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Abstract—In this work we deal with the problem of video
concept detection, for the purpose of using the concept detection
results towards more effective concept-based video retrieval. The
key novelties of this work are: 1) The use of spatio-temporal
video slices (tomographs) in the same way that visual keyframes
are typically used in video concept detection schemes. These
spatio-temporal slices capture in a compact way motion patterns
that are useful for detecting semantic concepts and are used for
training a number of base detectors. The latter augment the
set of keyframe-based base detectors that can be trained using
different frame representations. 2) The introduction of a generic
methodology, built upon a genetic algorithm, for controlling
which subset of the available base detectors (consequently, which
subset of the possible shot representations) should be combined
for developing an optimal detector for each specific concept. This
methodology is directly applicable to the learning of hundreds
of diverse concepts, while diverging from the “one size fits all”
approach that is typically used in problems of this size. The
proposed techniques are evaluated on the datasets of the 2011
and 2012 Semantic Indexing Task of TRECVID, each comprising
several hundred hours of heterogeneous video clips and ground-
truth annotations for tens of concepts that exhibit significant
variation in terms of generality, complexity, human participation.
The experimental results manifest the merit of the proposed
techniques.

I. I NTRODUCTION

The main goal of the video analysis community is the
development of techniques that make possible the automatic
understanding of the visual content and the semantic infor-
mation conveyed by unconstrained video streams. By “un-
constrained” we mean here videos that are not restricted to
a specific known domain (e.g. soccer videos), and therefore
can vary significantly both in their low-level visual properties
and in their interpretation. Since for such unconstrained videos
there is no restricted vocabulary that would be sufficient for
describing their content and meaning, in the root of the efforts
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of the analysis community lies the development of methods
for the fast and accurate detection of large numbers of diverse
high-level video features, termed concepts. Concept detection,
under this definition, means estimating for each concept a
degree of confidence in the hypothesis that this concept is
suitable for describing the contents of a given elementary piece
of a video stream.

The multitude and diversity of the concepts that need to be
detected, given the unconstrained nature of the content, cre-
ates significant challenges both in terms of effectiveness and
computational efficiency. These challenges are highlighted, for
instance, in the TRECVID Semantic Indexing task [1], which
has been focusing on the development and benchmarking of
systems that would be able to handle large amounts of video
data and detect hundreds of semantic concepts efficiently (e.g.
[2], [3]). As a result of this and other efforts towards solving
the large-scale concept detection problem, several powerful
techniques have emerged. For example, in order to exploit
color information in addition to local image structure, the
Opponent-SIFT and RGB-SIFT (or Color-SIFT) variations of
the well-known SIFT descriptor [4] were proposed in [5]. In
order to further reduce the computational cost of extracting
such local descriptors, techniques such as Speeded Up Robust
Features (SURF) [6] and DAISY [7] were introduced as fast
SIFT approximations, whereas in parallel the use of corner
detectors for interest point detection (e.g. Harris-Laplace [8])
has in many schemes been either replaced or complemented
by dense sampling (i.e. the sampling of image patches on
a regular dense grid). At the front of machine learning,
which is key to finding the mappings between such low-level
features and the high-level concepts that we want to detect,
similar effectiveness and efficiency considerations have lead
to interesting developments; for instance, chi-square kernels,
that were originally considered to be optimal for use in support
vector machines (SVM) [9], [10], are now often replaced by
Histogram Intersection kernels [11] or even Linear SVMs for
the sake of scalability.

Contrary to what is intuitively expected, in most of the
developed schemes that aim to detect multiple concepts in
large-scale video data, motion information is ignored and
the detection is based exclusively on processing characteristic
keyframes that are extracted at shot level (i.e. each video shot
is represented by one or more keyframes). This is partially
explained by the high computational cost associated with the
extraction of most motion descriptors (since this extraction ne-
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cessitates,at the very minimum, the processing of a significant
number of frames per shot), compared to the disproportion-
ately low gains in accuracy that such descriptors introduce over
the simpler keyframe-based approach. However, taking some
form of motion information into account when trying to make
sense of the video content is evidently desirable, and finding
a way to do this with a computational cost comparable to that
of processing a single keyframe represents a major challenge.

Moreover, in order to reach high accuracy levels, current ap-
proaches to concept detection typically describe each keyframe
with numerous different low-level features, which are then
used separately for building a number of base detectors
that produce an abundance of intermediate detection results
for each concept; these intermediate results are subsequently
combined in order to generate the final concept detection
output (e.g. [12], [13], [5]). While this strategy of generating
an over-complete description of each keyframe, rather than
using a single low-level descriptor alone, has been shown to
boost detection accuracy, one can intuitively assume that not
all possible descriptors and intermediate detection results are
of equal importance (or, of any importance) for the detection
of all possible concepts. Nevertheless, little attention has been
paid so far to the automatic selection of an optimal subset
of such intermediate results for each specific concept, which
could introduce improvements in both the effectiveness and
the computational efficiency of the concept detection process.

In this work we propose the use of video tomographs [14]
(i.e. spatio-temporal slices with one axis in time and one in
space) to represent video motion patterns. These tomographs
are effectively and straightforwardly extracted from the video
stream. Contrary to previous works on tomographs, we treat
them as another form of keyframes and we apply to them
the usual pipeline of feature extraction and transformation,
for building a number of tomograph-based base detectors
for each concept. As we will show, the processing of these
tomographs is not computationally costlier than processing
a single keyframe and, when used in combination with vi-
sual keyframes, can significantly enhance concept detection
accuracy. Moreover, to take advantage of the diversity of
the concepts that need to be detected, and of the possible
redundancy that exists in a typical over-complete shot rep-
resentation (comprising multiple visual descriptors extracted
from keyframes and tomographs) with respect to detecting any
single one of these concepts, we introduce a novel technique
built upon a genetic algorithm that selects for each concept
independently the respective optimal base detector subset,
instead of invariably using all possible base detectors for all
concepts. As will be shown, this again has benefits in both
detection accuracy and computational cost.

The rest of the paper is organized as follows. Related
work is reviewed in Section II. Visual tomographs and their
proposed use for video concept detection are described in
Section III, followed in Section IV by the introduction of the
proposed base detector selection technique. Experimental re-
sults and comparisons on two large-scale datasets are presented
in Section V and, finally, conclusions are drawn in Section VI.

Fig. 1. The pipeline of a typical concept detection system. Initially the video
stream is sampled (e.g. keyframes are extracted) usingN different sampling
strategies (labeleds1, s2,...sN in this figure). Subsequently,Λ sets of features
are extracted to represent the visual information samples (labeledr1, r2,...rΛ).
The set of features are used as inputs to base detectors that are trained off-
line. Finally, the base detector outputs are combined and an overall concept
detection score is estimated.

II. RELATED WORK

The pipeline of a typical concept detection system is shown
in Fig. 1. The video stream is initially sampled, for instance
by selecting one or multiple keyframes per shot. Subsequently,
each sample is represented using one or more types of features
(e.g. SIFT [4], SURF [6]). These features form the input to
a number of classifiers (i.e. base detectors), which typically
are support vector machines. The parameter sets that control
the employed classifiers are predefined, i.e. have been learned
at the classifier training stage for each concept, using similar
features extracted from training data. Finally, the base detector
outputs are fused to estimate a final detection score for each
concept.

From the above description it becomes apparent that large-
scale concept detection systems encompass multiple video and
image analysis techniques. These include techniques for inter-
est point selection in keyframes [15] or video volumes [16],
[17]; image descriptors such as Color-SIFT and Opponent-
SIFT [18] or also spatio-temporal descriptors [19], [20]; vector
modeling and quantization [21], [12]; code-book construction
[22]; classifier selection and parametrization [11], etc.

However, little work has been done in the first component
of the pipeline, i.e. the sampling of the video stream. The
most common approach is to use a single keyframe per shot
(e.g. [5], [2]), thus transforming the video concept detection
task into image concept detection. This approach is fast and
can straightforwardly take advantage of feature extraction
techniques that were developed for still images, but it does not
take into account motion, which may cause the visual content
of a single shot to vary significantly. On the contrary, the
authors of [12] propose using all video frames as keyframes.
Whereas this enhances the accuracy, it also disproportionately
increases the computational cost. A better balance between
accuracy and efficiency can be achieved by using a limited
number of keyframes per each shot, as in [3], in which the
use of up to10 keyframes per shot was proposed.

Techniques that employ only keyframes as video samples
handle the video stream as a mere collection of photos
(keyframes), failing to take advantage of the dynamic nature
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of video that makes it particularly expressive. Consequently,
several techniques that involve also the motion modality have
been introduced (e.g. [23], [24]). However, motion descriptor
extraction is typically associated with high computational cost,
and the gains in precision that are attained by introducing
motion descriptors in the concept detection process are often
not on par with the added computational complexity. In a
recent review [19] a number of spatio-temporal interest point
detectors and descriptors were examined both in terms of
accuracy and computational cost and it was reported that the
fastest among them could process4.6 frames per second. In
this case (assuming a mean shot duration of5 − 7 seconds
and a frame rate of25 frames/second), the motion descriptor
extraction procedure would require more than half a minute
per shot, a significantly longer time than that associated with
the estimation of the most common image-based descriptors
(e.g. SIFT, SURF) at keyframe level. Even if no3D interest
point detection is performed and dense sampling of the video
volume is used instead (as proposed in [17]), the required
computational time is still much higher than that associated
with descriptor extraction at keyframe level. To alleviate this
drawback in [23], [24] fast global motion descriptors were
used (e.g. motion histograms) but these failed to enhance
the detection accuracy. The authors of [24] also proposed
the sampling of the video volume in spatio-temporal samples
called short-term audio visual atoms (S-AVA); although the
use of S-AVA instead of keyframes resulted in higher accuracy,
the S-AVA estimation is based on a sophisticated and compu-
tationally demanding point tracking algorithm that has to be
applied to all video frames. In general, even the fastest motion
descriptors cannot compare with the fastest keyframe-based
ones in terms of computational cost, often being practically
inapplicable to large-scale video analysis problems.

Another part of the concept detection pipeline that has
received little attention is the selection of the most appropriate
set of features for each concept, rather than adopting an
“one size fits all” strategy. For instance, approaches such as
those discussed in the above paragraph can possibly increase
the detection accuracy for motion-related concepts. However,
large-scale video concept detection techniques should be able
to handle multiple concepts which may or may not be related
to motion (or to any other specific low-level visual property).
Despite this need, in most of the relevant literature a process
such as the one illustrated in Fig. 1 is executed invariably
for all concepts of interest, despite their qualitative differ-
ences. More specifically, the complete base detectors set is
employed for each and every concept and the base detectors
scores are combined to estimate the overall output through
averaging (e.g. [5], [3]) or linear combination using weights
that are globally tuned for the complete set of concepts (e.g.
[2]); in only a few approaches, these weights are selected
independently for each concept through an off-line tuning
process. For example, in [12] a brute-force search using
cross-validation was proposed for selecting the weight values,
which is computationally feasible only because the number
of the employed base detectors in [12] is very limited. On
the other hand, when a large number of base detectors are
employed, weights may be tuned through gradient ascent [25]

or regression analysis [13].

III. E MPLOYING VIDEO TOMOGRAPHS AS ADDITIONAL

SHOT SAMPLES

A. Use of tomographs

In this work we show how keyframe-based concept detec-
tion can be improved by augmenting the set of keyframes with
a spatio-temporal type of image, the video tomograph. Video
tomographs were introduced in [14] as spatio-temporal slices
and have been used for optical flow estimation [26], camera
motion classification [27] and video copy detection [28], [29].
A video tomograph is defined in [14] as a cross-section image
(i.e. an image defined by the intersection between a plane
and the video volume) which is additionally smoothed using
a high-pass filter. The cross-section image is generated by
fixing a 1-D line on the image plane and aggregating the video
content falling on the corresponding line for all frames of the
shot. In this work video tomographs are re-defined in a slightly
different and somewhat more general way, and are used in a
completely new way for a different application. A preliminary
version of the proposed definition and use of tomographs was
introduced by the authors in [30].

Video tomograph re-definition is based on the fact that the
video volume is not continuous, but is formed by a finite set of
frames. Consequently, a tomograph can be defined as a set of
line segments, which are recursively estimated as intersections
between lines and frames. More specifically, iffi is the current
frame,vi−1 the line defining the intersection in the previous
frame, Ri the current tomograph rotation matrix andTi the
current tomograph translation vector then thei − th line can
be estimated as:

vi = fi ∩ (Ri · vi−1 + Ti) (1)

If v0 is the initial line segment and allRi, Ti are known,
then a tomograph image can be straightforwardly extracted.
This tomograph definition encompasses the definition of [14],
where the latter corresponds to settingRi = I2, Ti = [0 0]T ∀i
in Eq. 1, I2 being the two-dimensional identity matrix and
superscriptT denoting the transpose matrix. The advantage
of the above definition is that complex motion patterns can be
projected into meaningful images. For example, a tomograph
could be formed by lines chosen so as to be always perpen-
dicular to the camera motion direction, thus generating an
image that captures the objects being followed by the camera.
Such an approach would require knowledge of the camera
motion, but this is not prohibitive since several methods exist
for automatically detecting camera motion parameters from the
video (e.g. [31], [32]), including methods that can be applied
directly on the motion vectors encoded in the MPEG stream
(e.g. [33]) and therefore having limited computational cost.

Putting aside the possibility of taking into account camera
motion, the two simplest tomograph images are the centralized
horizontal (CH-tomograph) and the centralized vertical (CV-
tomograph) one. A CH-tomograph is constructed by aggre-
gating into a 2D image the visual content of the horizontal
line passing from the frame center, for all frames of a shot
(i.e. Ri = I2, Ti = [0 0]T ∀i and v0 is the line y = H/2,
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whereH is the frame height). A CV-tomograph is constructed
in an analogous way, with the only difference being that
v0 is perpendicular to the x-axis, instead of parallel to it.
Examples of CH- and CV-tomographs are shown in Fig. 2.
In the left example the shot shows a man that crosses the
camera field of view following direction from right to left.
His motion is mapped into the CV-tomograph as a human
silhouette, which regardless its slight deformation is human-
understandable and can be processed using the same tools that
are used for traditional images or keyframes. On the other
hand, the main theme of the video shot of the right example
is cloud movement. In this case the CH-tomograph achieves to
express this motion into another human-understandable image,
depicting primarily the moving clouds. We should stress here
that, in the presence of arbitrary object or camera motion,
the extracted tomographs are generally not expected to be
human-understandable images; nevertheless, they do contain
information that can help with concept detection, as our
experiments will show.

For the purpose of concept detection in this work, both the
CH- and CV-tomographs are processed in the same way as
keyframes. More specifically, image patches are estimated,
followed by descriptor extraction and vector quantization.
The vocabulary (visual words) employed at this stage is
constructed by clustering local descriptors extracted from the
corresponding tomograph type (e.g. a random sample of CV-
tomograph SIFT vectors are clustered in order to generate the
vocabulary used for vector quantization of SIFT descriptors in
CV-tomograph images). The resulting Bag-of-Words (BoW)
feature vectors are the input to tomograph-based Support
Vector Machine (SVM) classifiers (i.e. base detectors). These
classifiers are also independently trained for each tomograph
type, using annotated samples taken from tomographs of the
corresponding type. As will be detailed in the experimen-
tal evaluation section, through this process we generate 24
tomograph-based base detectors for each concept (as opposed
to only 12 in [30]), in addition to 12 similar keyframe-
based ones (plus a 13-th keyframe-based one that uses simple
color histograms rather than local image features). Finally, the
output of all (i.e. up to 37) base detectors is fused following a
simple late fusion scheme that does not discriminate between
keyframe and tomograph-based detectors.

B. Computational concerns

Concerning the computational cost of introducing video to-
mographs in the concept detection process, it is straightforward
that the processing time required for feature extraction from
tomographs depends on the total number of pixels in each
tomograph. Consequently, an estimation of the tomograph size
can be used to compare the computational cost of tomograph-
based classification with the computational cost of keyframe-
based classification. Keyframe size is constant for a given
video and can be adjusted during the decoding process. On the
other hand, tomograph size is not constant, since it depends
not only on frame size and frame ratio (that are typically
constant) but also on the current shot duration. However, a
rough estimation of the mean tomograph size is possible, at

least for CH-tomographs and CV-tomographs. As a matter of
fact, if W andH is the frame width and height,r is the frame
rate andτs the duration of shots then the total number of
pixels for keyframeK, CH-tomographKH and CV-tomograph
KV would be:

pix(K) = WH, pix(KH) = brτscW, pix(KV ) = brτscH
(2)

wherepix(.) denotes the number of pixels andb.c the integer
part of a real number. In the extensive TRECVID SIN 2012
dataset, the mean shot duration is5.1 seconds. If typical values
(r = 25, τs = 5.1, W = 352, H = 288) are replaced in the
above equations then the number of pixels of a CH- and a
CV-tomograph together, compared to the number of pixels in
a keyframe, would be:

(pix(KV ) + pix(KH))/pix(K) ' 0.8 (3)

Consequently, the descriptor extraction computational cost
when using a pair of tomographs is similar to the cost of
processing a single keyframe. Finally, it should be noted
that the formation of the tomographs starting from the video
stream is also very fast, particularly when simple CH- and
CV-tomographs are used and therefore no processes such as
camera motion estimation are required. In such a case, apart
from decoding the video stream into frames, this only requires
accessing and placing in a 2D matrix a small set of frame
pixels (one fixed line segment per frame), as per Eq. (1).

IV. SELECTING BASE DETECTORS FOR BUILDING A

CONCEPT CLASSIFIER

A. Combining base detectors

The pipeline of Fig. 1 can be considered as a late fu-
sion scheme that involves multiple base detectors executed
independently, prior to combining their results. Late fusion
represents the method of choice in state-of-the-art concept
detection, as most related techniques use it either exclusively
or in combination with some early fusion (e.g. [13], [12], [2],
[5]). The use of multifarious information content as input to
this fusion mechanism is guided by the need to be able to
handle multiple concepts which may demonstrate significant
diversity, for instance concepts that are either static (e.g.
“forest”) or dynamic (e.g. “running”); rather specific (e.g.
“George Bush”) or quite generic (e.g. “building”); human-
based (e.g. “two people”), object-based (e.g. “motorcycle”) or
background-based (e.g. “static background”); etc. Invariably
fusing the output of all available base detectors for a given
concept, as is typically the case in the literature, is based
on the assumption that different base detectors can contribute
to the accurate classification of concepts of a certain subset
(e.g. detectors that use motion-based descriptors can contribute
to detecting concepts that are related to motion), while they
would not deteriorate the detection accuracy of all other
concepts (e.g. it is assumed that having some motion-based
detectors in the set of base detectors whose scores are fused
would not adversely affect the final detection accuracy of static
concepts). Thus, for each concept all base detectors scores
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Fig. 2. Two tomograph examples, each one corresponding to a different type of tomograph image. The left tomograph is a CV-tomograph, while the right a
CH-tomograph.Both of them are defined by the temporal ordering of lines that pass from the center of the frames. Five indicative frames of the shot from
which each tomograph was generated are also shown to the left of the corresponding tomograph. The temporal order of the shown frames and the time-axis
of the 2D tomograph images are denoted with arrows.

are combined to generate the final concept detection output.
Consequently, assuming that the classification is performed at
shot level, the associated complexity is proportional toS ·D·Λ,
where S is the total number of classified shots,D is the
amount of concepts andΛ is the number of available base
detectors.

The two most common late fusion strategies are averaging
the confidence scores or calculating a linear combination of
them with weights that are globally tuned for all concepts (e.g.
[2]). The latter approach, while shown to enhance the concept
detection accuracy, suffers from the “curse of dimensionality”
that prohibits a brute-force tuning of the weights, especially
since the number of base detectors is typically in the order
of tens. Moreover, both late fusion approaches do not take
into account the fact that not all of the employed detectors
can truly contribute to the detection of all possible concepts.
Therefore, computational time is unnecessarily consumed,
since all base detectors are used in each concept, regardless if
they increase the concept detection accuracy or not. Finally,
as will be subsequently demonstrated, when the detection
accuracy measure depends on the sorting of the results (as
is the case with Average Precision (AP) or Extended Inferred
Average Precision (XInfAP) [34]), averaging the confidence
scores of two base detectors out of which only one achieves
good concept detection accuracy may lead to the accuracy of
the final detector (fused scores) being worse than the accuracy
of the best out of the two original base detectors.

In order to clarify the last point, we model the confidence
score distribution of a base detector that is trained to detect
a specific concept as a mixture of two gaussian components
N(µp, σp), N(µn, σn), each corresponding to true positive
and true negative samples, respectively. The parameters that
determine the classifier accuracy areµp, σp, µn, σn, as well as
the concept’s prior probabilityPp. Since the Average Precision
measure depends on the distance between the two gaussian
components, the classifier is translation invariant. Thus,µn is
arbitrarily selected to be equal to0. Consequently, the perfor-
mance of a detectorC3 that averages the scores of two base
detectorsC1, C2 is controlled by7 parameters (parameters

µp, σp, σn for each ofC1, C2, andPp, since the value of the
latter depends only on the frequency of the concept in the
dataset). In the subsequent analysis we examined6 different
values ofPp, 1%, 5%, 16.6%, 33.3%, 50% and66.6% in order
to model concepts that are rare as well as concepts that can
be found very often in a video stream. For eachPp value we
estimate the probability of the following hypothesis being true:
“P (AP (C3) > max(AP (C1), AP (C2)))” (this probability
we denote asP0 in the sequel). We estimate the value ofP0 as
a function ofAP (C1) andAP (C2) (i.e. the average precision
of the two base classifiers being combined), and we compare
it with 0.5, sinceP0 > 0.5 signifies that the case of detector
C3 performing better than the best detector amongC1, C2 is
more probable than the opposite one.

Plotting P0 exclusively as a function ofAP (C1) and
AP (C2), for a chosen value ofPp, so as to reveal the relation-
ship betweenP0 and the AP scores of the base classifiers, is
achieved through the following procedure. First, we randomly
selected a large number of possibleσp, σn value pairs (106

different pairs in our simulations). Then, for a given value of
µp, we estimated the AP score of a base detectorC1 (or C2)
for each possibleσp, σn value pair, and the average of these
AP scores we considered as the AP score for the chosen value
of µp (independently ofσp, σn). Repeating this simulation
for different values ofµp, we found that thisAP score is
monotonically increasing withµp, and we built a lookup table
allowing us to estimate the expectedµp value that corresponds
to a chosenAP score forC1 (or C2). Subsequently,P0 can be
plotted as a function ofAP (C1) andAP (C2) as follows: (a)
for each pair of base detectorAP scores, the corresponding
pair of µp values are found (using the lookup table), (b)
a random pair ofσp, σn values is selected, (c) using these
parameter values theAP performance of the detectorC3

is estimated and compared with the maximum value ofC1

and C2, and d) this process is repeated, similarly to when
estimating the AP of a base detector above, for multiple
pairs of σp, σn values. Following this, the value ofP0 is
retrieved as the relative frequency ofAP (C3) being greater
thanmax(AP (C1), AP (C2)).
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The results of the above simulation are demonstrated in
Fig. 3. In this figure, starting from the top-left corner, the
(i, j) block shows the value ofP0 when C1 and C2 base
detectors have AP equal to0.15 + 0.05i and 0.15 + 0.05j,
respectively. The grey level of each block represents the
P0 value, with white standing forP0 = 1 and black for
P0 = 0. Moreover, a dot is drawn in the center of block
(i, j) if P0(i, j) > 0.5. It should be noted that we have
chosen this method of visualization instead of reporting the
exact P0 scores, since the process we described above and
used for getting these results is an approximate simulation for
extracting mostly qualitative conclusions, rather than an exact
mathematical model for the accurate quantitative analysis of
AP. Fig. 3 demonstrates that the common assumption that
the use of more classifiers always increases the accuracy of
their combination is not to be taken as a general rule. On
the contrary, if the detection performance already reached by
a base detector is relatively high, combining additional base
detectors with it or not needs to be thoroughly examined in
order to make sure that the accuracy of the combination will
not deteriorate, compared to using the single well-performing
detector alone. More importantly, if an extensive set of base
detectors is available for multiple concepts, a procedure for
selecting for each concept the optimal subset of base detectors
to be combined is needed.

Moreover, Fig. 3 manifests thatP0 exhibits a different be-
havior for concepts having different prior probabilities. Specif-
ically, a significant difference between rare and frequent con-
cepts is that in the first case accurate base detectors “dominate”
over all other base detectors, since their combination enhances
the performance even when the other base detector exhibits a
low AP (e.g. forPp = 1% or Pp = 5%). On the contrary, when
Pp increases, then the poor base detectors “dominate” the
combination, since the performance remains low even when
the other base detector of the combination exhibits a high AP.
This point explains the disagreement in conclusions between
participants in the TRECVID competition (that includes many
rare concepts), who have found employing multiple base
detectors and late fusion advantageous, and other works that,
following the analysis of concept detection results for mostly
frequent concepts, rejected such a late fusion approach (e.g.
[24], [35]).

B. Base detector selection for concept detection

Motivated by the above analysis, we have developed a
base detector selection procedure that selects for each concept
the optimal subset of the available base detectors. More
specifically, the introduced scheme builds upon a genetic
algorithm, by post-processing the outcome of two different
variations of the latter. We should stress that this algorithm is
executed off-line, during training. The result of this technique
is the selection for each concept of an optimal subset of
base detectors and the exclusion of all other base detectors
from the corresponding detection scheme. Thus, at run-time,
the computational complexity of concept detection is reduced
from O(S · D · Λ) (Section IV-A) to O(S

∑D

i=1
Mi), where

Mi is the number of base detectors employed for the detection
of the i-th concept.

The genetic algorithm that plays a central role in this
approach is summarized in Alg. 1. In the following, we
use the operator# to represent set cardinality, and the◦
operator to represent the vector Hadamard product (i.e. the
result of element-wise multiplication). Moreover, we denote
L the ordered set of base detectors,Li a subset of this set,
pi the AP achieved by using the average of the base detectors
score that belong toLi andvi the participation vector of subset
Li. As participation vector of a subsetLi we refer to a binary
vector of length#L, whose j-th element is equal to1 if and
only if the j-th element ofL belongs toLi.

Algorithm 1 Geneticalgorithm for selecting a subset of best-
performing (or worst-performing) base detectors.
Notation: c is the current concept,m the mutation rate of the

genetic algorithm,N is the initial population size,R the
(fixed) number of generations andk is the number of parent
chromosomes that breed the next generation population.

1: Initially, from set L, N random subsets (chromosomes)
L1, L2, ..., LN are used to form the initial population. Their
corresponding participation vectorsv1, v2, ..., vN , as well
as the corresponding performance estimationsp1, p2, ..., pN

are computed. The current generation indexr is set to 1.
2: The k chromosomes that achieved the best (or worst)

performance (k < N) “survive”, while all the other chro-
mosomes are discarded.

3: Uniform crossover is used to combine thek parent chro-
mosomes of the current generation ink(k − 1)/2 pairs to
breed two new chromosomes each, thus leading to a new
population ofk(k−1) members. More specifically, from two
parent chromosomesLi andLj the children chromosomes
will have participation vectorsvi ◦vj +Y ◦ (1−vi ◦vj) and
vi ◦vj +(1−Y )◦ (1−vi ◦vj), whereY is a random binary
vector of dimension#L,

∑
Y = #L/2, and “1” denotes a

vector of ones. Thus, each child chromosome inherits some
of its genes from both its parents.

4: Once the new population is constructed mutation is em-
ployed to randomly modify a gene subset. More specifically,
out of thek(k − 1)(#L) genes of the population,mk(k −
1)(#L) of them randomly mutate (i.e. the corresponding
participation vector elements change value from0 to 1 or
from 1 to 0).

5: The chromosomes that match thek(k − 1) participation
vectors formed after the end of step 4 are retrieved and the
corresponding performance is estimated.

6: If r = R then the chromosomeL0 that achieved the
maximum performance is returned as the optimal config-
uration. Moreover, the participation vectorsv1, v2, ..., vT

of the chromosomes that achieved the top-Tperformance
values are retrieved. Otherwise,r = r+1 and the algorithm
continues from step 2.

The aforementioned genetic algorithm is executed inde-
pendently twice under the proposed approach. In the first
execution the goal is to identify the configurations (i.e. the
base detector subsets) that achieve the best performance, while
in the second one the configurations that exhibit the worst per-
formance. These are used for robustly selecting the best base

IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 7, pp. 1251-1264, July 2014. 
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Fig. 3. The probability of a classifier that averages two base detectors to exhibit higher AP performance than the best-performing one of these base detectors,
asa function of the AP of the two base detectors. The two axis correspond to the AP performance of each base detector. More specifically, starting from the
top-left corner, the(i, j) block corresponds to a pair of detectors, having AP equal to0.15 + 0.05i and0.15 + 0.05j, respectively. The grey level of each
block represents the value of probabilityP0, with white standing for1 and black for0. Moreover, a black dot in the center of a block(i, j) denotes that
P0(i, j) > 0.5.

detectors for the given concept: a base detector is ultimately
selected if it is frequently included in the best-performing
configurations and at the same time is not frequently included
in the worst-performing ones. For realizing this selection, we
introduce a “base detector quality” measureQc, in relation
with conceptc,

Qc = (PT − NT )/T (4)

whereT is the number of configurations that are retrieved in
each genetic algorithm execution, andPT , NT is the number of
times that the base detector was included in the configurations
that achieved thetop − T and thebottom − T performance,
respectively. The base detectors for conceptc are ranked using
Eq. (4), and theM highest-ranked ones are selected. The above
described process is summarized in Alg. 2.

It should be noted that fixing the number of base detectors
Mi that are selected for each concept toMi = M , as we
do in step 4 of Alg. 2, is a choice we make for simplifying
the experimental evaluation and comparison of the proposed
approach. In practice, one could also search for the optimal
number of base detectors separately for each concept, which
may further improve the results.

V. EXPERIMENTAL EVALUATION

A. Datasets and experimental setup

Our experimental setup is based on the 2011 and 2012
TRECVID SIN Tasks [36], [37]. As already mentioned, the
total number of concepts that were defined in these tasks is
346. However, the corresponding evaluations were carried out
in a subset of50 and 46 concepts, respectively, for which
ground-truth annotation of the test sets is available. The latter
concepts, which are the ones used in this work, are shown
in Table I. In this table we additionally mark with a “*”
the concepts that are either directly related with motion (e.g.

Algorithm 2 The proposed base detector selection algorithm.
1: For each concept the genetic algorithm (Alg. 1) is executed.

In each generation of the algorithm the configurations that
achieved the best performance “survive”. The output is the
top − T configurations that achieved the best performance
for each concept and the mean base detector numberM (i.e.
the average of the number of base detectors in thetop − 1
configurations across all concepts, rounded to the nearest
integer).

2: For each concept the genetic algorithm (Alg. 1) is executed
again. This time, in each generation of the algorithm the
configurations that achieved the worst performance “sur-
vive”. The output is thebottom − T configurations that
achieved the worst performance for each concept.

3: For each concept and each base detector, the number of
times that this base detector was included in thetop−T and
thebottom−T configurations (i.e.PT andNT , respectively)
is estimated, and the base detector quality measureQc is
calculated according to Eq. 4.

4: For each concept theM base detectors with the highest
Qc comprise the base detector subset (i.e. configuration)
that will be employed in the concept classifier, while all
other base detectors are discarded.

“throwing”, “walking-running”, “skating”) or correspond to
objects that are very likely to be filmed while they are in
motion (e.g. “skier”, “car”, “boat-ship”).

For training, validation and testing our concept detectors we
have used the TRECVID SIN Task datasets as follows: For the
experiments on the2011 dataset our training set consisted of
11644 videos (lasting approximately400 hours and including
250000 shots), the validation set of4216 videos (approx.100
hours;70000 shots) and the test set of4000 videos (approx.
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TABLE I
THE 50 AND 46 CONCEPTS EVALUATED IN THE2011AND 2012 TRECVID SINDATASET, RESPECTIVELY. MOTION-RELATED CONCEPTS ARE MARKED

WITH A “*”.

Dataset Concepts
TRECVID 2011 Adult, Anchor-person, Beach, Car*, Charts, Cheering*, Dancing*, Demonstration*, Doorway, Explosion/Fire,

Face, Female Person, Female Face Close-up, Flowers, Hand, Indoor, Male Person, Mountain, News Studio,
Nighttime, Old People, Overlaid Text, People Marching*, Reporters, Running*, Scene Text, Singing, Sitting
Down*, Sky, Sports*, Streets, Two People, Walking*, Walking/Running*, Door Opening*, Event*, Female Human
Face, Flags, Head & Shoulder, Male Human Face, News, Quadruped, Skating*, Speaking, Speaking To Camera,
Studio With Anchor-person, Table, Text, Traffic*, Urban Scenes

TRECVID 2012 Airplane*, Airplane Flying*, Basketball*, Bicycling*, Boat-Ship*, Boy, Bridges, Chair, Computers, Female
Person, Girl, Government leader, Greeting*, Highway*, Instrumental Musician, Kitchen, Landscape, Male Person,
Meeting, Motorcycle*, Nighttime, Office, Press Conference, Roadway Junction, Scene Text, Singing, Sitting
Down*, Stadium, Teenagers, Throwing*, Walking-Running*, Apartments, Baby, Civilian Person, Clearing, Fields,
Forest, George Bush, Glasses, Hill, Lakes, Man Wearing A Suit, Military Airplane*, Ocean, Skier*, Soldiers*

100 hours; 65000 shots).For the experiments on the2012
dataset, the training set consisted of19860 videos (approx.
600 hours;400000 shots), the validation set of4163 videos
(approx.100 hours;73000 shots), while the test set of4100
videos (approx.100 hours;72000 shots).

For evaluating the trained concept detectors we followed
the methodology used in TRECVID. That is, for each concept
separately, the top2000 shots sorted by detection score in
descending order are returned and are evaluated against partial
manually-generated ground-truth annotations. The evaluation
measure is the Extended Mean Inferred Average Precision
(XInfAP) [34], which has been proposed for the purpose of
approximating Average Precision (AP) when the dataset is not
fully annotated and therefore AP cannot be directly calculated.

The proposed concept detection approach is implemented,
for the purpose of experimental evaluation, according to the
pipeline of Fig. 1, employing state-of-the-art features and
parameters for the pipeline components that are not explicitly
discussed in the preceding sections. Specifically, each video
shot is represented by either one or more keyframes or also
a pair of video tomographs (CV-tomograph, CH-tomograph).
Subsequently, an interest point detector is employed to select
the image points at which descriptors will be extracted. We
used two such detectors; the first selects interest points through
dense sampling, i.e. in fixed distances in a 2D image grid,
while the second one is a Harris-Laplace corner detector
[8]. At each of the resulting interest point locations, low-
level visual descriptors are extracted (SIFT, RGB-SIFT and
Opponent-SIFT), following the conclusions drawn in [5] for
video concept detection tasks. Subsequently, the low-level
descriptors are assigned to visual words, using two vocabu-
laries that were created off-line through k-means clustering
and hard- or soft-assignment, respectively, according to [38].
In all cases (i.e. regardless of which one of the above video
sampling strategies, descriptors etc. is used) a pyramidal3×1
decomposition scheme employing3 equally-sized horizontal
bands of the image, as proposed in [39], was used on every
keyframe or tomograph, generating3 different BoWs corre-
sponding to the three image bands and a fourth BoW for
the entire image. The number of words for each BoW was
set to 1000 and the four BoWs coming from the adopted
pyramidal decomposition were concatenated to a4000-element
BoW vector. One such vector is calculated separately for

each combination of representation (i.e. each keyframe or
tomograph), interest point detector, descriptor and assignment
method and is used as input to the corresponding SVM base
classifiers for a given concept (base detectors). As a result,
36 base detectors are built for each concept separately, based
on local image features. An additional base detector that uses
a global visual descriptor (HSV histogram) is also employed.
The 37 base detectors are outlined in Table II.

For the base detectors, linear SVM classifiers are employed
instead of the kernel SVMs that are typically used in such
tasks. By this choice, the required computational time for a
single SVM classifier (corresponding to a single concept) fell
from 6 seconds per image (that was required in our earlier
experiments with kernel SVMs) to0.03 seconds. This is an
implementation choice that is in line with our overall goal
of developing a computationally efficient solution to concept
detection. All base detectors were trained off-line, using the
corresponding training sets. The output of each of the trained
base detectors is an intermediate confidence score. The overall
confidence score for each concept is estimated as the harmonic
mean value of the intermediate confidence scores of all (i.e.
up to 37) base detectors for this concept. Using the harmonic
mean was shown in practice to produce slightly better results
than the arithmetic mean, which was used for simplicity in
our simulations reported in Section IV-A.

B. Tomographs versus keyframes

In this first experiment we investigate the impact of using
the video tomographs introduced in Section III in replacement
of traditional keyframes. More specifically, we compare the
combination of the13 keyframe-based detectors of Table II
against the combination of12 tomograph-based detectors of
the same Table that use dense sampling for interest point
detection (which, as we show later on, are the best among
our 24 tomograph-based detectors). The results show that out
of the 96 different concepts in the two datasets that we use,
tomographs outperform keyframes for only8 concepts (all
of them motion-related: basketball, throwing, skier, demon-
stration, people marching, running, walking/running, skating).
This result is consistent with our intuition that tomographs
convey useful motion information that is, however, comple-
mentary rather than alternate to the non-motion information
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TABLE II
COMPLETE SET OF BASE DETECTORS USED IN OUR EXPERIMENTS.

Video Sampling Possible representations and resulting base detectors
Keyframes 12 local-image-feature-based Base Detectors: 3 descriptors (SIFT, Opponent-SIFT, RGB-SIFT)× 2 point

detectors (Dense, Harris-Laplace)× 2 BoW strategies (soft-, hard-assignment)
1 global-image-feature-based base detector (HSV color histograms)

Tomographs 24 tomograph-based base detectors: 2 types of video tomographs (CH-tomograph, CV-tomograph)× 3
descriptors (SIFT, Opponent-SIFT, RGB-SIFT)×2 point detectors (Dense, Harris-Laplace)× 2 BoW
strategies (soft-, hard-assignment)

conveyed by keyframes. Based on this result and in accordance
with the emphasis that we put in all previous sections on how
to combine tomographs and keyframes, we will proceed in the
sequel with experimentally evaluating such combinations.

C. Combining tomographs and keyframes

In this series of experiments we investigate the impact
of combining the video tomographs introduced in Section
III with traditional keyframes. The following approaches are
compared: i)A13 is the baseline, using1 keyframe per shot
and combining the13 keyframe-based base detectors of Table
II, ii) A25 combines the13 base detectors ofA13 with 12
additional base detectors that employ tomographs as video
samples and use dense sampling for interest point detection,
iii) A37 combines all37 base detectors of Table II, iv)A39
employs the same base detectors asA13, but, as proposed in
[3], in this case3 keyframes per shot are used instead of one
and therefore the13 base detectors ofA13 have to be evaluated
3 times each for a single shot (thus,39 base detector scores
are produced per shot). Our choice to compare tomographs
with the multiple keyframe approach of [3] is based on the
fact that any other existing solution (e.g. traditional motion
descriptors) would feature significantly higher computational
cost, making the application of it on the extensive TRECVID
datasets difficult and in any case depriving such a comparison
of any practical value.

The experimental results are summarized in the top block
of Table III (MXInfAP, i.e. mean XInfAP across all concepts).
ComparingA25 with A13, the MXInfAP increases in the2011
dataset from0.2187 to 0.2659 and in the2012 dataset from
0.1394 to 0.1557. These improvements represent a21.6% and
11.7% accuracy boost, respectively, and manifest that although
the tomographs are not potential replacements of traditional
keyframes, they provide additional information that the latter
do not capture. Moreover, as can be seen in Table III, it is
the dynamic (motion-based) concepts that benefit the most
from the introduction of tomographs: if only the motion-
related concepts are taken into account, then the accuracy
boost caused by introducing tomographs is38.9% and47.1%
for the two testsets, respectively.

On the other hand, the reported results show that the
detection of interest points by means of Harris-Laplace in
tomograph images generates noisy representations that lower
the overall performance. This is manifested by the significantly
lower performance thatA37 exhibits compared toA25 (MX-
InfAP of 0.2113 versus0.2659 and 0.0837 versus0.1557 in
the 2011 and 2012 datasets, respectively). This is intuitively

supported by the fact that tomographs are by default very noisy
images, thus selecting image corners as interest points in such
images does not necessarily help. However, as we show in
the next subsection, if our concept detection problem focuses
on motion-related concepts and base detector selection can be
performed for each concept, then base detectors of this type
can also contribute to more accurate results.

We also compareA25 with A39, which performs a denser
video sampling in the temporal direction [3], thus using
a larger number of keyframes for each shot. WhileA39
employs13 distinct base detectors (the same used inA13),
the use of3 keyframes per shot results in each base detector
being evaluated3 times for each shot and therefore needs
computational time similar to that ofA37 (we should note
that “computational time” here and throughout the rest of
the Experimental Evaluation section refers to the time needed
for obtaining a classification result for a given non-classified
shot). Despite the additional keyframes, the performance of
A39 is significantly lower compared to that ofA25, while the
latter is also less computationally demanding (Table III). This
shows that tomographs should be preferred over introducing
additional keyframes in a keyframe-based concept detection
scheme.

Finally, in Figs. 4 and 5 we show results per concept
(XInfAP) for the A13, A25 and A37 experiments. Although
many of the considered concepts are not intuitively expected
to be strongly correlated with any type of motion (e.g.
“landscape”, “fields”, “computers”), we can see that when
combining keyframe-based and certain tomograph-based base
detectors (A25), XInfAP increased for more than80% of the
concepts.

D. Selecting base detectors for building a concept classifier

In this series of experiments we investigate the impact of
using a base detector selection strategy for choosing a different
subset of base detectors for each concept that we want to
detect. For this we apply the technique introduced in Section
IV and evaluate it against the results of the previous set of
experiments (where no such selection strategy was used) as
well as against variations of the technique of Section IV and
related literature works [13], [40], [25]. More specifically,
starting from the25 base detectors used inA25, the following
approaches are compared: i)G25a, a variation of the proposed
technique in which only the first step of Alg. 1 is executed
and the chromosome from the initial population whose per-
formance is maximum at the end of that step is returned as
the chosen configuration (i.e. set of base detectors), ii)G25b,
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Fig. 4. XIinfAP for the concepts of the2011 dataset. The compared techniques areA13, A25, A37 andG25.

TABLE III
EXPERIMENTAL RESULTS AND COMPARISONS. AVERAGE BOOST IS THE RELATIVE PERFORMANCE INCREASE COMPARED TOA13, WHILE # BASE

DETECTORS IS THE AVERAGE NUMBER OF BASE DETECTORS PER CONCEPT AND SHOT THAT NEED TO BE EVALUATED AT RUN TIME.

TRECVID 2011 dataset TRECVID 2012 dataset
All concepts Motion-related All concepts Motion-related

concepts only concepts only
Method MX- Aver- MX- Aver- # Base MX- Aver- MX- Aver- # Base

InfAP age InfAP age Detec- InfAP age InfAP age Detec-
Boost Boost tors Boost Boost tors

Tomographs and keyframes vs keframes only (experiments of Section V-C)
A13 0.2187 0% 0.0959 0% 13 0.1394 0% 0.0797 0% 13

(baseline)
A25 0.2659 21.6% 0.1332 38.9% 25 0.1557 11.7% 0.1172 47.1% 25
A37 0.2113 -3.4% 0.1247 30% 37 0.0837 -39.7% 0.0845 6% 37
A39 0.2417 10.5% 0.1126 17.4% 39 0.1471 5.5% 0.0911 14.3% 39

Base detectors selection among 25 base detectors (experiments of Section V-D)
G25a 0.2536 16% 0.1291 34.6% 10.32 0.1571 12.7% 0.1177 47.7% 10.11
G25b 0.2701 23.5% 0.1339 39.6% 10.02 0.1651 18.4% 0.1238 55.3% 8.89
G25 0.2744 25.5% 0.1346 40.4% 10 0.1783 27.9% 0.1299 63% 9

R25 [13] 0.2247 2.7% 0.1197 24.8% 25 0.1422 2% 0.1023 28.4% 25
ABC25 [40] 0.2617 19.7% 0.1282 33.7% 10.52 0.1697 21.7% 0.1282 60.9% 8.87
GA25 [25] 0.2585 18.2% 0.1301 35.7% 25 0.1667 19.6% 0.1278 60.4% 25

Base detectors selection among 37 base detectors (experiments of Section V-D)
G37a 0.2411 10.2% 0.1283 33.8% 13.02 0.1506 8% 0.1217 52.7% 13.69
G37b 0.2633 20.4% 0.1307 36.3% 12.74 0.1659 19% 0.1329 66.8% 11.78
G37 0.2743 25.4% 0.138 43.9% 13 0.1760 26.3% 0.1361 70.8% 12

R37 [13] 0.2317 5.9% 0.1202 25.3% 37 0.1387 -0.5% 0.0983 23.3% 37
ABC37 [40] 0.2635 20.5% 0.1274 32.9% 12.96 0.1639 17.6% 0.1296 62.6% 12.16
GA37 [25] 0.2648 21.1% 0.134 39.7% 37 0.1681 20.6% 0.1341 68.3% 37

another variation of the proposed technique in which only
the first step of Alg. 2 (i.e. the complete Alg. 1) is executed
and the chromosome whose performance is maximum at the
end of that step is returned as the chosen configuration, iii)
G25, which corresponds to the complete approach proposed
in Section IV-B, iv) ABC25, which uses the Artificial Bee
Colony (ABC) [40] algorithm for base detector selection, v)
R25, in which the25 available confidence scores are linearly
combined using weights determined through regression, as
proposed in [13], and vi)GA25, in which the25 available
confidence scores are linearly combined using weights de-
termined through gradient ascent, as proposed in [25]. All
approaches are executed independently for each concept of
both the 2011 and 2012 TRECVID datasets. Subsequently,
the above6 experiments are repeated, this time starting from
the37 base detectors used inA37 (thus,37 base detectors are

available for selecting a subset of them, as opposed to25 in
the previous6 experiments). These experiments are denoted
G37a, G37a, G37, ABC37, R37, GA37, respectively. For
running the above experiments, the Alg. 1 parameters were
set toN = 5000, R = 60, k = 40, m = 0.15 andT = 500,
while the employed Artificial Bee Colony (ABC) parameters
were the ones proposed in [40].

The results of the experiments (MXInfAP) are reported in
the second and third block of Table III, together with the
corresponding average performance boost compared toA13
and the mean number of base detectors that were used in each
experiment. The latter number is assumed to be approximately
proportional to the computational cost of the overall concept
detection pipeline at run time.

Firstly, the results show that theG25 andG37 approaches
compare favorably to theA13, A25 andA37 ones examined
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Fig. 5. XIinfAP for the concepts of the2012 dataset. The compared techniques areA13, A25, A37 andG25.

in Section V-C, thus demonstrating the impact of the proposed
base detector selection strategy to both MXInfAP and com-
putational cost. Secondly, we can see that the results ofG25
and G37 are very similar (the MXInfAP difference between
G25 and G37 is only 0.0001 and 0.0023 in the 2011 and
2012 dataset). Following the discussion in Section V-C on how
Harris-Laplace interest point detection in tomographs leads
to noisy base detectors, this similarity of results shows that
the proposed base detector selection strategy can effectively
identify and discard noisy detectors. Further to this, we can
see in Table III that when considering motion-related concepts
only, G37 outperformsG25; this demonstrates the merit of
even noisy base detectors under certain conditions.G25 is
further compared withA13, A25 and A37 for each concept
separately, and the results are shown in Figs. 4 and 5, where
it can be seen thatG25 improves on the results ofA13, A25
andA37 for the vast majority of the concepts.

Comparison ofG25 andG37 with simpler variants of them,
namely G25a, G25b, G37a, G37b (Table III), shows the
significance of proposed Algs. 1 and 2 in making a stable
selection of good base detectors for each concept. Particularly
the importance of taking into account not just thetop − T
but also thebottom − T configurations when selecting base
detectors (second step of Alg. 2) is made clear by this
comparison.

With respect to other SoA methods (Table III), the proposed
G25 (or G37) approach compares favorably toABC25 [40]
(or ABC37), a metaheuristic search algorithm for optimiza-
tion. This can be explained by the fact that theABC technique
does not take into account that in the concept detection
task the solution space is noisy, thus the optimization in a
validation set often does not lead to good detection in the
testset. Similar conclusions can be drawn by comparingG25
(or G37) with GA25 [25] (or GA37) andR25 [13] (or R37),
the most recent base detector combination approaches that
can be found in the relevant literature. It seems that the
performance reached through gradient ascent (i.e.GA25) is
similar to the performance reached through a simple genetic
algorithm (G25b) or ABC (ABC25). However, linear combi-
nation approaches by definition use the confidence scores of

(a) (b)

(c) (d)

Fig. 6. Comparison ofG25 againstA25, R25, GA25 andABC25 at the
individual concept level, using the ratio of XInfAP achieved byG25 and (a)
A25, (b) R25, (c) GA25 and (d)ABC25. In each sub-figure, the XInfAP
ratio is estimated for each of the96 concepts and then used for sorting the
concepts in descending order. Ratios higher than4 are truncated to4 for
visualization purposes. A dotted horizontal line signifies a ratio equal to1,
while the number of concepts with ratio higher than1 is highlighted on the
x − axis.

all base detectors. Consequently, bothGA25 (GA37) andR25
(R37) are much more computationally demanding at runtime
than the corresponding algorithms that use a base detector
selection scheme (e.g.G25). Finally, the poor results ofR25
(R37) can be explained by the fact that for most concepts the
number of positive samples in the dataset is much lower than
the number of negative samples. This bias undermines this
technique, which minimizes the total sum of the error without
discriminating between positive and negative samples.

Further comparison ofG25 againstA25, R25, GA25 and
ABC25 at the individual concept level (Fig. 6) shows that
the former outperforms the latter for67, 75, 70 and 66 of
the 96 concepts, respectively (and is outperformed by only
a small margin for most of the few remaining concepts).
These results manifest that, although the proposed optimiza-
tion approach does not theoretically guarantee optimal base
detector selection (as does neither one of the related literature
approaches), in practice it consistently performs well in these
96 optimization problems.
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E. Assessing the impact of algorithm parameters and design
choices

A critical parameter of the approach of Section IV is the
number of base detectors that are selected for each classifier.
We have plotted the MXInfAP ofG25 andG37 as a function
of this number (Fig. 7). The plot demonstrates that the
achieved MXInfAP does not significantly depend on the exact
base detector number, since in all cases there is a rather wide
area around its optimal value where it remains almost constant.
More specifically, in theG25 case the optimal base detector
number is13 in the 2011 dataset and8 in the 2012 one.
The proposed strategy, which is to automatically select the
number of base detectors by the genetic algorithm outcome,
leads to the selection of10 and9 base detectors, respectively.
The MXInfAP loss as a result of this is0.006 in the 2011
dataset (since0.2804 is the theoretical maximum as seen in
Fig. 7, and0.2744 is the one actually achieved) and0.0005
in the 2012 dataset (0.1788 and 0.1783 respectively). In the
G37 case, for both2011 and 2012 datasets the optimal base
detector number is equal to13, while the proposed strategy
leads to the selection of13 base detectors in the2011 dataset
and12 base detectors in the2012 dataset. In the second case,
the corresponding MXInfAP loss is0.0012 (from 0.1772 to
0.176).

For completeness, it should be noted that if a variable
number of base detectors is used for each concept, then the
overall MXInfAP may further increase. In experiments where
we varied the value ofMi between6 and 25 separately
for each concept and selected the optimal configurations, the
maximum achieved MXInfAP was0.2938 and0.1858 for the
2011 and2012 dataset, respectively (representing an up to7%
boost over theG25 results reported in Table III).

In order to validate our design choice of defining the base
detector qualityQc according to Eq. 4, for selecting with the
help of the genetic algorithm the optimal set of base detectors,
we further examine the impact of using, in place ofQc, one
of three other reasonable base detector quality measuresQ1

c ,
Q2

c , Q3

c , defined as follows:

Q1

c = APP
T − APN

T (5)

Q2

c = PT /T (6)

Q3

c = APP
T (7)

wherePT (respectively,NT ) is the number of times that the
base detector was included in the configurations that achieved
thetop−T (bottom−T ) performance, andAPP

T (respectively,
APN

T ) is the Average Precision value that can be calculated
by treating the list oftop − T (bottom − T ) configurations
as a ranked list of retrieval results, where configurations that
include the base detector in question are taken as positive
samples. The results, demonstrated in Table IV, manifest the
validity of a genetic algorithm that looks at not only the
top − T but also thebottom − T configurations, sinceQc

and Q1

c outperform the corresponding quality measures that

TABLE IV
PERFORMANCE COMPARISON WHEN EACH OF THE FOUR DIFFERENT

QUALITY MEASURES DEFINED IN EQS. 4 - 7 ARE USED.

Method Dataset Qc (4) Q1
c (5) Q2

c (6) Q3
c (7)

G25 2011 0.2744 0.2731 0.2736 0.2728
G25 2012 0.1783 0.1762 0.1691 0.1692
G37 2011 0.2743 0.2714 0.2718 0.2705
G37 2012 0.1760 0.1762 0.1706 0.1680

employ only thetop − T configurations,Q2

c , Q3

c . Addition-
ally, averaging the results (Qc, Q2

c) seems to exhibit more
stable performance than taking into account the exact rank by
calculating some sort of Average Precision (Q1

c , Q3

c), although
in general all observed differences are rather small, suggesting
that the proposed genetic algorithm is relatively insensitive to
the exact way in whichQc is defined.

F. Statistics on the usefulness of different base detectors

Figure 8 shows the number of times that each base detector
is used in all 96 concept classifiers if theG37 approach
is followed. It can be seen that the keyframe-based base
detectors are selected more often than the tomograph-based
ones. Specifically, on average only33.8% of the 37 available
base detectors are used for a given concept, and10 out
of 13 keyframe-based detectors are consistently selected for
more than50% of the examined concepts. There are also3
tomograph-based detectors that are selected for the majority of
the concepts, despite the fact that motion-related concepts are a
minority in our datasets (28motion-related concepts out of96
concepts in total). Finally, the tomograph-based base detectors
that employ interest point detection via Harris-Laplace rather
than extracting local descriptors on a dense grid are the least
contributing ones, being ranked in the last12 places in Fig. 8.

G. Discussion on computational complexity

For comparing the methods’ time efficiency throughout the
paper, we made the assumption (in Section V-D) that the
computational cost of the overall concept detection pipeline
at run time is approximately proportional to the mean number
of employed base detectors. However, under theG25 (and
G37) approaches, since a different subset of base detectors
is used by each concept classifier, features will in any case
need to be extracted for all25 (or 37) possible base detectors
when working with multiple concepts. Thus, the above as-
sumption will only hold if the most computationally expensive
step of the pipeline is evaluating the trained SVMs, rather
than performing feature extraction and BoW creation. Our
experiments show that this is indeed the case under the typical
application scenario that involves the detection of a plurality of
different concepts, e.g. one thousand or more as in [41], [42].
Specifically, the time needed for evaluating the trained SVMs
when detecting one thousand concepts under theA13 andG25
approaches (with9 base detectors being used for each concept
in G25) accounts for97% and93.9% of the overall processing
time, respectively, despite using linear SVMs, as a result of the
high number of such SVMs that need to be evaluated. In this
experiment,G25 is found to be overall28.6% faster thanA13,
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Fig. 7. Performance as a function of the number of selected base detectors. (a)G25 in the 2011 dataset (b)G25 in the 2012 dataset. (c)G37 in the 2011
dataset (d)G37 in the 2012 dataset. For better readability, the numbering of the vertical axes shows only the fractional part of the MXInfAP value, i.e. the
integer part “0.” of MXInfAP is omitted.
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Fig. 8. Barplot of the number of times each base detector is used in all96 concept classifiers of the two employed datasets, when selection of base
detectors is performed according toG37. The naming convention for the base detectors (horizontal axis) is<Video sampling>-<Descriptor>-<Interest point
detector>-<BoW assignment strategy>. “Key-Global” refers to the HSV histogram-based base detector. See Table II for details on the base detectors.

as a result of using30.8% fewer base detectors per concept,
despite feature extraction and BoW creation inG25 requiring
somewhat more time than inA13.

These run time efficiency gains of base detector selection
come at a cost during the training phase, which however
is performed off-line and only once for each concept, thus
not affecting the scalability of the developed detectors, i.e.
their applicability to extremely large volumes of non-labeled
video data. Moreover, using the proposed genetic algorithm
the training cost is limited because this algorithm visits only a
very small portion of all possible configurations. Indicatively,
in the most extensive base detector setup (G37) the number
of possible configurations is13.7 billion (i.e. 237), while the
configurations that were examined by the introduced algorithm
during ourG37 experiment (in all stages) were approximately
100 thousand. Examining a single configuration using our

MATLAB implementation of the base detector selection al-
gorithm on an INTEL(R) Core i7-3770K 3.5GHz PC took0.7
sec., leading to a total training time of less than20 hours for
each concept; this is certainly not prohibitive for an off-line
training process that needs to be performed only once.

VI. CONCLUSION

In this work we dealt with large-scale video concept de-
tection. We showed that video tomographs can contribute to
increased concept detection accuracy, both for motion-related
and non-motion-related concepts, while introducing no greater
computational cost than that of processing a single keyframe.
Additionally, we showed that the “one size fits all” approach
for the detection of multiple concepts in video streams leads
to the unnecessary evaluation of base detectors that do not
always contribute to the detection of a specific concept, thus
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compromisingaccuracy while increasing the computational
cost. We addressed this issue with a new approach that builds
upon a genetic algorithm to rank base detectors and select
only a (different for each concept) subset of them. The re-
ported results demonstrate that by combining our base detector
selection technique and video tomographs, concept detection
effectiveness can be boosted by25 − 28% (as measured by
MXInfAP), while at the same time the run-time computational
cost of concept detection can be decreased as a result of using
up to 23 − 30% fewer base detectors per concept, compared
to indiscriminately using the complete set of keyframe-based
base detectors.
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