each one corresponding to a different type of tomograph image. The left tomograph is a CV-tomograph, while the right a
CH-tomographBoth of them are defined by the temporal ordering of lines that pass from the center of the frames. Five indicative frames of the shot from
which each tomograph was generated are also shown to the left of the corresponding tomograph. The temporal order of the shown frames and the time-axis
of the 2D tomograph images are denoted with arrows.

are combined to generate the final concept detection outpug, o,,, o, for each ofCy, Cs, and P, since the value of the
Consequently, assuming that the classification is performedatter depends only on the frequency of the concept in the
shot level, the associated complexity is proportionadft®-A, dataset). In the subsequent analysis we examénddferent
where S is the total number of classified shotd) is the values ofP,, 1%, 5%, 16.6%, 33.3%, 50% and66.6% in order
amount of concepts and is the number of available baseto model concepts that are rare as well as concepts that can
detectors. be found very often in a video stream. For edghvalue we
The two most common late fusion strategies are averagiagtimate the probability of the following hypothesis being true:
the confidence scores or calculating a linear combination ‘a? (AP(Cs) > max(AP(Cy), AP(C3)))” (this probability
them with weights that are globally tuned for all concepts (e.g/e denote ag in the sequel). We estimate the valuefyfas
[2]). The latter approach, while shown to enhance the concepfunction ofAP(C,) and AP(C5) (i.e. the average precision
detection accuracy, suffers from the “curse of dimensionalitgf the two base classifiers being combined), and we compare
that prohibits a brute-force tuning of the weights, especialliywith 0.5, since Py > 0.5 signifies that the case of detector
since the number of base detectors is typically in the ord€g performing better than the best detector améigCs is
of tens. Moreover, both late fusion approaches do not tak®re probable than the opposite one.
into account the fact that not all of the employed detectorsPlotting P, exclusively as a function ofAP(C;) and
can truly contribute to the detection of all possible conceptd.P(C:), for a chosen value aP,, so as to reveal the relation-
Therefore, computational time is unnecessarily consumesthip betweenP, and the AP scores of the base classifiers, is
since all base detectors are used in each concept, regardlesashieved through the following procedure. First, we randomly
they increase the concept detection accuracy or not. Finaiglected a large number of possiblg, o,, value pairs (16
as will be subsequently demonstrated, when the detectidifferent pairs in our simulations). Then, for a given value of
accuracy measure depends on the sorting of the results ggswe estimated the AP score of a base dete€to or C5)
is the case with Average Precision (AP) or Extended Inferrdor each possibler,, o,, value pair, and the average of these
Average Precision (XInfAP) [34]), averaging the confidencAP scores we considered as the AP score for the chosen value
scores of two base detectors out of which only one achiewefs i1, (independently ofs,, 0,,). Repeating this simulation
good concept detection accuracy may lead to the accuracyfaf different values ofy,, we found that thiSAP score is
the final detector (fused scores) being worse than the accuramynotonically increasing witfx,,, and we built a lookup table
of the best out of the two original base detectors. allowing us to estimate the expecteg value that corresponds
In order to clarify the last point, we model the confidenc® a chosem P score forC, (or C5). SubsequentlyP, can be
score distribution of a base detector that is trained to detgiotted as a function oA P(C,) and AP(C>) as follows: (a)
a specific concept as a mixture of two gaussian componefus each pair of base detectarP scores, the corresponding
N(pp,0p), N(pn,0p), €ach corresponding to true positivepair of p, values are found (using the lookup table), (b)
and true negative samples, respectively. The parameters thaandom pair ofs,, o, values is selected, (c) using these
determine the classifier accuracy ag o,, in, 0, as well as parameter values thelP performance of the detecta;
the concept’s prior probability?,. Since the Average Precisionis estimated and compared with the maximum valueCepf
measure depends on the distance between the two gausai@mhC,, and d) this process is repeated, similarly to when
components, the classifier is translation invariant. Thuisis estimating the AP of a base detector above, for multiple
arbitrarily selected to be equal o Consequently, the perfor- pairs of ¢, ,, values. Following this, the value of is
mance of a detectof’; that averages the scores of two basetrieved as the relative frequency dfP(Cs) being greater
detectorsCy, Cy is controlled by7 parameters (parametershanmaz(AP(C1), AP(Cy)).
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The results of the above simulation are demonstrated inThe genetic algorithm that plays a central role in this
Fig. 3. In this figure, starting from the top-left corner, th@pproach is summarized in Alg. 1. In the following, we
(i,4) block shows the value of?, when C; and C, base use the operatort to represent set cardinality, and the
detectors have AP equal @15 + 0.05¢ and 0.15 + 0.05j, operator to represent the vector Hadamard product (i.e. the
respectively. The grey level of each block represents thesult of element-wise multiplication). Moreover, we denote
Py value, with white standing for’, = 1 and black for L the ordered set of base detectofs,a subset of this set,
Py = 0. Moreover, a dot is drawn in the center of bloclp; the AP achieved by using the average of the base detectors
(1,7) if Po(i,5) > 0.5. It should be noted that we havescore that belong td; andv; the participation vector of subset
chosen this method of visualization instead of reporting the. As participation vector of a subsét we refer to a binary
exact P, scores, since the process we described above amdttor of length#L, whose j-th element is equal toif and
used for getting these results is an approximate simulation famly if the j-th element ofL belongs toL;.
extracting mostly qualitative conclusions, rather than an exact
mathematical model for the accurate quantitative analysis Agorithm 1 Geneticalgorithm for selecting a subset of best-
AP. Fig. 3 demonstrates that the common assumption tR&forming (or worst-performing) base detectors.
the use of more classifiers always increases the accuracyNetation: c is the current conceptyn the mutation rate of the
their combination is not to be taken as a general rule. Ongenetic algorithm,V is the initial population sizefz the
the contrary, if the detection performance already reached by(fixed) number of generations akds the number of parent
a base detector is relatively high, combining additional basechromosomes that breed the next generation population.
detectors with it or not needs to be thoroughly examined ¥ Initially, from set L, N random subsets (chromosomes)
order to make sure that the accuracy of the combination will L1, Lo, ..., Ly are used to form the initial population. Their
not deteriorate, compared to using the single well-performingcorresponding participation vectors, v, ..., vy, as well
detector alone. More importantly, if an extensive set of baseas the corresponding performance estimatjongs, ..., px
detectors is available for multiple concepts, a procedure forare computed. The current generation indes set to 1.
selecting for each concept the optimal subset of base detec#rsThe & chromosomes that achieved the best (or worst)
to be combined is needed. performance (k < Y “survive”, while all the other chro-

Moreover, Fig. 3 manifests tha®, exhibits a different be- mosomes are discarded.
havior for concepts having different prior probabilities. Speci8: Uniform crossover is used to combine theparent chro-
ically, a significant difference between rare and frequent con-mosomes of the current generationfitk — 1)/2 pairs to
cepts is that in the first case accurate base detectors “dominatdireed two new chromosomes each, thus leading to a new
over all other base detectors, since their combination enhancegopulation oft:(k—1) members. More specifically, from two
the performance even when the other base detector exhibits parent chromosomes; and L; the children chromosomes
low AP (e.g. forP, = 1% or P, = 5%). On the contrary, when  Will have participation vectors; ov; +Y o (1—wv;0v;) and
P, increases, then the poor base detectors “dominate” they;ov;+(1—Y)o(1—wv;0v;), whereY is a random binary
combination, since the performance remains low even whervector of dimensio£L, > Y = #L/2, and “1” denotes a
the other base detector of the combination exhibits a high AP.vector of ones. Thus, each child chromosome inherits some
This point explains the disagreement in conclusions betweerof its genes from both its parents.
participants in the TRECVID competition (that includes mang: Once the new population is constructed mutation is em-
rare concepts), who have found employing multiple baseployed to randomly modify a gene subset. More specifically,
detectors and late fusion advantageous, and other works thagut of thek(k — 1)(#L) genes of the populatiomuk(k —
following the analysis of concept detection results for mostly 1)(#L) of them randomly mutate (i.e. the corresponding
frequent concepts, rejected such a late fusion approach (e.garticipation vector elements change value frorto 1 or

[24], [35]). from 1 to 0).
5: The chromosomes that match thé: — 1) participation
B. Base detector selection for concept detection vectors formed after the end of step 4 are retrieved and the

Motivated by the above analysis, we have developed acorresponding performance is estimated.
base detector selection procedure that selects for each conégf » = R then the chromosomd.,, that achieved the
the optimal subset of the available base detectors. Moremaximum performance is returned as the optimal config-
specifically, the introduced scheme builds upon a geneticuration. Moreover, the participation vectors, vs, ..., vr
algorithm, by post-processing the outcome of two different of the chromosomes that achieved the togpéiformance
variations of the latter. We should stress that this algorithm isvalues are retrieved. Otherwise= r+1 and the algorithm
executed off-line, during training. The result of this technique continues from step 2.
is the selection for each concept of an optimal subset of
base detectors and the exclusion of all other base detectorfhe aforementioned genetic algorithm is executed inde-
from the corresponding detection scheme. Thus, at run-tinpendently twice under the proposed approach. In the first
the computational complexity of concept detection is reduceaecution the goal is to identify the configurations (i.e. the
from O(S - D - A) (Section IV-A) to O(S Zi’;l M;), where base detector subsets) that achieve the best performance, while
M; is the number of base detectors employed for the detectiorthe second one the configurations that exhibit the worst per-
of the i-th concept. formance. These are used for robustly selecting the best base
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Fig. 3. The probability of a classifier that averages two base detectors to exhibit higher AP performance than the best-performing one of these base detectors,
asa function of the AP of the two base detectors. The two axis correspond to the AP performance of each base detector. More specifically, starting from the
top-left corner, the(s, j) block corresponds to a pair of detectors, having AP equal. 16 + 0.05¢; and0.15 + 0.057, respectively. The grey level of each

block represents the value of probabilis, with white standing forl and black for0. Moreover, a black dot in the center of a blogk j) denotes that

Po(i,j) > 0.5.

detectors for the given concept: a base detector is ultimatéigorithm 2 The proposed base detector selection algorithm.
selected if it is frequently included in the best-performing: For each concept the genetic algorithm (Alg. 1) is executed.
configurations and at the same time is not frequently includedIn each generation of the algorithm the configurations that
in the worst-performing ones. For realizing this selection, we achieved the best performance “survive”. The output is the
introduce a “base detector quality” measupe, in relation top — T configurations that achieved the best performance

with concepte, for each concept and the mean base detector nuibgre.
Q.= (Pr — Np)/T (4) the average of the number of base detectors intdipe- 1
) , i i _ configurations across all concepts, rounded to the nearest
whereT is the number of configurations that are retrieved in integer)

each genetic algorithm execution, afg, Nr is the number of 5. £, "a4ch concept the genetic algorithm (Alg. 1) is executed
times that the base detector was included in the conf|guraﬂonsagain This time, in each generation of the algorithm the

that achieved theop — 7" and thebottom — T performance,  .,nfigurations that achieved the worst performance “sur-
respectively. The base detectors for coneepte ranked using vive". The output is thebottom — T configurations that

Eq. (4), and thé// highest-ranked ones are selected. The aboveachieved the worst performance for each concept.
described process is summarized in Alg. 2.

o C 3. For each concept and each base detector, the number of
It should be noted that fixing the number of base detectorstimes that this base detector was included intthe—T and

M; .that are selected fc_:r each _concept]\m =M » @S W& thebottom—T configurations (i.ePr and Ny, respectively)

do in step 4 of Alg. 2, is a choice we make for simplifying estimated, and the base detector quality meagurés

the experimental evaluation and comparison of the proposed., . jated according to Eq. 4.

approach. In practice, one could also search for the optinl_ﬁl For each concept tha/ base detectors with the highest
number of base detectors separately for each concept, whm@2C comprise the base detector subset (i.e. configuration)

may further improve the results. that will be employed in the concept classifier, while all
other base detectors are discarded.

V. EXPERIMENTAL EVALUATION
A. Datasets and experimental setup

Our experimental setup is based on the 2011 and 201Rrowing”, “walking-running”, “skating”) or correspond to
TRECVID SIN Tasks [36], [37]. As already mentioned, th@bjectsthat are very likely to be filmed while they are in
total number of concepts that were defined in these tasksmstion (e.g. “skier”, “car”, “boat-ship”).

346. However, the corresponding evaluations were carried outFor training, validation and testing our concept detectors we
in a subset of50 and 46 concepts, respectively, for whichhave used the TRECVID SIN Task datasets as follows: For the
ground-truth annotation of the test sets is available. The lateperiments on th@011 dataset our training set consisted of
concepts, which are the ones used in this work, are showit44 videos (lasting approximatel00 hours and including

in Table I. In this table we additionally mark with a “*” 250000 shots), the validation set @216 videos (approx100

the concepts that are either directly related with motion (elgours; 70000 shots) and the test set d000 videos (approx.
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TABLE |
THE 50 AND 46 CONCEPTS EVALUATED IN THE2011AND 2012 TRECVID SINDATASET, RESPECTIVELY MOTION-RELATED CONCEPTS ARE MARKED
WITH A “*”,

Dataset Concepts

TRECVID 2011 Adult, Anchor-person, Beach, Car*, Charts, Cheering*, Dancing*, Demonstration*, Doorway, Explosion/Fire,
Face, Female Person, Female Face Close-up, Flowers, Hand, Indoor, Male Person, Mountain, News Studio,
Nighttime, Old People, Overlaid Text, People Marching*, Reporters, Running*, Scene Text, Singing, Sitting
Down*, Sky, Sports*, Streets, Two People, Walking*, Walking/Running*, Door Opening*, Event*, Female Human
Face, Flags, Head & Shoulder, Male Human Face, News, Quadruped, Skating*, Speaking, Speaking To Camera,
Studio With Anchor-person, Table, Text, Traffic*, Urban Scenes

TRECVID 2012 Airplane*, Airplane Flying*, Basketball*, Bicycling*, Boat-Ship*, Boy, Bridges, Chair, Computers, Female
Peron, Girl, Government leader, Greeting*, Highway*, Instrumental Musician, Kitchen, Landscape, Male Person,
Meeting, Motorcycle*, Nighttime, Office, Press Conference, Roadway Junction, Scene Text, Singing, Sitting
Down*, Stadium, Teenagers, Throwing*, Walking-Running*, Apartments, Baby, Civilian Person, Clearing, Fields,
Forest, George Bush, Glasses, Hill, Lakes, Man Wearing A Suit, Military Airplane*, Ocean, Skier*, Soldiers*

100 hours; 65000 shots).For the experiments on th2012 each combination of representation (i.e. each keyframe or
dataset, the training set consisted 19860 videos (approx. tomograph), interest point detector, descriptor and assignment
600 hours; 400000 shots), the validation set of163 videos method and is used as input to the corresponding SVM base
(approx.100 hours; 73000 shots), while the test set d@fl00 classifiers for a given concept (base detectors). As a result,
videos (approxl100 hours; 72000 shots). 36 base detectors are built for each concept separately, based
For evaluating the trained concept detectors we followexh local image features. An additional base detector that uses
the methodology used in TRECVID. That is, for each conceptglobal visual descriptor (HSV histogram) is also employed.
separately, the to)2000 shots sorted by detection score inThe 37 base detectors are outlined in Table II.
descending order are returned and are evaluated against partigbr the base detectors, linear SVM classifiers are employed
manually-generated ground-truth annotations. The evaluatipgtead of the kernel SVMs that are typically used in such
measure is the Extended Mean Inferred Average Precisi@isks. By this choice, the required computational time for a
(XInfAP) [34], which has been proposed for the purpose @fingle SVM classifier (corresponding to a single concept) fell
approximating Average Precision (AP) when the dataset is rfaém 6 seconds per image (that was required in our earlier
fully annotated and therefore AP cannot be directly calculateskperiments with kernel SVMs) t6.03 seconds. This is an
The proposed concept detection approach is implementgdplementation choice that is in line with our overall goal
for the purpose of experimental evaluation, according to tla¢ developing a computationally efficient solution to concept
pipeline of Fig. 1, employing state-of-the-art features angktection. All base detectors were trained off-line, using the
parameters for the pipeline components that are not explicitigrresponding training sets. The output of each of the trained
discussed in the preceding sections. Specifically, each videgse detectors is an intermediate confidence score. The overall
shot is represented by either one or more keyframes or atssnhfidence score for each concept is estimated as the harmonic
a pair of video tomographs (CV-tomograph, CH-tomographjean value of the intermediate confidence scores of all (i.e.
Subsequently, an interest point detector is employed to selgptto 37) base detectors for this concept. Using the harmonic
the image points at which descriptors will be extracted. Waean was shown in practice to produce slightly better results
used two such detectors; the first selects interest points throdighn the arithmetic mean, which was used for simplicity in
dense sampling, i.e. in fixed distances in a 2D image grigur simulations reported in Section IV-A.
while the second one is a Harris-Laplace corner detector
[8]. At each of the resulting interest point locations, low-
level visual descriptors are extracted (SIFT, RGB-SIFT arit 1omographs versus keyframes
Opponent-SIFT), following the conclusions drawn in [5] for In this first experiment we investigate the impact of using
video concept detection tasks. Subsequently, the low-le¥ieé video tomographs introduced in Section Il in replacement
descriptors are assigned to visual words, using two vocalf-traditional keyframes. More specifically, we compare the
laries that were created off-line through k-means clusterimgpmbination of thel3 keyframe-based detectors of Table I
and hard- or soft-assignment, respectively, according to [38painst the combination af2 tomograph-based detectors of
In all cases (i.e. regardless of which one of the above vidéwe same Table that use dense sampling for interest point
sampling strategies, descriptors etc. is used) a pyrarfigddl detection (which, as we show later on, are the best among
decomposition scheme employirdgequally-sized horizontal our 24 tomograph-based detectors). The results show that out
bands of the image, as proposed in [39], was used on evefythe 96 different concepts in the two datasets that we use,
keyframe or tomograph, generatigdifferent BoWs corre- tomographs outperform keyframes for orfly concepts (all
sponding to the three image bands and a fourth Bow fof them motion-related: basketball, throwing, skier, demon-
the entire image. The number of words for each BoW wasration, people marching, running, walking/running, skating).
set to 1000 and the four BoWs coming from the adoptedhis result is consistent with our intuition that tomographs
pyramidal decomposition were concatenated40@-element convey useful motion information that is, however, comple-
BoW vector. One such vector is calculated separately forentary rather than alternate to the non-motion information
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TABLE I
COMPLETE SET OF BASE DETECTORS USED IN OUR EXPERIMENTS

Video Sampling Possible representations and resulting base detectors

Keyframes 12 local-image-feature-based Base Detectors: 3 descriptors (SIFT, Opponent-SIFT, RGBXSEFppint
detectors (Dense, Harris-Laplace)2 BoW strategies (soft-, hard-assignment)
1 global-image-feature-based base detector (HSV color histograms)

Tomographs 24 tomograph-based base detectors: 2 types of video tomographs (CH-tomograph, CV-tomogr8ph)
descriptors (SIFT, Opponent-SIFT, RGB-SIFK2 point detectors (Dense, Harris-Laplacg) 2 BoW
strategies (soft-, hard-assignment)

conveyed by keyframes. Based on this result and in accordasopported by the fact that tomographs are by default very noisy
with the emphasis that we put in all previous sections on hamages, thus selecting image corners as interest points in such
to combine tomographs and keyframes, we will proceed in tireages does not necessarily help. However, as we show in
sequel with experimentally evaluating such combinations. the next subsection, if our concept detection problem focuses
on motion-related concepts and base detector selection can be
C. Combining tomographs and keyframes performed for each concept, then base detectors of this type

. . , . . . n also contribute to more accurate results.
In this series of experiments we investigate the |mpa8? . .
of combining the video tomographs introduced in SectiondWe also c?mpz_iretltis V\;'th A39,deh_|chtperfo;mstﬁ densgr
Il with traditional keyframes. The following approaches ard! Ieo samplntg); n f If femporaf Irec 'ﬁn r[] ]t' V\;Jhsnelgsmg
compared: i)A13 is the baseline, using keyframe per shot a larger number ot keylrames for each shot.

and combining thé3 keyframe-based base detectors of Tab mploys 13 distinct base detectors (the. same usediirs),
Il, i) A25 combines thel3 base detectors oft13 with 12 the use of3 keyframes per shot results in each base detector

additional base detectors that employ tomographs as vid%eoIng evaluateds times for each shot and therefore needs

samples and use dense sampling for interest point detectig?] r’nputat|onal time similar to that afi37 (we should note

i) 1 combines ol basedetctors ofTable I, i 1 COTPASIOnG e, here and rovgho e fet ol
employs the same base detectors4d8, but, as proposed in P

[3], in this case3 keyframes per shot are used instead of or{%r obtaining a classification result for a given non-classified

and therefore th&3 base detectors of13 have to be evaluatedS op). Despite the additional keyirames, the performance of

3 times each for a single shot (thu) base detector scoresA39 is significantly lower compared to that &f25, while the

. er is also less computationally demanding (Table IIl). This
are produced per shof). Our choice to compare tomogra %ﬁi%ws that tomographs should be preferred over introducing

with the multiple keyframe approach of [3] is based on the .. . .
fact that any other existing solution (e.g. traditional motiofﬁldﬁglrﬁgal keyframes in a keyframe-based concept detection

descriptors) would feature significantly higher computation Finally, in Figs. 4 and 5 we show results per concept

cost, makmg the app[lcat|on of it on th_e. extensive TRECV_I \INFAP) for the A13, A25 and A37 experiments. Although
datasets difficult and in any case depriving such a comparlsmrén of the considered concepts are not intuitively expected
of any practical value. y P y exp

Q be strongly correlated with any type of motion (e.g.

The experimental results are summarized in the top blohandsca & “fields” “computers” o can see that when
of Table Il (MXInfAP, i.e. mean XInfAP across all concepts). pe, ' pu ), W S w

ComparingA25 with A13, the MXInfAP increases in the011 go:nb![nlng Z;)éfraﬁe;gis_ed and cgrftaln tomot%;.?;'b?fﬁd base
dataset from).2187 to 0.2659 and in the2012 dataset from Cc oS (A25), Xin Increased for more o ofthe

0.1394 to 0.1557. These improvements represeritla6% and concepts.
11.7% accuracy boost, respectively, and manifest that although ) o N
the tomographs are not potential replacements of traditiort! Selecting base detectors for building a concept classifier
keyframes, they provide additional information that the latter In this series of experiments we investigate the impact of
do not capture. Moreover, as can be seen in Table lll, it issing a base detector selection strategy for choosing a different
the dynamic (motion-based) concepts that benefit the masibset of base detectors for each concept that we want to
from the introduction of tomographs: if only the motion-detect. For this we apply the technique introduced in Section
related concepts are taken into account, then the accuréidyand evaluate it against the results of the previous set of
boost caused by introducing tomograph$8s9% and47.1% experiments (where no such selection strategy was used) as
for the two testsets, respectively. well as against variations of the technique of Section IV and
On the other hand, the reported results show that thelated literature works [13], [40], [25]. More specifically,
detection of interest points by means of Harris-Laplace Btarting from the25 base detectors used 125, the following
tomograph images generates noisy representations that loagproaches are compared@5a, a variation of the proposed
the overall performance. This is manifested by the significantlgchnique in which only the first step of Alg. 1 is executed
lower performance thatl37 exhibits compared tol25 (MX- and the chromosome from the initial population whose per-
INfAP of 0.2113 versus0.2659 and 0.0837 versus0.1557 in  formance is maximum at the end of that step is returned as
the 2011 and 2012 datasets, respectively). This is intuitivelythe chosen configuration (i.e. set of base detectors§;ydijb,



IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 7, pp. 1251-1264, July 2014.
10 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6727470

A25
0.8— A37
0.6—
0.4—

i ”LuﬂuLJ J Ll U[J ULLkJ”LJh J“L J Al

¥ £ S & 2 O 98 2 2 S R OJIIFI S SO 2 FOooFos 9 9 ¥ OO O0OL QP L O Q@ OLDOOYPLSLYXOp
TSP ILEL PSS SRS ST PFEFEEFEEFEEFESFESTIES
¢ & SESFLSS < & &S ST T TP LSS S &N RS LEL § P4 N S LFF Y ISR
N NS S 9 T S Q& S X FETELED ST o EN) N ISy S S S ST & F L &5 G
IS QLS 0 SRS R & . N & O < S o F 2 K IS
N ORI # 9 FIFFFo S STEs § 5§ & 798 §$
I $ S s § < < o 2 NP I ¥ L S ¢ SIS
< g T f& & FO ¢ Fe £ RS
9 £ o S
$ S & s &8 N
'S « 9 & <

Fig. 4. XlinfAP for the concepts of the011 dataset. The compared techniques A3, A25, A37 and G25.

TABLE Ill
EXPERIMENTAL RESULTS AND COMPARISONS AVERAGE BOOST IS THE RELATIVE PERFORMANCE INCREASE COMPARED TA13, WHILE # BASE
DETECTORS IS THE AVERAGE NUMBER OF BASE DETECTORS PER CONCEPT AND SHOT THAT NEED TO BE EVALUATED AT RUN TIME

TRECVID 2011 dataset TRECVID 2012 dataset
All concepts Motion-related All concepts Motion-related
concepts only concepts only
Method MX- Aver- MX- Aver- | #Base|| MX- Aver- MX- Aver- | # Base
InfAP age InfAP age Detec- || InfAP age InfAP age Detec-
Boost Boost tors Boost Boost tors
Tomographs and keyframes vs keframes only (experiments of Section V-C)
Al3 0.2187 0% 0.0959 0% 13 0.1394 0% 0.0797 0% 13
(baseline)
A25 0.2659 | 21.6% | 0.1332 | 38.9% 25 0.1557 | 11.7% | 0.1172| 47.1% 25
A37 0.2113| -3.4% | 0.1247| 30% 37 0.0837 | -39.7% | 0.0845 6% 37
A39 0.2417| 10.5% | 0.1126 | 17.4% 39 0.1471| 55% | 0.0911| 14.3% 39
Base detectors selection among 25 base detectors (experiments of Section V-D)
G25a 0.2536| 16% | 0.1291| 34.6% | 10.32 || 0.1571| 12.7% | 0.1177| 47.7% | 10.11
G25b 0.2701| 23.5% | 0.1339 | 39.6% | 10.02 || 0.1651 | 18.4% | 0.1238 | 55.3% | 8.89
G25 0.2744 | 25.5% | 0.1346 | 40.4% 10 0.1783 | 27.9% | 0.1299| 63% 9

R25 [13] 0.2247 | 2.7% | 0.1197 | 24.8% 25 0.1422 2% 0.1023 | 28.4% 25
ABC?25 [40] || 0.2617 | 19.7% | 0.1282 | 33.7% | 10.52 || 0.1697 | 21.7% | 0.1282| 60.9% | 8.87
GA25 [25] 0.2585 | 18.2% | 0.1301 | 35.7% 25 0.1667 | 19.6% | 0.1278| 60.4% 25
Base detectors selection among 37 base detectors (experiments of Section V-D)

G37a 0.2411| 10.2% | 0.1283 | 33.8% | 13.02 || 0.1506 8% 0.1217 | 52.7% | 13.69
G37b 0.2633 | 20.4% | 0.1307 | 36.3% | 12.74 || 0.1659 | 19% 0.1329 | 66.8% | 11.78
G37 0.2743 | 25.4% | 0.138 | 43.9% 13 0.1760 | 26.3% | 0.1361| 70.8% 12

R37 [13] 0.2317| 5.9% | 0.1202| 25.3% 37 0.1387 | -0.5% | 0.0983| 23.3% 37
ABC37 [40] || 0.2635| 20.5% | 0.1274 | 32.9% | 12.96 || 0.1639 | 17.6% | 0.1296 | 62.6% | 12.16
G A37 [25] 0.2648 | 21.1% | 0.134 | 39.7% 37 0.1681 | 20.6% | 0.1341| 68.3% 37

another variation of the proposed technique in which onbwailable for selecting a subset of them, as opposezb tim

the first step of Alg. 2 (i.e. the complete Alg. 1) is executedhe previous6 experiments). These experiments are denoted
and the chromosome whose performance is maximum at t887a, G37a, G37, ABC37, R37, GA37, respectively. For
end of that step is returned as the chosen configuration, fiinning the above experiments, the Alg. 1 parameters were
G25, which corresponds to the complete approach proposset to N = 5000, R = 60, £ = 40, m = 0.15 andT = 500,

in Section IV-B, iv) ABC25, which uses the Atrtificial Bee while the employed Atrtificial Bee Colony (ABC) parameters
Colony (ABC) [40] algorithm for base detector selection, Wvere the ones proposed in [40].

R25, in which the25 available confidence scores are linearly The results of the experiments (MXInfAP) are reported in
combined using weights determined through regression, ta® second and third block of Table IlI, together with the
proposed in [13], and vi}7A25, in which the25 available corresponding average performance boost comparedl®
confidence scores are linearly combined using weights dgd the mean number of base detectors that were used in each
termined through gradient ascent, as proposed in [25]. ASkperiment. The latter number is assumed to be approximately
approaches are executed independently for each conceppr@portional to the computational cost of the overall concept
both the2011 and 2012 TRECVID datasets. Subsequentlydetection pipeline at run time.

the abovet experiments are repeated, this time starting from Firstly, the results show that th@25 and G37 approaches
the 37 base detectors used #B7 (thus,37 base detectors arecompare favorably to thel13, A25 and A37 ones examined
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Fig. 5. XlinfAP for the concepts of the012 dataset. The compared techniques a3, A25, A37 and G25.
in Section V-C, thus demonstrating the impact of the propose( 4
base detector selection strategy to both MXInfAP and com-g g
putational cost. Secondly, we can see that the resuls25f 2 3
and G37 are very similar (the MXInfAP difference between ©1 —z ©
G25 and G37 is Only 0.0001 and 0.0023 in the 2011 and 0 Concepts 67 96 0 Concepts 75 96
2012 dataset). Following the discussion in Section V-C on how (a) (b)

Harris-Laplace interest point detection in tomographs lead: 4 4
to noisy base detectors, this similarity of results shows thag
the proposed base detector selection strategy can effective®
identify and discard noisy detectors. Further to this, we car§1
see in Table Il that when considering motion-related concept: o
only, G37 outperforms(G25; this demonstrates the merit of

G25/ ABC25

—
96

Concepts Concepts 66

() (d)

70 96

even noisy base detectors under certain conditiofzh is
further compared withA13, A25 and A37 for each concept

Fig. 6. Comparison of725 againstA25, R25, GA25 and ABC25 at the
individual concept level, using the ratio of XInfAP achieved G925 and (a)

separately, and the results are shown in Figs. 4 and 5, whagg, (b) R25, (c) GA25 and (d) ABC25. In each sub-figure, the XInfAP

it can be seen thai25 improves on the results od13, A25
and A37 for the vast majority of the concepts.

Comparison of725 andG37 with simpler variants of them,

namely G25a, G25b, G37a, G37b (Table Ill), shows the

ratio is estimated for each of tH# concepts and then used for sorting the
concepts in descending order. Ratios higher tHaare truncated tol for
visualization purposes. A dotted horizontal line signifies a ratio equal to
while the number of concepts with ratio higher tharns highlighted on the

Tr — axes.

significance of proposed Algs. 1 and 2 in making a stable
selection of good base detectors for each concept. Particularly

the importance of taking into account not just the — T

all base detectors. Consequently, b6tH25 (G A37) and R25

but also thebottom — T' configurations when selecting basg R37) are much more computationally demanding at runtime
detectors (second step of Alg. 2) is made clear by thisan the corresponding algorithms that use a base detector

comparison.

selection scheme (e.@g:25). Finally, the poor results o225

With respect to other SoA methods (Table I11), the proposddt37) can be explained by the fact that for most concepts the

G25 (or G37) approach compares favorably thBC25 [40]
(or AB(C37), a metaheuristic search algorithm for optimiz
tion. This can be explained by the fact that h&C technique

a_

number of positive samples in the dataset is much lower than
the number of negative samples. This bias undermines this
technique, which minimizes the total sum of the error without

does not take into account that in the concept detectigifcriminating between positive and negative samples.

task the solution space is noisy, thus the optimization in aFurther comparison of25 againstA25, R25, GA25 and
validation set often does not lead to good detection in theBC25 at the individual concept level (Fig. 6) shows that

testset. Similar conclusions can be drawn by compafiag
(or G37) with GA25 [25] (or GA37) and R25 [13] (or R37),
the most recent base detector combination approaches

the former outperforms the latter fa@7, 75, 70 and 66 of
the 96 concepts, respectively (and is outperformed by only
tnamall margin for most of the few remaining concepts).

can be found in the relevant literature. It seems that tfidese results manifest that, although the proposed optimiza-
performance reached through gradient ascent (#.425) is tion approach does not theoretically guarantee optimal base
similar to the performance reached through a simple genetietector selection (as does neither one of the related literature
algorithm (G25b) or ABC (AB(25). However, linear combi- approaches), in practice it consistently performs well in these
nation approaches by definition use the confidence scores96foptimization problems.
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E. Assessing the impact of algorithm parameters and design TABLE IV
choices PERFORMANCE COMPARISON WHEN EACH OF THE FOUR DIFFERENT
QUALITY MEASURES DEFINED INEQS. 4 - 7 ARE USED.

A critical parameter of the approach of Section IV is the ; i .
number of base detectors that are selected for each classifier. Mgg‘;d Dz%tflsa 83027(21 83%7(?1 83%7(223 %c2(772) .
We hgve plotted thg MXInfAP o725 and G37 as a function a25 2012 01783 01762 0.1691 0.1692
of this number (Fig. 7). The plot demonstrates that the G37 2011 0.2743 0.2714 0.2718 0.2705
achieved MXInfAP does not significantly depend on the exact G37 2012 01760 0.1762 0.1706 0.1680
base detector number, since in all cases there is a rather wide
area around its optimal value where it remains almost constant.

_ ' . 9 3 T
More specifically, in thez25 case the optimal base detectoremploy only thetop — T' configurations Q;, (. Addition

. 5 o
number is13 in the 2011 dataset an®® in the 2012 one. ally, averaging the results (Q Q) seems to exhibit more

The proposed strategy, which is to automatically select tf%able performance than taking into account the exact rank by

i ici 3
number of base detectors by the genetic algorithm outcomct":’}lculatmg some sort of Average Precisior; (@), although

leads to the selection d) and9 base detectors, respectivelym general all observed differences are rather small, suggesting

The MXInfAP loss as a result of this i8.006 in the 2011 that the proposed genetic algorithm is relatively insensitive to

dataset (sinc®.2804 is the theoretical maximum as seen ir%he exact way in whichQ. is defined.

Fig. 7, and0.2744 is the one actually achieved) amid005
in the 2012 dataset (11788 and 0.1783 respectively). In the F. Statistics on the usefulness of different base detectors
G37 case, for botl2011 and 2012 datasets the optimal base Figure 8 shows the number of times that each base detector
detector number is equal t3, while the proposed strategyis used in all96 concept classifiers if th&z37 approach
leads to the selection df3 base detectors in th#)11 dataset is followed. It can be seen that the keyframe-based base
and12 base detectors in trz012 dataset. In the second casedetectors are selected more often than the tomograph-based
the corresponding MXInfAP loss i8.0012 (from 0.1772 to  ones. Specifically, on average ori#$.8% of the 37 available
0.176). base detectors are used for a given concept, Hhcbut
For completeness, it should be noted that if a variabtf 13 keyframe-based detectors are consistently selected for
number of base detectors is used for each concept, then th@re than50% of the examined concepts. There are also
overall MXInfAP may further increase. In experiments whertomograph-based detectors that are selected for the majority of
we varied the value of}; between6 and 25 separately the concepts, despite the fact that motion-related concepts are a
for each concept and selected the optimal configurations, théority in our datasets (2&hotion-related concepts out 66
maximum achieved MXInfAP wa8.2938 and0.1858 for the concepts in total). Finally, the tomograph-based base detectors
2011 and2012 dataset, respectively (representing an u%o that employ interest point detection via Harris-Laplace rather
boost over the=25 results reported in Table 1l1). than extracting local descriptors on a dense grid are the least
In order to validate our design choice of defining the basentributing ones, being ranked in the lagtplaces in Fig. 8.
detector qualityQ. according to Eq. 4, for selecting with the
help of the genetic algorithm the optimal set of base detectofs, piscussion on computational complexity
we further examine the impact of using, in place(@f, one
of three other reasonable base detector quality measgires
2. @3, defined as follows:

c?

For comparing the methods’ time efficiency throughout the
paper, we made the assumption (in Section V-D) that the
computational cost of the overall concept detection pipeline
at run time is approximately proportional to the mean number
of employed base detectors. However, under @5 (and
G37) approaches, since a different subset of base detectors

Q* = Pr/T ©) is used by each concept classifier, features will in any case
¢ need to be extracted for &lb (or 37) possible base detectors
when working with multiple concepts. Thus, the above as-
Q= APF @ sumption will only hold if the most computationally expensive
) step of the pipeline is evaluating the trained SVMs, rather
where Pr (respectively,Nt) is the number of times that thethan performing feature extraction and BoW creation. Our
base detector was included in the configurations that achievegberiments show that this is indeed the case under the typical
thetop—T (bottom—T) performance, andl P£ (respectively, application scenario that involves the detection of a plurality of
APY) is the Average Precision value that can be calculateifferent concepts, e.g. one thousand or more as in [41], [42].
by treating the list oftop — T (bottom — T') configurations Specifically, the time needed for evaluating the trained SVMs
as a ranked list of retrieval results, where configurations thahen detecting one thousand concepts underttieand G25
include the base detector in question are taken as positagproaches (with base detectors being used for each concept
samples. The results, demonstrated in Table 1V, manifest theG25) accounts fo87% and93.9% of the overall processing
validity of a genetic algorithm that looks at not only thdime, respectively, despite using linear SVMs, as a result of the
top — T but also thebottom — T configurations, sinc&). high number of such SVMs that need to be evaluated. In this
and Q! outperform the corresponding quality measures thaexperiment(25 is found to be overalt8.6% faster thanA13,

Qi =AP{ — APy (5)
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Fig. 7. Performance as a function of the number of selected base detectag5a) the 2011 dataset (b)525 in the 2012 dataset. (cY537 in the 2011
dataset (d)G37 in the 2012 dataset. For better readability, the numbering of the vertical axes shows only the fractional part of the MXInfAP value, i.e. the
integer part “0.” of MXInfAP is omitted.
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Fig. 8. Barplot of the number of times each base detector is used iB6ationcept classifiers of the two employed datasets, when selection of base
detectors is performed according@®37. The naming convention for the base detectors (horizontal axisVideo sampling><Descriptor><Interest point
detector>-<BoW assignment strategy>Key-Global” refers to the HSV histogram-based base detector. See Table Il for details on the base detectors.

as a result of using0.8% fewer base detectors per conceptMATLAB implementation of the base detector selection al-
despite feature extraction and BoW creatiorAd5 requiring gorithm on an INTEL(R) Core i7-3770K 3.5GHz PC took
somewhat more time than iA13. sec., leading to a total training time of less thznhours for

each concept; this is certainly not prohibitive for an off-line

These run time efficiency gains of base detector selectiﬂginmg process that needs to be performed only once.
come at a cost during the training phase, which however

is performed off-line and only once for each concept, thus
not affecting the scalability of the developed detectors, i.e.
their applicability to extremely large volumes of non-labeled In this work we dealt with large-scale video concept de-

video data. Moreover, using the proposed genetic algorithection. We showed that video tomographs can contribute to
the training cost is limited because this algorithm visits only iacreased concept detection accuracy, both for motion-related
very small portion of all possible configurations. Indicativelyand non-motion-related concepts, while introducing no greater
in the most extensive base detector setup (G37) the numlmamputational cost than that of processing a single keyframe.
of possible configurations i$3.7 billion (i.e. 237), while the Additionally, we showed that the “one size fits all” approach

configurations that were examined by the introduced algorithior the detection of multiple concepts in video streams leads

during ourG37 experiment (in all stages) were approximatelyo the unnecessary evaluation of base detectors that do not
100 thousand. Examining a single configuration using owways contribute to the detection of a specific concept, thus

VI. CONCLUSION
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compromisingaccuracy while increasing the computationgbo] M.-Y. Chen and A. Hauptmann, “MoSIFT: Recognizing human actions

cost. We addressed this issue with a new approach that build
upon a genetic algorithm to rank base detectors and sel@g}

only a (different for each concept) subset of them. The re- _ e
ported results demonstrate that by combining our base detector 0" Computer Vision and Pattern Recognition (CVPR), 2010, pp. 3304

Selec?ion teChnique and video tomeraphS’ concept detemﬂﬂ? F. Ju.rie and B. Triggs, “Creating efficient codebooks for visual recog-
effectiveness can be boosted By — 28% (as measured by

MXInfAP), while at the same time the run-time computational2
cost of concept detection can be decreased as a result of u£|n

up to 23 — 30% fewer base detectors per concept, compared
to indiscriminately using the complete set of keyframe-basé&!
base detectors.
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