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Abstract—In this work a novel approach to evaluating video with similar content [2]. The video scene should not be
temporal decomposition algorithms is presented. The evaluation confused with the meaning of the term “scene” in the context

measures typically used to this end are non-linear combinations ot g jmage processing and interpretation, which relates to
of Precision-Recall or Coverage-Overflow, which are not metrics

and additionally possess undesirable properties, such as non-,the physical environment information that is captured by the
symmetricity. To alleviate these drawbacks we introduce a novel 'Mmage.

uni-dimensional measure that is proven to be metric and satisfies ~ Automatic video segmentation to shots and scenes is as-
a number of qualitative prerequisites that previous measures do gociated with different degrees of difficulty. State-of-the-art

not. This measure is named Differential Edit Distance (DED), ghot segmentation techniques have been shown to reach good
since it can be seen as a variation of the well-known edit

distance. After defining DED, we further introduce an algorithm performance on a variety of datasgts In ex_pe”men,ts such
that computes it in less than cubic time. Finally, DED is as the annual TRECVID benchmarking exercise, particularly
extensively compared with state of the art measures, namely when it comes to detecting abrupt shot transitions (cuts)
the harmonic means (F-Score) of Precision-Recall and Coverage- [3]. On the other hand, scene segmentation is still an open

Overflow. The experiments include comparisons of qualitative yagearch problem. Among the shortcomings of the relevant
properties, the time required for optimizing the parameters of

scene segmentation algorithms with the help of these measures SC€N€ seg_mentation I.iterature is the lack of an efficient scene

and a user study gauging the agreement of these measures withSeégmentation evaluation measure.

the users’ assessment of the segmentation results. The results Automatic scene segmentation techniques generate a list

confirm that the proposed measure is a uni-dimensional metric of scene boundaries that identify the time-points dividing the

that is effective in evaluating scene segmentation techniques andyijeq stream into different scenes. In order to estimate their

in helping to optimize their parameters. - S
performance, the resulting scene boundary list is contrasted
with a manually generated one (ground truth). The similarity

. INTRODUCTION of the two scene boundary lists is measured either in terms of

L .. Precision-Recall [4] of - fl N iti
Video decomposition into elementary temporal units i recision-Recall [4] of Coverage-Overflow [S]. I [6], editing

. ) . . étrategies common to film industry are exploited to extract
an essential preprocessing task for a wide range of vidgo

. ) o . . . VIO scene boundaries and the results are evaluated by using
manipulation applications, such as video indexing, non-line

fecision-Recall (and a linear combination of them), as well
browsing, classification etc. The video decomposition tecﬁ- ( )

. ) ) s the required computation time. In [7] a visual bag-of-
nigues focus either on shot or scene segmentation, accor s approach is proposed for decomposing the video into
to the structural or semantic criteria employed.

Shot defined £ tak it scetnes, which for the purpose of evaluation are compared to
ots are defined as sequences of images {aken wi hf?'llé ground-truth using the Coverage and Overflow measures.

mter:uptlon t;)y a smg:le cameratl [135 Otn the other”hagd%lscznﬁﬁe authors of [8] present a graph-based scene segmentation
are longer tempora seg.men s that are usually detine roach, which uses normalized cuts; evaluation is conducted
Logical Story Ur_uts (LSU)-a Series of_temporally CONtGUOUG 4, the help of the Precision-Recall measures. [9] proposes
shots characterized by overlapping links that connect Sh(fﬁltsrf)robabilistic technique that aims to maximize the Precision-
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uni-dimensionalcomparison isrequired,for example to op-  When shot sgmentationis conducted, the video elements
timize the value of a system parameter, the harmonic meeonsidered are the frames of the video. On the other hand,
L(F-Score) of either the one or the other of these two paivghen scene segmentation is conducted, the video elements
of measures is typically estimated. However, this evaluati@onsidered are usually the video shots. This reflects a common
approach suffers from a number of evaluation flaws, whi@dssumption behind almost all scene segmentation techniques
are partially induced by the fact that the generated probleém the literature, namely that each shot belongs to exactly
space (i.e., the evaluation space) is not a metric space. one scene [11], [12], [13], [14], [15]. Under this assumption

In this work we present a novel uni-dimensional measure fecene segmentation is typically performed through a two-
scene segmentation evaluation, along with an implementatistep temporal decomposition process: first the video frames
of it that features lower-than-cubic complexity. We prove thare used to partition the video sequence into shots, and then
this measure is a metric and we compare it with the two aforite shots are further grouped to form scenes. In the second
mentioned harmonic means commonly used in the literatustep of this approach, each shot is assigned to an appropriate
to demonstrate its desirable properties and its increased agssene. We can assume that this is performed through a labeling
ment with the users’ evaluation of segmentation results. \jdeocess: each shot receives a label that identifies the scene that
also experimentally show that the tuning of scene segmentatibbelongs to, so that:

system parameters using the new measure requires less time, |t two shots belong to the same scene, they are assigned
since it allows for a more sparse sampling of the parameter e same label.

space. _ _ « If two shots belong to different scenes, they are assigned
The rest of the paper is organized as follows: The concept itferent labels.
of scene segmentation as a label assignment problem, whict&or example. a video sequence that inclugletots mav be
is a prerequisite for the development of the metric propos dD led * pb ’b r el 1 1q1 1" etc. On the other h ng th
in this work, is discussed in Section Il. The Differential Edi]aa glese aljgr;c,eéa?"b b7 o a’nd, N € % b o deoono(te e ares,ente
Distance metric and its estimation algorithm are presented apge! sed 192 € 3,8, 0,9, 4 P .
: : : : . . np035|ble decompositions of this video into scenes: in the first
discussed in Section Ill, followed in Section IV by experimen- se one shot is not assianed to anv scene. while in the second
tal evaluation and comparison with two other uni-dimension&f: 9 y '

) . . . case the decomposition is not a convex one.
evaluation measures. Finally, conclusions are drawn in Sectio P . .
v 0, scene segmentation can be generally viewed as a label

assignment problem, where one is interested in estimating a
label sequence that corresponds to the grouping of the video’s
PROBLEM shots into scenes. This scene segmentation approach is in line
. ] ) with the point of view of an expert user, who is charged with
Mathematically speaking, a video sequenéean be seen yhe generation of a manual segmentation of a video stream
as a well-ordered set of structural elements such as fram@es'g_ a video librarian [5]). Such a user would assign labels
shots, scenes. That is, considering only one of the afoifs, scenes and would discriminate one scene from another

mentiongd possiblg types of_elements at each time, their 59t moving from shot to shot while changing the assigned
has a binary relatiori® that is total (for allz;,z; € V, description label only when the scene changes.

xz;Rx; or x;RNx;), antisymmetric (ifz;RNx; and z;Ra;, then
x; = x;) and transitive (ifz;Rz; and x; Rz, thenz;Rxy).
This binary relation is the temporal position of the video’s Ill. DIFFERENTIAL EDIT DISTANCE METRIC
structural elements. . . A, Differential Edit Distance
Video temporal decomposition techniques generate a parti-
tion of video sequenc& into convex sub-sets;, since the [N any objective scene segmentation evaluation setup, the
resulting temporal segments (regardless of whether they Sfeund-truth scene segmentation and the experimentally esti-
shots or scenes) by definition satisfy the following principlegnated scene segmentation results provide two different par-

Il. SCENE SEGMENTATION AS A LABEL ASSIGNMENT

e Uvi=V titions of the well-ordered set of shots. The similarity of
- ﬁv, =0, Vi these partitions may be used as a measure of accuracy of the
e experimentally estimated scene segmentation. We propose to

o Yu; if x1,20 € v; then allz, 1y < z < x5 also belong Ay el 9 -
to v: express this similarity through a minimum distance approach
(]

i o o ., that resembles the Earth Movers’ Distance; the latter was
The first two principles signify that each and every video . o
cently used, among others, for visual event recognition and

. . ; : r
lement i ign in ne of non-overlappin - . ) . =
eleme t 1S assig ed into one of no overapping sub S?‘\%ar-dupllcate video detection [16], [17]. More specifically, we
(considering, of course, only the appropriate types of elements,. ! .
define the distance between two partitions of a well-ordered set
for each task). For example there are no frames that do not -
. : as the minimum number of set elements that need to move to
belong to some shot, scene etc. Finally, the third one i$ . o
- . . . . nother sub-set in order to transform the one partition into the
associated with the sub-set convexity, since it postulates that . : s .
ofher. Using the scene segmentation terminology, the distance

if two elements belong to the same sub-set then all eIemeBs[ . . ; -
. . etween two scene segmentation partitions is the minimum
that lie between them also belong to it. .
number of shots that need to change scene label in order
Yt is reminded that the harmonic medf,, o, of two quantitiesQ; and 10 transform the experimentally estimated partition into the
Q218 Fo,,0, = 5432 ground truth one.
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It can beproven that this measure is also a metric. Indeed, @xamined in section I1V-D), it is intuitively expected to result
d(V1,V4) denotes the distance between two partiti®hsand in an error signal of lower bandwidth. Thus, estimation of
V, then it is obvious thatl(V;,V;) = 0 and d(V4,V,) = the measure values at fewer points of the parameter space
d(Va,V1). Furthermore, let us suppose that; is the set is sufficient for finding a good solution to the optimization
of elements giving rise tal(V;,V;) (set of elements that problem. While the validity of this assumption is not guar-
need to change sub-set). ThenXf, and X,3 are two such anteed, the experimental results of section IV-D indicate that
sets, by changing a sub-set of all elements that belongth® proposed metric measure indeed results in most cases in
X12J Xo3 the partitionV; can be transformed into partitionan error signal of lower bandwidth, in comparison to non-
V3. Since the distancéd(V7, V3) is the minimum number of metric measure§’rr, Foo. Furthermore, if one needed to
elements that need to change subg@t;, V3) < | X12|J X23| process the samples of this error signal in a more elaborate way
(where|.| denotes the cardinality of a set). Moreover, eadfhan what is done in this work, e.g. if one wanted to perform
element that belongs td&;- | J X23 must change subset insome kind of machine learning or dimensionality reduction
order to transform eithel; into V, or V5 into V3 or both. involving these samples, the fact that they define a metric
Consequently: space allows for the use of techniques such as SVM, PCA

or isometrical embedding [19], [20], [21], which are designed

specifically for use in metric spaces.
d(V1,V3) < |X1o | Xos| < d(Vi, Vo) +d(Va, Va) (1)

We name this metric Differential Edit Distance (DED) dugs, DED Estimation Algorithm
to the fact that when video partitioning is modeled as a label
assignment problem, then this distance expresses the minirqg
number of labels that need to change in order to transfor.
the first label sequence into another that achieves an identi&]qg
partitioning with the second. It can be seen from this definitiolp a
that DED resembles the well-known edit distance [18]. T . : ;
edit distance differs from DED in that it additionally requirerlg summarized in Algorithm 1.

. . o L i Let us suppose that the alphabet (i.e. the set of labels) of the
the identical partitioning to be expressed with identical labels, ~~ . .
. o A ) Xperimentally estimated label sequence and the ground truth
In order to give a definition that is tailored to label assignment, * . .
N . . . ) ohe isAg and A respectively and that the number of labels
we first introduce Differential Equivalence:

Definition 1: Two label sequences are differentially equiv in each alphabet isd | and|Ag|. Since DED is symmetric,

lent when h pair of elements in the tw N i Ihe experimentally estimated label sequence and the ground

ﬂe]e follswir?accorﬁgiti(?nse'e ents € two sequences Salisiith one can switch places without changing the final DED
9 ’ . outcome. Consequently, we can assume thigt| is larger

« If the two elements of the pair share the same label {jan| 4| without loss of generality.

the first sequence (i.e., iflabel of x; = label of x; Each symbola?, i € {1,2,...,|Ag|} of the ground truth
according to the first label sequence), they will also havggyg| sequence is used to label the shots that belong to a
common label in the second sequence (i@l of z; = ground truth scene (i.e., labef is the one assigned to the
label of z; also according to the second label sequencgnots of ground truth scene’; both labels and scenes are
The latter common label may of course be different fromgygered according to the temporal order of the scenes in the
the one that the two elements shared according to the fijfieo, so thata? is the label of the first scena), af of

label sequence.) the second one, etc.). The shots assigned/taccording to

« If they do not share the same label in the first sequengg ground truth label sequence are also assigned to labels

(ie. if label of w; # label of x; according to the first 4e 4 | . qc  in the experimental label sequence. It is

label sequence), they will also have different labels in ”Iﬁgvious that from allk + 1 labelsat, ..., a%, ,, at most one
X e Q5 g
second sequence (i.elabel of w; # label of x; @lsO  can be considered to correspond to ground truth labelf
according to the second label sequence). this is a$,, we say that labeks, is a match to labet?. Each
For example label strings “a,a,b,b,c,c”, “11,2,2,3,3", symbol in the experimental sequence can match at most with

The DED algorithm computes the minimum number of
Beis that need to change in order to transform one label
uence into another. As will be subsequently demonstrated,
problem can be solved in less than cubic time by modeling
s a job assignment problem. The final resulting algorithm

“2,2,1,1,3,3", “B,B, 1,1, A, A", "+, +,—, —, %, are all one symbol of the ground truth sequence and vice versa (the
differentially equivalent. Differentially equivalent label se-exact way that this matching is performed is explained in the
guences correspond to identical set partitions. sequel).

DED is then defined as the minimum number of label Following the label matching, all shots that belong to a
modifications that are required to transform the first labgtene labeledi! and whose experimentally assigned label
sequence into a sequence that is differentially equivalentlielongs to set{a, a5y} — {a$} need to change their
the second one. label. In case there is no match for labeJ, all shots

As discussed above, DED is a metric measure. It is assunieonging to this ground truth scene need to change their label.
here that evaluating scene segmentation methods with a me@ansequently, for all, if o is matched with a label belonging
measure can be advantageous in comparison to using ntinthe experimental label set, the number of shots that need
metric ones. One of the reasons for this is that when a mettic change label is equal or less than the respective number

measure is used for guiding an optimization process (as will bé shots that would need to change labekff had not been
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Algorithm 1 DED Algorithm Summary each employee can be assigned to no more than one job. The
1: If Bp and B¢ are the ordered sefs ascending order) of optimal job assignment can be estimated by the Hungarian
experimentally estimated scene boundaries and ground trathorithm [22]. This algorithm takes as input a square matrix
scene boundaries respectively, ordered Bet {0, Bz N with positive elements and estimates with cubic complexity
Bg, N} is formed, wherelV is the number of shots in thethe minimum sum that can be achieved when from each row
video. It should be noted that in sef8z, B, a scene and each column exactly one element is added. In our case
boundary is represented by the index of the last videbe co-occurrence matrix is transformed into a cost matrix by

shot that is part of the first of the two scenes defining theplacing all valuesC M (i, j) with CM — CM (i, j), where
boundary. COM = max(CM(i,j)) (step 5 of Algorithm 1). Then, the

. i ; i Y i \J . i
2: The video is decomposed |nto_ Sl_Jb videss’;, b optimal set of symbol matchings is revealed by the element
1,2,..|B| — 1, where| B[ is the cardinality of53. Each sub- . nhination that achieves the minimum score according to

video starts at shaB(b) + 1 and lasts until the end of shot551 54 is used to estimate the actual DED value from the
B(b+1). The way that this decomposition is performed i3, _occurrence matrix:

discussed in section IlI-C.
3: Initialize: b =1, Ny = 0. N — Ny

4: For the sub-vided'V},, a co-occurrence matrix(' My, is DED = N 2)

constructed. Each eleme6tM, (4, j) of the co-occurrence where IV is the totalnumberof video shots andVy, is the

matrix is equal to the number of shots that belong to bofy, nper of video shots that are assigned labels which are
ground truth scene! and experimental sceng. matched correctly.

5: Cost matrixCC, i§ computed asCCy(i,j) = CM, —

CMy(i,j5), whereCM, = CMy(i,j))- ) L
b(i:J) o b Hz'l.%x( . b(4, 7)) C. DED Computational Optimization

. The cost matrix is zero-padded in order to become square,

7: The Hungarian algorithm is used to estimate the element' Ne Job assignment problem solved by the Hungarian al-

combination that leads to the minimum cumulative co§CMthm has cubic computational complexity, determined by

when choosing only one element of each row and ealiie minimum number of actual and experimentally estimated
column of the cost matrixC'Cy,. This combination deter- scenes. Since the number of scenes is not expected to surpass

mines the optimal matching, between ground truth ano|the order of hunr(]jreds, theI corlnputatlonal cEst is usually not
experimentally estimated scenes of the sub-vig&g. expected to reach extreme levels. However, there may be cases,

. o e.g. when tuning the parameters of a scene segmentation sys-
8: The number of shota/y;, = Z CMy(i, j) that do te?n, that this cogr]nput;[ional complexity makes tf?e use of DEI%/
not need to change scene label is estimated. troublesqmg._ We have found_that the DED_ computational cost
9: N = Niw + Ny, can be significantly redgc:_ad if the_ block-diagonal structure of
10: If b= |B| — 1, DED = (N — Nyw)/N. Elseb = b+ 1 the co-occurrence matrix is exploned._ _ o
and the algorithm continues from stdp The co-occurrence matrix structur_e is induced py splitting
shot boundaries, i.e. shot boundaries that both in the exper-
imental and the ground truth segmentation are identified as
scene boundaries (Fig. 1). It can be proven that all the labels
matchedwith ary label from Ag. As a result, in the minimum on the left side of a “splitting” boundary do not co-occur with
label modification case, alif are matched to exactly one labekhe labels on the right side of it, due to the scene convexity.
from Apg. Consequently, the video stream can be decomposed into sub-
Accordingly, we construct a co-occurrence matdxX\/ videos. This is done by checking the sets of ground truth
of dimensions|A¢| x |Ag|. ElementCM (i, j) contains the and experimentally estimated scene boundaries for common
number of shots that are assigned theth label of alphabet boundaries, i.e, we find the scene boundaries that belong to
Ag in the ground truth label sequence and jheth label of the intersection of these two sets. The latter scene boundaries
alphabetdg in the experimental label sequence. The value afe used as splitting points for decomposing the video into sub-
each element of the co-occurrence matrix is therefore eqwileos: each such boundary marks the end of a sub-video. The
to the number of labels that would not require changing iesulting decomposition is illustrated for an example video in
the corresponding symbotg/, a$ were considered to match.Fig. 1.
Consequently, the minimization of the number of transforma- Consequently, if the scene labels are sorted by their first
tions is equivalent to the selection pd| matching pairs of appearance, the co-occurrence maffix/ takes the following
symbols maximizing the number of labels that would not neéslock-diagonal form, wher8V,, b = 1,2, ...|B|—1 is theb—th
to be changed. This selection is constrained by the fact thaib-video|B|— 1 is the total number of sub-videos (see steps
each symbol of the one alphabet can be matched at mostitand2 of Algorithm 1 for a definition of| B|) and each sub-
one symbol of the other. video boundary is determined by a corresponding “splitting”
Thus, DED estimation leads to the dual problem of joboundary.
assignment. Let us recall that in the job assignment problemin this case, the optimal job assignment can be estimated by
a number of employees need to be assigned to a numberdetomposing the co-occurrence matrix into the block-matrices
jobs in order to minimize the total cost, with the constrain thédund on its main diagonal, computing the optimal solution for

»

(v],v5)EW,
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Reference Decomgosition (Ground Truth)
5 10 15 0 25 35 40

A. Other Scene Segmentation Evaluation Measures

5 1) Precision-Recall: Precision and Recall [4] are two

widely used performance measures (e.g. see [12], [13], [24]).

They require a set of ground truth instances and a set of

experimentally estimated instances. For scene segmentation

20 purposes, we have chosen to relate the set of ground truth and

2 experimentally estimated instances with the pairs of shots that

belong to the same scene, since each video scene segmentation

explicitly determines the shot pairs that belong to the same
scene.

E e — — It should be noted that in the relevant literature, Precision
and Recall are commonly estimated by counting false positives
and false negatives in the experimentally retrieved set of scene

Fig. 1. Anexample of a video stream decomposition into sub-videos, usifgoundaries, rather than pairs of shots that belong to the same

the common scene boundaries of ground truth and experimental segmentatignana. However, this approach can not correctly gauge scene

It should be noted that this figure does not depict a co-occurrence matrix, since . .

its axis indicate shot indices rather than scenes. The vertical and horizo@dMmentation performance, since the number of errors does

lines signify the shots that define the ground truth and experimentaliyot communicate error magnitude [5]. Misidentified scene

estimated scene boundaries respectively. The video is decomposed in p%ﬁndaries represent errors of different magnitude which are
where a vertical and a horizontal line intersect on the main diagonal. Each ’

10

15

30

Results of automatic scene boundary detection

sub-video is drawn hatched. expected to play a different role to the system performance.
By defining Precision and Recall with the help of pairs of
Svi 0 0 .. 0 shots that belong to the same scene, cases such as the above
cm=1]0 S22 0 . 0 can be handled successfully. However, as will be discussed in
o o o o osv- the following subsection, even when using such a definition
|B|—1

the harmonic mean of these two measures continues to present
both theoretic and experimental shortcomings in comparison
eachSV,, b = {1,2,...|B| — 1} matrix, and summing all the to the DED. .

' B ' 2) Coverage-OverflowMendrig et. al. [5] developed two

partial solutions. .
It should be noted that the technique presented in thrllovel measures that manage to express over-segmentation
o ; que presented 4Rd under-segmentation rates, referred to as Coverage and
section is used for evaluating the segmentation similarity wh

. g . . verflow ratio. Coverage (C) measures to what extent frames
the cost of a shot re-assignment is assumed identical an ge (C)

. . gonging to the same scene are correctly grouped together,
equal tol. However, the same analysis stands if the shot "While Overflow (OV) evaluates the quantity of frames that,

assignment cost is determined by specific shot-related Criteré‘?though not belonging to the same scene, are erroneously

o e e cfcuped ogener. or specicly the Couerage and Over
y P 9 ow of a video is the average Coverage and Overflow ratios

1) needs to be modified in order to represent these COBPits ground truth scenes. In order to estimate the Coverage

and Overflow of a ground truth scené, the experimentally
estimated SCeNes;, v5,q, ..., Vi, that overlap with it are
taken into account. Then, if operatpy| denotes the duration
of a video segment (counted in shots), the Coverage C equals

the maximum overlap divided by the total scene duration:

counted in e.g. seconds rather than in number of shots.

IV. COMPARISON OFSCENE SEGMENTATION EVALUATION
MEASURES

In the early scene segmentation literature, the evaluation
of segmentation results was either subjective (e.g. in [23] it |~ max([[v] N[, [[v5 VY|l [V, N v]l]) 3
was left to the reader) or was based on evaluation criteria for~: = Tl ©)
shot boundary segmentation. The latter boils down to counting
false negatives and false positives (e.g. in [2]) that leads to &On the otherhand, in order to compute the Overflow
Precision-Recall approach. In some recent publications, (¢/gte. the total overlap obf, v, ..., v, with the scenes
in [11]), instead of Precision-Recall, Coverage and Overflo@gighboring tov] (i.e. v, , and v/ ,) is estimated and is

measures [5] are emp|0yed_ divided by the duration of these scenes:
However, when the performance is evaluated by two distinct
measures, the inherent problem of combining them needs to ||U; N vg+1|| + H’U? Nnod || + ~~H”5+k Nnod_,||

be addressed. In both Precision-Recall and Coverage-Overflo@ Vi = (4)
based approaches, their harmonic mean has been proposed as a
uni-dimensional measure combining the two. In the following It should benoted that Coverage and Overflow optimal
sub-section, the DED is comparatively evaluated against th@ues arel00% and0% respectively. In order to account for
harmonic mean of Precision-Recall £%) and Coverage- 0 being the optimal Overflow value, in the F-score estimation

Overflow (Fco). formula the quantityl — OV is used instead o®V'.

[of Il + 1lof_y |l
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B. Evaluation setting the harmonic mean of Coverage and Overfléwo (v1, v2, €),
Assessingan evaluation method, such as the one proposé&d

here, is by no means a straightforward process. In the relevant _ 2 _

literature there are neither detailed qualitative explanations nor O Torl + vl

experimental results that would provide supporting evidence
P o R ar [foall([[onll + lleall = e)(Ileall = )

for the superiority of one or the other measure [5]. We have
chosen to address this problem by following an evaluation (o[ + 2for[[[va]] = e([los][ + [[22]]))
setting that involves both qualitative and experimental condhere ||v1|| and ||vs|| is the duration, counted in shots, of
parison. The former is performed by identifying a numbehe scene to the left and to the right of the scene boundary,
of qualitative properties that a good measure is intuitivehespectively. Based on the above equatidfo(vo,v1,e€)
expected to satisfy and checking whether they are exhibited ¢iyes the harmonic mean if the scene boundary is detected
the proposed method (and the other methods in the literaturg),the end of shotS; + e instead. Since this formula is
while the latter revolves around examining the processing timet symmetric,F-o generates different scores for equivalent
that is required for tuning the parameters of a scene segmenors, e.g. for the case of || = 30, ||v2]| = 70 ande = 3,
tation system when one of the aforementioned measuresris; (vy,vq,€) = 0.7323 and Foo (va, v1, €) = 0.4388.
used for guiding the parameter selection process. A user studBymmetry in scene boundary misidentification errors is also
involving 6 non-expert users was also conducted. not satisfied by measurBpr. When a scene boundary that

In order to compare the three measures, we implemenigdsts at the end of shd, is erroneously detected at the end
four different scene segmentation techniques, and used thefishot S; — ¢, the harmonic mean of Precision and Recall,
on three datasets. The scene segmentation techniques inclEdg, is:
the original STG technique [23], an STG variation that em-

- . . . Q(Ul,UQ,e)

ploys high-level audio event descriptors instead of low-level Fpg(vi,vs,€) =
visual descriptors, as described in [11], and two multi-modal Qv1, v, €) + (o] + [Jvaf| - 1)
scene segmentation techniques [25], [26]. The video datas@tsere Q(vy, ve,e) = ||v1]|? + |[ve||? + €2 — (2e + 1)||v1]| —
are a documentary, a movie and a news one. The first is magdg|| + e. In the above equatiofpp(vs,v1,€) gives the
of 15 documentaries (513 minutes in total) from the collectionarmonic mean if the scene boundary is detected at the end of
of the Netherlands Institute for Sound & Vision, also useshotS; + e. Equation (6) is not symmetric, because quantity
as part of the TRECVID dataset in 2009. The second one(s is not symmetric. Consequently, thE-r measure also
made of six movies (643 minutes in total). Finally, the newgenerates different distance scores for equivalent errors.
dataset consists df hour-long news videos. These datasets On the other hand, DED by definition does not discriminate
include 3459, 6665 and 1763 automatically detected shdigtween these types of errors and produces in both cases a
and 525, 357 and 57 manually identified ground truth scene@nilarity value proportional to the error magnitude:
respectively. It should be noted that in the news and movie
datasets the ground truth scenes usually include many more e
shots than in the documentary one. DED(v1,v3,€) = DED(v3,v1,€) = ()

All experiments reported in the sequel were carried out on a

PC with an Intel Core 2 Quad Q9300 CPU and 4GB of RAM. In order toquantify the expected asymmetry, for all videos
belonging to the 3 datasets that we use in this work, pairs

) o ] ] of synthetic segmentations were constructed by introducing

C. Analysis of qualitative properties of evaluation measure§ymmetric misplacements of each ground truth scene bound-

In this subsection the comparison of DEBgo and Fpr  ary. Specifically, starting from the ground truth segmentation
according to certain qualitative properties is conducted. dhd considering one scene boundary at a time, this boundary
should be noted that since DED is a dissimilarity measun@as misplaced by and —e shots, respectively, wherewas
while Feo and Fpr are similarity measures, — DED is selected randomly from the integer values that are smaller
employed instead in the comparisons. than the minimum distance of that particular scene boundary

1) Symmetry in scene boundary misidentification errorsfrom its two adjacent scene boundaries (so that the introduced
An example of a misidentification error is demonstrated in Figaisplacement would not lead to a violation of the scene
2. The scene boundary which exists at the end of $hois convexity restriction). A single value af was of course used
misplaced by shots, being detected either at the end of shfir each pair of scene boundary misplacements, to ensure their
S1 — e or at the end of sha$; + e. It is reasonable to expectsymmetry. ThenDED, Fpr and Foo values were estimated
that a good evaluation measure does not discriminate betwéalways in the rangé to 100%) by comparing each synthetic
these two cases, i.e. that it generates identical results witheagmentation with the ground truth one, and subsequently the
taking into account whether the estimated scene boundaryli& D, Fpr and Foo differences were calculated for each
found before or after the actual one. As a matter of fact, thepair of synthetic segmentations that present symmetric errors.
is no rationale that could support any differentiation of the twbhe mean and standard deviation of these differences, post-
cases. processed so as to simulate the case whéfe of the true

It can be proven that if a scene boundary that exists at theene boundaries of each video are misplaced in this way, are
end of shotS is erroneously detected at the end of shipt-e, reported separately for each video dataset in Table I.

®)

(6)

)
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Dataset DED Diff. Fpr Diff. Foo DIff. | : : | |
(n+t0) (n+£0) (n£0) : : >
Documentary 0£0 0.83%+ 1.62% | 6.81%+ 7.92% S, Si+e S)e S,  Ss Shot Index
Movie 0+0 0.61%+ 1.17% | 5.17%+ 5.4%
News 0+0 0.34%+ 0.47% | 2.78%+ 2.21%
TABLE | Ground Truth
EXPERIMENTALLY ESTIMATED MEASURE DIFFERENCES FOR | |
SEGMENTATION PAIRS THAT PRESENT SYMMETRIC SCENE BOUNDARY 0 >
MISIDENTIFICATION ERRORS 100 250 Shot Index
Method 1 DED =0.9167
: Fpg =0.8298
: : i Feo =0.7333 | -
: : - 125 250 300 Shot Index
Si-e S Si+e S,  Shot Index Method2 ~ DED =0.9167
Fpg =0.8906 :
Fo =0.8575 | R
Ground Truth 100 225 300 Shot Index
30 100 ShoIIndex Fig. 3. Anexample of a misidentification error evaluation witxo, Fpr
Method 1 . DED =0.97 and DED. Vertical bars denote scene boundaries; the dotted vertical bars
etho H Fpg =0.949 represent erroneously detected ones. QuantRigsSs and S3 denote the
: Feo =0.7323 > shot indices of the last shot of the first, second and third scene, respectively.
27 100 Shot Index Method 1 misplaced the beginning of the second scene2byshots, while
DED =0.97 method2 misplaced the same scene’s end23yshots. The two methods are
Method 2 H Fpr =0.9468 evaluated differently byf'co and Fpg.
: F o =0.4388 -
33 100 Shot Index

3) Satisfaction of metric propertytn section IlI-A it was

Fig. 2. Anexample of a misidentification error evaluation witf:o, Fpr ~ proven that the DED measure is a metric. On the contrary,
and DED. Vertical bars denote scene boundaries; the dotted vertical bgfs i ; i it ;
represent erroneously detected ones. Quantiiesnd S2 denote the shot FOO _IS not a metric, S.Ince It Is not symmetric. For example’
indices of the last shot of the first and second scene, respectively. While bt wdeo stream ConSIS'FS d_ﬂO Sh(_)ts and one scene and the
scene segmentation methotlsand 2 misidentify the scene boundary I ~experimental segmentation identifies two equally-long scenes,
shots, only DED generates symmetric resuits. then Fo = 0.667. In the opposite case, i.e. when a video

stream includes two scenes &f shots each and a scene seg-

- mentation techni retrievi nly on n =0.
2) Symmetry of errors located at the beginning and the eryg tation technique retrieves only one scene, thiep = 0

: A : , Il
of a scene:This property is similar to the one discussed above. generally
A scene segmentation technique should not be evaluated 7 7 8
differently if it “crops” the beginning or the end of a specific co(V1,V2) # Foo(Ve, V1) (®)
scene. An example of this is shown in Fig. 3. where V; and 1, are two segmentations of the same video

In order to quantify the expected asymmetry magnitudgream.
between errors tak_ing place at the beginning and the enq °Dn the other hand, measuié-5 satisfies the symmetry
a scene, an experimental strategy analogous to the previgiisyerty. This is proven by considering the definition of Recall
subsection was followed, where symmetric errors were siminq precision as the ratio of the intersection of the sets of
larly introduced to each pair of adjacent scene boundaries. Td}%und truth and experimental shot pairs belonging to the same

mean and standard deviation of the resulting D, Fpr and  gcene over the ground truthi; and the experimental séfs,
Feo differences, as in the previous experiment, are report%pectively:

separately for each video dataset in Table II.

Dataset || DED Diff. Fpg DIff. Foo DI, _ |Ven Vgl ~ |Ven Vgl
wto) | (uto) (% 0) RVe, Vo) = =g PVe Vel = == )
Documentary|| 0 £ 0 7.17% L 8.39% | 18.8% =L 14.36%
Movie 0+0 9~2°A;i 12-87;% 18-970%1 16-330% Fpr is definedas the harmonic mean of Recalk and
News 0Lo0 2.94% L 3.59% | 9.92%L 11.25% PrecisionP:
TABLE II
EXPERIMENTALLY ESTIMATED MEASURE DIFFERENCES FOR
SEGMENTATION PAIRS THAT PRESENT SYMMETRIC ERRORS AT THE 2 2|V N Vg
BEGINNING AND AT THE END OF A SCENE FPR(VGaVE) = (10)

L4+ L [VeUVel+|Ven Vgl

Fpr(Ve, Vg) estimateghe similarity of the two segmenta-

As demonstrated by the results of Table Il and also thgyns. The corresponding distandr(Vi, Vi) is given by
example of Fig. 3, only DED satisfies this property. Employinghe following equation:

Feo or Fpg leads to different (non-symmetric) performance
estimates, induced by the different lengths of the adjacent
scenes.

|VE UVG| — ‘VE ﬁVGl

Dpp=1—Fpp =
PR PRT W UVe| + Ve N Vg

11)
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It is straightforvardly understood thatDpr(Vs, VE) = computational complexity is expected not to be significantly
Dpr(VEe, V) and as a result the measure exhibits the syrhigher thanO(N). But, it should be mentioned that the worse
metry property. However, the distanél i does not generally case complexity is higher than the one related‘tg,, since
satisfy the triangular inequality. For example, let us suppos#iee job assignment complexity is cubic.
that a video stream consists of four shots, and three differentAn experimental evaluation of the computational complexity

segmentation$;, V5, and V3 have been defined for it: of DED, Fpr and Fop was carried out on the datasets
of section IV-B, and the results (expressed as the ratio of
Vi ={1,2}, {3}, {4} Fpgr or Fcpo computation time over DEDs computation time)
Vo = {1,2},{3,4} are given in Tables Ill, IV and V. These tables demonstrate
the higher efficiency of the DED measure. The observed
Vs ={1},{2},{3,4} differences between the three datasets are explained by the

In the above equations, the brackets denote scene boufﬁ&-t that in the news and the movie datasets, the video streams
aries. For segmentatiori§ and Vs, the intersection of shot comprise more shots, but are decomposed into fewer and

pairs that belong to the same scene is void. Consequenfijf9er ground truth scenes. Consequently, fhg; computa-
Dpr(Vi,V3) = 1. On the other hantVi NVs| = [VanVa| = 1 tional cost, which is fully determined by the number of shots,
while |V; UVa| = |VoUVs| = 2. As a resultDpg(Vi, Vo) = increases, while the computational cost associated with the

Dpr(Va,Vs) = 1/3 and Dpp(Vi,Va) + Dpr(Va,Vs) < browsing of the co-occurrence matrix remains unaffected.
D{:R(Vl, V3). So, the implicit solution spaces employed when e 23] 1] 5] 28]

using Fpg, as well asFo, are hon-metric spaces. Frp [DED || 1.1959 | 1.1229 | 1.2156 | 1.0506
Foo [DED || 9.6109 | 9.1970 | 6.9088 | 7.577

D. Further experimental comparison of performance mea- TABLE Il
sures COMPUTATIONAL COST OF Fpr AND Foo OVERDED IN THE

DOCUMENTARY DATASET.

1) Computational complexitylt can be deduced from the
Fpgr definition that the performance evaluation of a video
segmentation involvingV shots requires)(NN?) operations.
Note that these operations can be no more complex than Method [23] (11] [25] [26]
a summation and a logical AND. On the other hand, in ?gg;ggg jblsg’g gég?g g:ggi‘; §j§§§§
order to compute eithef-o or DED, the construction of
the co-o.ccurrence.matrix is required. This matrix is buiIt. py COMPUTATIONAL COST OFFPT:%E If\?/co OVER DED IN THE MOVIE
sequentially browsing all shots of the video and thus requiring DATASET.
O(N) operations. The co-occurrence matrix has a size of
|Ac| x |Ag|, where|A¢g| and|Ag| is the number of scenes
in the ground truth and the experimental segmentation, re-
spectively. After its estimationf-o computation involves all Method (23] (11] (25] [26]
co-occurrence matrix elements, bpt only Iinear_combin_ations ?? ’; ; BEB g:g;ié 2%232 %%05871 g:gg;;
of them. So, the overall computational complexity Ifo is

TABLE V
O(N) +O(‘AG| ’ ‘AED . . COMPUTATIONAL COST OF Fpr AND Foo OVER DED IN THE NEWS
Finally, DED also employs the co-occurrence matrix, which DATASET.

is decomposed into sub-videos using splitting boundaries.

Consequently, the overall complexity is ©(N) + O(DED)

where O(DED) is the complexity related to the total sub- The efficiency of DED is to a great extent due to the
video DED estimation. The theoretical determination of thidecomposition of the video to sub-videos (according to the
computational complexity is not a trivial task, since it dependsethod of section IlI-C). This can be demonstrated if DED’s
on the number of splitting boundaries, as well as the numb@mputation time is contrasted with the computation time of a
of ground truth and experimentally estimated scenes. Mdp&ED variant that does not decompose the video to sub-videos.
specifically, if the|Ag| ground truth boundaries are experi-The corresponding results are shown in Table VI. As will be
mentally estimated with a Recall rafé and a Precision rate discussed in the next subsection, the computational complexity
P, then the video will be divided inta? - |Ag| + 1 sub- that is associated with the evaluation of the measure plays a
videos. These sub-videos will include, in total,— R) - |Ag| critical role in the overall computation time that the parameter
ground truth scene boundaries afid- P)-|Ag| experimental tuning of a scene segmentation technique would require.
scene boundaries that are not sub-video boundaries as welR) Parameter sampling densityfthe parameters of a scene
Typical values of Recall and Precision, as those given in [24egmentation system, when no specific guidelines are avail-
are significantly over50%. If this baseline performance isable, are typically determined by search in the parameter
assumed andlAg| and |A¢| are assumed both equal 40, space; this involves a uniform sampling of the parameter
then each sub-video would contain on average less tharspace [11]. This parameter tuning is conducted by varying
ground truth and less thah experimentally estimated scenea parameter value that generates an error signal, where the
boundaries. So, in practical situations the DED algorithwiomain of the error signal is the parameter value space and
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_Dataset || Documentary| Movie | News Algorithm 2 Sampling RateEstimationSummary
Non-optimized computatior] - - -
time / Optimized 2.4964 11.9849 | 34.439 1: The EITOI’. signalspg, eco, epgp are estimated for tha
computation time different distance measures and for parameter values@rom
TABLE VI to a maximum valud'. The sampling rate is fixed t6/Rj.

COMPUTATION TIME WITHOUT DECOMPOSING THE VIDEO TO SUBVIDEOS QuantityRO’ Wthh determines the |n|t|a| Samp“ng rate, is

DIVIDED BY COMPUTATION TIME WHEN DECOMPOSING THE VIDEO TO a constant.

SUB-VIDEOS ACCORDING TO SECTIONII-C. T .
2: Initialization: S = 1, fpr = FFT(epr), fco =
FFT((:’(jo), fDEL) = FFT(GL)ED).
3 A=T/(25 Ry)

the values of the error signal are the distances of the resultifig The error signals are recomputed by estimating their values
segmentations from the ground truth one. The latter distancéor the additional parameter valué® -i)/(251 - Ro) + A,
is calculated using a segmentation evaluation measure. Thé =0,1,2,...,2571 - Ry — 1.
computation time required for this process is affected not orfly S = S + 1.
by the computational complexity of the evaluation measurés The FFTs of the error signals are re-estimated and com-
but also by the required parameter sampling density. pared to the correspondinf) variables. If all of them are

The minimum sampling density is determined by the similar to the correspondings, the algorithm terminates
Nyquist-Shannon sampling theorem as being proportional toand the sampling is performed with reife/(2° - R). Else,
the spectrum bandwidth of the error signal (i.e., assuming thathe estimated FFTs become the n¢w& and the algorithm
it is a bandlimited signal, to its highest frequency). It should continues from Step 3.
be noted that when a signal is multi-dimensional, i.e. more
than one parameters are tuned at the same time, then the
Nyquist-Shannon sampling theorem is applied separately BED outperformsFp  for all examined methods and datasets.
each different dimension. In order to determine the highesbnsequently, it can be concluded that by employing DED, the
frequency, a thresholding is required, since in theory thempling required to tune the system parameters is more sparse
spectrum of any signal limited in time is not limited inthan if Fpr or Fop were employed. The total computational
frequency. Instead of employing a strict, arbitrarily chosegain is estimated by multiplying the corresponding gain values
threshold, we selectef) different thresholds, varying from from Tables Il to IX. It can be seen that through the use of
0.1% of the total spectrum power t2%, and averaged the DED the scene segmentation tuning becomes much faster, with

results. a speed up factor that reaches upl€- 15 times.
Furthermore, when conducting the experimental analysis, it

is not the analog error signal that is taken into account but Method [23] [11] [25] [26]

v . ot ; PR Fpgr [ DED || 1.3511 | 1.1244 | 1.3173 | 1.5475

inevitably a digital approximation of it, which is generated FoaTDED 1023 | L6635 L7217 20594

using a manually chosen sampling rate. In order to prevent

error signal aliasing, the sampling rate used to generate it . . . }WTC{*:%%;{”DEDlNTHE D OCUMERTARY
should exceed the Nyquist-Shannon rate. This can not be DATASET.

theoretically guaranteed, since it would require a priori knowl-

edge of the signal spectrum under examination. However, this

problem may be circumvented by relying on the fact that

when sampling exceeds the Nyquist-Shannon rate then the Method (23] [11] [25] [26]
bandlimited spectrum is identical and independent from the gggﬁggg 10'362%5 ;gggé 11_;);35 11_;1:314
sampling frequency. So, the adopted strategy was to double

the sampling points until the spectra of all three approximateg, \5wioh of 755, AnD FTCA(?E\E,E\QIEED IN THE MOVIE DATASET.
error signalsepr, eco, epgp Stabilized. This strategy is

summarized in Algorithm 2. It should be noted that the number

of samples doubles (Step 5) before the termination control

(Step 6) in order to provide extra accuracy to the spectra Method [23] [11] [25] [26]
. . . Foo/DED || 0.8438 | 1.1794 | 1.2316| 1.3993
The experimental setup was identical to the one employed o

for computational complexity, i.e. it included the four scene _ FTAB'(;\%E'SDEDIN T NEWS DATASET
segmentation techniques and the three different datasets. The PR co '

results (comparing the highest frequency of the error signal

spectrum when using DEDFpr and Fp) are shown in Ta-

bles VII, VIII and I1X. These tables show that ti&>r/DED

or Foo/DED bandwidth ratio is not so much dependent ofs- User Study

the dataset, but rather on the employed scene segmentatioim addition to the above experiments, we conducted a user
technique. However, it can be seen that in all experimenstudy involving 6 non-expert users in order to further assess
only on two occasions the sampling rate of the DED errdrow well the results of the proposed DED measure match the

signal was required to be greater than that/fo, while expectations of human evaluators. For the needs of this study
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we randomly producedriplets of synthetic segmentations for Ground Truth Segmentation

a subset of the videos of our datasets, and then selected E-‘ m B P,
of those triplets for which the three considered evaluatio -

measures disagree in the ranking of each triplet's segmen-

tations (e.g. segmentation triplets for whiéghE'D suggests @

that the first segmentation is the most similar to the manuall

created ground-truth one, whilEpr and Foo suggest that

the second and the third one are most similar to the groung, Feo =049, Fpg =078, DED =09
truth, respectively). The 20 triples were shown one by on

to a set of 6 non-expert users, who independently viewed t?.‘wm

(segmented) videos and ranked each of them, without havi
FCO :0.55, FPR :0.71, DED :07

FCO :0.()7, FPR :0.44, DED :05

et

any knowledge of the correspondifgE D, Fpr and Foo

values. The agreement of the user rankings with the rankin {

generated by each measure was evaluated using normal;ﬁ-‘m
inversion count [27] and the results are shown in Table X

It can be seen that DED has significantly better (i.e., lower)) Feo =0.63, Fpg =067, DED =0.38

seores farton and e *iﬂﬁm

Sgmentation EvaluatioMeasure || DED | Fpr | Fco
NormalizedInversionCount 0.16 | 0.37 0.53

TABLE X Fig. 4. An example of scene segmentation evaluation usifigr, Fco

and DED. In each of the five rows 10 key-frames, belongindGadjacent

video shots, are presented. The vertical lines represent the scene boundaries
(either ground truth boundaries or automatically detected ones). In the first row
the ground-truth segmentation of the video is shown. The video includes two
scenes, comprising and4 shots, respectively. In example result (a) the correct
scene boundary and 3 additional false scene boundaries have been detected.
Example result (b) only misplaces the scene boundary by 1 shot. Example

Finally, a few qualitative examples of scene segmentati('ﬁiu't (c) misplaces the correct scene boundary by 1 shot and furthermore

. . . . . . reports two false boundaries at the end of the video. Example result (d) also
evaluation are given in Fig. 4, illustrating the values of thﬁ'\isplaces the correct scene boundary by 1 shot, and reports only one false

Fpg, Fco and DED measures in realistic scene segmentatipundary at the beginning of the video. It is expected that all evaluation

cases. These examp]es further emphasize the Superiority’ﬂQ@SUFES would consider example result (b) as being better than (a), and (d)

. . . . -being better than (c). However, thi&-o of (a) is higher than that of (b) and
the DED metric in producing evaluation results which are 'Fﬂe Fppr of (c) is higher than that of (d). On the other hand, DED manages

better agreement with the human perception of segmentatiorvaluate these results according to what is intuitively expected.
goodness, compared 8-z and Foo.

RESULTS OF THE CONDUCTED USER STUDYNORMALIZED INVERSION
COUNT EXPRESSES HOW WELL THE OUTPUT OF EACH EVALUATION
MEASURE AGREES WITH THE RESULTS OF HUMAN EVALUATORSLOWER
SCORES INDICATE BETTER AGREEMENY.

V. CONCLUSION [2] A. Hanjalic, R. L. Lagendijk, and J. Biemond, “Automated high-level

In this work a novel scene segmentation evaluation measure movie segmentation for advanced video-retrieval systelB&E Trans.
. . On Circuits and Systems for Video Technologyl. 9, no. 4, pp. 580-
was presented. Furthermore, an implementation that computes 5gg jine 1999,

this measure with less than cubic complexity was introduceds] A. F. Smeaton, P. Over, and A. R. Doherty, “Video shot boundary
For testing the metric’s ability to model efficiently the human  detection: Seven years of trecvid activitgomputer Vision and Image

f ti b f ired ti Understandingvol. 114, no. 4, pp. 411-418, April 2010.
periormance rating, a number of required measure propert C. J. van Rijsbergerinformation Retrieval Butterworth-Heinemann,

were introduced. The proposed measure and two baseline per- London, 2nd edition, 1979.
formance measures were comparatively evaluated with respéelt J. Vendrig and M. Worring, “Systematic evaluation of logical story unit

; ; : : segmentation,IEEE Trans. on Multimediavol. 4, no. 4, pp. 492-499,
to their compliance with these properties. Furthermore, an 3 .. ver 2002

experimental setup was used to examine the computationg] w. Tavanapong and J. Zhou, “Shot clustering techniques for story
cost that is associated with the parameter tuning of a scene browsing,"IEEE Trans. on Multimediavol. 6, no. 4, p. 517527, August

: : : : 2004.
segmentation system, when this process is guided by o S. Benini, L.-Q. Xu, and R. Leonardi, “Identifying video content con-

of these evaluation measures. These results, together with sistency by vector quantization,” iroc. Workshop on Image Analysis
the results of a small user study that was also conducted, for Multimedia Interactive Services (WIAMISYlontreux, Switzerland,

demonstrate that the presented measure outperforms th? eéngs(?O?'Wang P.Wang, W. Hu, Y. Du, Y. Zhang, and G. Xu, “Scene

currently employed in the literature and provides an effi- * segmentation and categorization using ncuts,Pioc. IEEE Conf. on
cient approach to comparing automatic scene segmentation Computer Vision and Pattern Recognition (CVPR)nneapolis, USA,
techniques and to guiding the optimization of their param-_ June 2007, p. 17.

. . . . &9] V. Parshin, A. Paradzinets, and L. Chen, “Multimodal data fusion for
eters. The software implementation of DED is available at” yigeo scene segmentation,” Proc. Int. Conf. on Visual Information

http://mklab.iti.gr/project/ded. and Information System#msterdam, The Netherlands, July 2005, p.
279289.
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