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Abstract—In this work a novel approach to evaluating video
temporal decomposition algorithms is presented. The evaluation
measures typically used to this end are non-linear combinations
of Precision-Recall or Coverage-Overflow, which are not metrics
and additionally possess undesirable properties, such as non-
symmetricity. To alleviate these drawbacks we introduce a novel
uni-dimensional measure that is proven to be metric and satisfies
a number of qualitative prerequisites that previous measures do
not. This measure is named Differential Edit Distance (DED),
since it can be seen as a variation of the well-known edit
distance. After defining DED, we further introduce an algorithm
that computes it in less than cubic time. Finally, DED is
extensively compared with state of the art measures, namely
the harmonic means (F-Score) of Precision-Recall and Coverage-
Overflow. The experiments include comparisons of qualitative
properties, the time required for optimizing the parameters of
scene segmentation algorithms with the help of these measures,
and a user study gauging the agreement of these measures with
the users’ assessment of the segmentation results. The results
confirm that the proposed measure is a uni-dimensional metric
that is effective in evaluating scene segmentation techniques and
in helping to optimize their parameters.

I. I NTRODUCTION

Video decomposition into elementary temporal units is
an essential preprocessing task for a wide range of video
manipulation applications, such as video indexing, non-linear
browsing, classification etc. The video decomposition tech-
niques focus either on shot or scene segmentation, according
to the structural or semantic criteria employed.

Shots are defined as sequences of images taken without
interruption by a single camera [1]. On the other hand, scenes
are longer temporal segments that are usually defined as
Logical Story Units (LSU): a series of temporally contiguous
shots characterized by overlapping links that connect shots
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with similar content [2]. The video scene should not be
confused with the meaning of the term “scene” in the context
of still image processing and interpretation, which relates to
the physical environment information that is captured by the
image.

Automatic video segmentation to shots and scenes is as-
sociated with different degrees of difficulty. State-of-the-art
shot segmentation techniques have been shown to reach good
performance on a variety of datasets in experiments such
as the annual TRECVID benchmarking exercise, particularly
when it comes to detecting abrupt shot transitions (cuts)
[3]. On the other hand, scene segmentation is still an open
research problem. Among the shortcomings of the relevant
scene segmentation literature is the lack of an efficient scene
segmentation evaluation measure.

Automatic scene segmentation techniques generate a list
of scene boundaries that identify the time-points dividing the
video stream into different scenes. In order to estimate their
performance, the resulting scene boundary list is contrasted
with a manually generated one (ground truth). The similarity
of the two scene boundary lists is measured either in terms of
Precision-Recall [4] of Coverage-Overflow [5]. In [6], editing
strategies common to film industry are exploited to extract
the scene boundaries and the results are evaluated by using
Precision-Recall (and a linear combination of them), as well
as the required computation time. In [7] a visual bag-of-
words approach is proposed for decomposing the video into
scenes, which for the purpose of evaluation are compared to
the ground-truth using the Coverage and Overflow measures.
The authors of [8] present a graph-based scene segmentation
approach, which uses normalized cuts; evaluation is conducted
with the help of the Precision-Recall measures. [9] proposes
a probabilistic technique that aims to maximize the Precision-
Recall values of the estimated scene boundaries, by train-
ing a number of independent descriptors based on various
modalities, with Precision-Recall again being used for its
evaluation. Similarly, the authors of [10] train a SVM, which
takes as input descriptor values from different modalities,
to maximize the Precision-Recall measures. Finally, a multi-
modal probabilistic technique that uses both high-level and
low-level audio-visual features (including visual concepts and
audio events, automatically detected with the use of a plurality
of machine-learning-based concept and event detectors) is
proposed in [11]. Its evaluation is carried out using Coverage
and Overflow.

For most of the aforementioned methods, as well as other
techniques of the relevant literature, when a straightforward,
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uni-dimensionalcomparison isrequired,for example to op-
timize the value of a system parameter, the harmonic mean
1(F-Score) of either the one or the other of these two pairs
of measures is typically estimated. However, this evaluation
approach suffers from a number of evaluation flaws, which
are partially induced by the fact that the generated problem
space (i.e., the evaluation space) is not a metric space.

In this work we present a novel uni-dimensional measure for
scene segmentation evaluation, along with an implementation
of it that features lower-than-cubic complexity. We prove that
this measure is a metric and we compare it with the two afore-
mentioned harmonic means commonly used in the literature,
to demonstrate its desirable properties and its increased agree-
ment with the users’ evaluation of segmentation results. We
also experimentally show that the tuning of scene segmentation
system parameters using the new measure requires less time,
since it allows for a more sparse sampling of the parameter
space.

The rest of the paper is organized as follows: The concept
of scene segmentation as a label assignment problem, which
is a prerequisite for the development of the metric proposed
in this work, is discussed in Section II. The Differential Edit
Distance metric and its estimation algorithm are presented and
discussed in Section III, followed in Section IV by experimen-
tal evaluation and comparison with two other uni-dimensional
evaluation measures. Finally, conclusions are drawn in Section
V.

II. SCENE SEGMENTATION AS A LABEL ASSIGNMENT

PROBLEM

Mathematically speaking, a video sequenceV can be seen
as a well-ordered set of structural elements such as frames,
shots, scenes. That is, considering only one of the afore-
mentioned possible types of elements at each time, their set
has a binary relation< that is total (for all xi, xj ∈ V ,
xi<xj or xj<xi), antisymmetric (ifxi<xj and xj<xi, then
xi = xj) and transitive (ifxi<xj and xj<xk, then xi<xk).
This binary relation is the temporal position of the video’s
structural elements.

Video temporal decomposition techniques generate a parti-
tion of video sequenceV into convex sub-setsvi, since the
resulting temporal segments (regardless of whether they are
shots or scenes) by definition satisfy the following principles:
•

⋃
vi = V

• vi

⋂
vj = ∅, ∀i 6= j

• ∀vi if x1, x2 ∈ vi then all x, x1 ≤ x ≤ x2 also belong
to vi

The first two principles signify that each and every video
element is assigned into one of non-overlapping sub-sets
(considering, of course, only the appropriate types of elements
for each task). For example there are no frames that do not
belong to some shot, scene etc. Finally, the third one is
associated with the sub-set convexity, since it postulates that
if two elements belong to the same sub-set then all elements
that lie between them also belong to it.

1It is reminded that the harmonic meanFQ1,Q2 of two quantitiesQ1 and
Q2 is FQ1,Q2 = 2Q1Q2

Q1+Q2
.

When shot segmentationis conducted, the video elements
considered are the frames of the video. On the other hand,
when scene segmentation is conducted, the video elements
considered are usually the video shots. This reflects a common
assumption behind almost all scene segmentation techniques
in the literature, namely that each shot belongs to exactly
one scene [11], [12], [13], [14], [15]. Under this assumption
scene segmentation is typically performed through a two-
step temporal decomposition process: first the video frames
are used to partition the video sequence into shots, and then
the shots are further grouped to form scenes. In the second
step of this approach, each shot is assigned to an appropriate
scene. We can assume that this is performed through a labeling
process: each shot receives a label that identifies the scene that
it belongs to, so that:

• If two shots belong to the same scene, they are assigned
the same label.

• If two shots belong to different scenes, they are assigned
different labels.

For example, a video sequence that includes5 shots may be
labeled “a, a, b, b, c”, “ 1, 1, 1, 1, 1”, etc. On the other hand, the
label sequences “a, b, b, c” and “a, a, b, b, a” do not represent
possible decompositions of this video into scenes: in the first
case one shot is not assigned to any scene, while in the second
case the decomposition is not a convex one.

So, scene segmentation can be generally viewed as a label
assignment problem, where one is interested in estimating a
label sequence that corresponds to the grouping of the video’s
shots into scenes. This scene segmentation approach is in line
with the point of view of an expert user, who is charged with
the generation of a manual segmentation of a video stream
(e.g. a video librarian [5]). Such a user would assign labels
into scenes and would discriminate one scene from another
by moving from shot to shot while changing the assigned
description label only when the scene changes.

III. D IFFERENTIAL EDIT DISTANCE METRIC

A. Differential Edit Distance

In any objective scene segmentation evaluation setup, the
ground-truth scene segmentation and the experimentally esti-
mated scene segmentation results provide two different par-
titions of the well-ordered set of shots. The similarity of
these partitions may be used as a measure of accuracy of the
experimentally estimated scene segmentation. We propose to
express this similarity through a minimum distance approach
that resembles the Earth Movers’ Distance; the latter was
recently used, among others, for visual event recognition and
near-duplicate video detection [16], [17]. More specifically, we
define the distance between two partitions of a well-ordered set
as the minimum number of set elements that need to move to
another sub-set in order to transform the one partition into the
other. Using the scene segmentation terminology, the distance
between two scene segmentation partitions is the minimum
number of shots that need to change scene label in order
to transform the experimentally estimated partition into the
ground truth one.

IEEE Transactions on Circuits and Systems for Video Technology, accepted for publication.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6111460



3

It can beproven that this measure is also a metric. Indeed, if
d(V1, V2) denotes the distance between two partitionsV1 and
V2 then it is obvious thatd(V1, V1) = 0 and d(V1, V2) =
d(V2, V1). Furthermore, let us suppose thatXij is the set
of elements giving rise tod(Vi, Vj) (set of elements that
need to change sub-set). Then, ifX12 andX23 are two such
sets, by changing a sub-set of all elements that belong to
X12

⋃
X23 the partitionV1 can be transformed into partition

V3. Since the distanced(V1, V3) is the minimum number of
elements that need to change subset,d(V1, V3) ≤ |X12

⋃
X23|

(where |.| denotes the cardinality of a set). Moreover, each
element that belongs toX12

⋃
X23 must change subset in

order to transform eitherV1 into V2 or V2 into V3 or both.
Consequently:

d(V1, V3) ≤ |X12

⋃
X23| ≤ d(V1, V2) + d(V2, V3) (1)

We name this metric Differential Edit Distance (DED) due
to the fact that when video partitioning is modeled as a label
assignment problem, then this distance expresses the minimum
number of labels that need to change in order to transform
the first label sequence into another that achieves an identical
partitioning with the second. It can be seen from this definition
that DED resembles the well-known edit distance [18]. The
edit distance differs from DED in that it additionally requires
the identical partitioning to be expressed with identical labels.
In order to give a definition that is tailored to label assignment,
we first introduce Differential Equivalence:

Definition 1: Two label sequences are differentially equiva-
lent when each pair of elements in the two sequences satisfies
the following conditions:

• If the two elements of the pair share the same label in
the first sequence (i.e., iflabel of xi = label of xj

according to the first label sequence), they will also have a
common label in the second sequence (i.e.,label of xi =
label of xj also according to the second label sequence.
The latter common label may of course be different from
the one that the two elements shared according to the first
label sequence.)

• If they do not share the same label in the first sequence
(i.e. if label of xi 6= label of xj according to the first
label sequence), they will also have different labels in the
second sequence (i.e.,label of xi 6= label of xj also
according to the second label sequence).

For example label strings “a, a, b, b, c, c”, “1,1, 2, 2, 3, 3”,
“2, 2, 1, 1, 3, 3”, “B, B, 1, 1, A,A”, “+, +,−,−, ∗, ∗” are all
differentially equivalent. Differentially equivalent label se-
quences correspond to identical set partitions.

DED is then defined as the minimum number of label
modifications that are required to transform the first label
sequence into a sequence that is differentially equivalent to
the second one.

As discussed above, DED is a metric measure. It is assumed
here that evaluating scene segmentation methods with a metric
measure can be advantageous in comparison to using non-
metric ones. One of the reasons for this is that when a metric
measure is used for guiding an optimization process (as will be

examined in section IV-D), it is intuitively expected to result
in an error signal of lower bandwidth. Thus, estimation of
the measure values at fewer points of the parameter space
is sufficient for finding a good solution to the optimization
problem. While the validity of this assumption is not guar-
anteed, the experimental results of section IV-D indicate that
the proposed metric measure indeed results in most cases in
an error signal of lower bandwidth, in comparison to non-
metric measuresFPR, FCO. Furthermore, if one needed to
process the samples of this error signal in a more elaborate way
than what is done in this work, e.g. if one wanted to perform
some kind of machine learning or dimensionality reduction
involving these samples, the fact that they define a metric
space allows for the use of techniques such as SVM, PCA
or isometrical embedding [19], [20], [21], which are designed
specifically for use in metric spaces.

B. DED Estimation Algorithm

The DED algorithm computes the minimum number of
labels that need to change in order to transform one label
sequence into another. As will be subsequently demonstrated,
this problem can be solved in less than cubic time by modeling
it as a job assignment problem. The final resulting algorithm
is summarized in Algorithm 1.

Let us suppose that the alphabet (i.e. the set of labels) of the
experimentally estimated label sequence and the ground truth
one isAE andAG respectively and that the number of labels
in each alphabet is|AE | and |AG|. Since DED is symmetric,
the experimentally estimated label sequence and the ground
truth one can switch places without changing the final DED
outcome. Consequently, we can assume that|AE | is larger
than |AG| without loss of generality.

Each symbolag
i , i ∈ {1, 2, ..., |AG|} of the ground truth

label sequence is used to label the shots that belong to a
ground truth scene (i.e., labelag

i is the one assigned to the
shots of ground truth scenevg

i ; both labels and scenes are
ordered according to the temporal order of the scenes in the
video, so thatag

1 is the label of the first scene (vg
1 ), ag

2 of
the second one, etc.). The shots assigned toag

i according to
the ground truth label sequence are also assigned to labels
ae

j , a
e
j+1, ..., a

e
j+k in the experimental label sequence. It is

obvious that from allk + 1 labelsae
j , ..., a

e
j+k, at most one

can be considered to correspond to ground truth labelag
i . If

this is ae
j′ , we say that labelae

j′ is a match to labelag
i . Each

symbol in the experimental sequence can match at most with
one symbol of the ground truth sequence and vice versa (the
exact way that this matching is performed is explained in the
sequel).

Following the label matching, all shots that belong to a
scene labeledag

i and whose experimentally assigned label
belongs to set{ae

j , ..., a
e
j+k} − {ae

j′} need to change their
label. In case there is no match for labelag

i , all shots
belonging to this ground truth scene need to change their label.
Consequently, for alli, if ag

i is matched with a label belonging
to the experimental label set, the number of shots that need
to change label is equal or less than the respective number
of shots that would need to change label ifag

i had not been
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Algorithm 1 DED Algorithm Summary
1: If BE andBG are the ordered sets(in ascending order) of

experimentally estimated scene boundaries and ground truth
scene boundaries respectively, ordered setB = {0, BE ∩
BG, N} is formed, whereN is the number of shots in the
video. It should be noted that in setsBE , BG, a scene
boundary is represented by the index of the last video
shot that is part of the first of the two scenes defining the
boundary.

2: The video is decomposed into sub-videosSVb, b =
1, 2, ...|B|−1, where|B| is the cardinality ofB. Each sub-
video starts at shotB(b) + 1 and lasts until the end of shot
B(b + 1). The way that this decomposition is performed is
discussed in section III-C.

3: Initialize: b = 1, NW = 0.
4: For the sub-videoSVb, a co-occurrence matrix,CMb, is

constructed. Each elementCMb(i, j) of the co-occurrence
matrix is equal to the number of shots that belong to both
ground truth scenevg

i and experimental sceneve
j .

5: Cost matrixCCb is computed asCCb(i, j) = ˆCM b −
CMb(i, j), where ˆCM b = max

i,j
(CMb(i, j)).

6: The cost matrix is zero-padded in order to become square.
7: The Hungarian algorithm is used to estimate the element

combination that leads to the minimum cumulative cost
when choosing only one element of each row and each
column of the cost matrixCCb. This combination deter-
mines the optimal matchingWb between ground truth and
experimentally estimated scenes of the sub-videoSVb.

8: The number of shotsNWb
=

∑

(vg
i ,ve

j )∈Wb

CMb(i, j) that do

not need to change scene label is estimated.
9: NW = NW + NWb

.
10: If b = |B| − 1, DED = (N − NW )/N . Elseb = b + 1

and the algorithm continues from step4.

matchedwith any label fromAE . As a result, in the minimum
label modification case, allag

i are matched to exactly one label
from AE .

Accordingly, we construct a co-occurrence matrixCM
of dimensions|AG| × |AE |. ElementCM(i, j) contains the
number of shots that are assigned thei− th label of alphabet
AG in the ground truth label sequence and thej− th label of
alphabetAE in the experimental label sequence. The value of
each element of the co-occurrence matrix is therefore equal
to the number of labels that would not require changing if
the corresponding symbolsag

i , ae
j were considered to match.

Consequently, the minimization of the number of transforma-
tions is equivalent to the selection of|AG| matching pairs of
symbols maximizing the number of labels that would not need
to be changed. This selection is constrained by the fact that
each symbol of the one alphabet can be matched at most to
one symbol of the other.

Thus, DED estimation leads to the dual problem of job
assignment. Let us recall that in the job assignment problem
a number of employees need to be assigned to a number of
jobs in order to minimize the total cost, with the constrain that

each employee can be assigned to no more than one job. The
optimal job assignment can be estimated by the Hungarian
algorithm [22]. This algorithm takes as input a square matrix
with positive elements and estimates with cubic complexity
the minimum sum that can be achieved when from each row
and each column exactly one element is added. In our case
the co-occurrence matrix is transformed into a cost matrix by
replacing all valuesCM(i, j) with ˆCM − CM(i, j), where

ˆCM = max
i,j

(CM(i, j)) (step 5 of Algorithm 1). Then, the

optimal set of symbol matchings is revealed by the element
combination that achieves the minimum score according to
[22], and is used to estimate the actual DED value from the
co-occurrence matrix:

DED =
N −NW

N
(2)

whereN is the totalnumberof video shots andNW is the
number of video shots that are assigned labels which are
matched correctly.

C. DED Computational Optimization

The job assignment problem solved by the Hungarian al-
gorithm has cubic computational complexity, determined by
the minimum number of actual and experimentally estimated
scenes. Since the number of scenes is not expected to surpass
the order of hundreds, the computational cost is usually not
expected to reach extreme levels. However, there may be cases,
e.g. when tuning the parameters of a scene segmentation sys-
tem, that this computational complexity makes the use of DED
troublesome. We have found that the DED computational cost
can be significantly reduced if the block-diagonal structure of
the co-occurrence matrix is exploited.

The co-occurrence matrix structure is induced by “splitting”
shot boundaries, i.e. shot boundaries that both in the exper-
imental and the ground truth segmentation are identified as
scene boundaries (Fig. 1). It can be proven that all the labels
on the left side of a “splitting” boundary do not co-occur with
the labels on the right side of it, due to the scene convexity.
Consequently, the video stream can be decomposed into sub-
videos. This is done by checking the sets of ground truth
and experimentally estimated scene boundaries for common
boundaries, i.e, we find the scene boundaries that belong to
the intersection of these two sets. The latter scene boundaries
are used as splitting points for decomposing the video into sub-
videos: each such boundary marks the end of a sub-video. The
resulting decomposition is illustrated for an example video in
Fig. 1.

Consequently, if the scene labels are sorted by their first
appearance, the co-occurrence matrixCM takes the following
block-diagonal form, whereSVb, b = 1, 2, ...|B|−1 is theb−th
sub-video,|B|−1 is the total number of sub-videos (see steps
1 and2 of Algorithm 1 for a definition of|B|) and each sub-
video boundary is determined by a corresponding “splitting”
boundary.

In this case, the optimal job assignment can be estimated by
decomposing the co-occurrence matrix into the block-matrices
found on its main diagonal, computing the optimal solution for
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Fig. 1. An example of a video stream decomposition into sub-videos, using
the common scene boundaries of ground truth and experimental segmentation.
It should be noted that this figure does not depict a co-occurrence matrix, since
its axis indicate shot indices rather than scenes. The vertical and horizontal
lines signify the shots that define the ground truth and experimentally
estimated scene boundaries respectively. The video is decomposed in points
where a vertical and a horizontal line intersect on the main diagonal. Each
sub-video is drawn hatched.

CM =




SV1 0 0 ... 0
0 SV2 0 ... 0
... ... ... ... ...
0 0 0 ... SV|B|−1




eachSVb, b = {1, 2, ...|B| − 1} matrix, and summing all the
partial solutions.

It should be noted that the technique presented in this
section is used for evaluating the segmentation similarity when
the cost of a shot re-assignment is assumed identical and
equal to1. However, the same analysis stands if the shot re-
assignment cost is determined by specific shot-related criteria,
such as the shot duration in frames or seconds. In this case,
only the co-occurrence matrix calculation (step 5 of Algorithm
1) needs to be modified in order to represent these costs,
counted in e.g. seconds rather than in number of shots.

IV. COMPARISON OFSCENE SEGMENTATION EVALUATION

MEASURES

In the early scene segmentation literature, the evaluation
of segmentation results was either subjective (e.g. in [23] it
was left to the reader) or was based on evaluation criteria for
shot boundary segmentation. The latter boils down to counting
false negatives and false positives (e.g. in [2]) that leads to a
Precision-Recall approach. In some recent publications, (e.g.
in [11]), instead of Precision-Recall, Coverage and Overflow
measures [5] are employed.

However, when the performance is evaluated by two distinct
measures, the inherent problem of combining them needs to
be addressed. In both Precision-Recall and Coverage-Overflow
based approaches, their harmonic mean has been proposed as a
uni-dimensional measure combining the two. In the following
sub-section, the DED is comparatively evaluated against the
harmonic mean of Precision-Recall (FPR) and Coverage-
Overflow (FCO).

A. Other Scene Segmentation Evaluation Measures

1) Precision-Recall: Precision and Recall [4] are two
widely used performance measures (e.g. see [12], [13], [24]).
They require a set of ground truth instances and a set of
experimentally estimated instances. For scene segmentation
purposes, we have chosen to relate the set of ground truth and
experimentally estimated instances with the pairs of shots that
belong to the same scene, since each video scene segmentation
explicitly determines the shot pairs that belong to the same
scene.

It should be noted that in the relevant literature, Precision
and Recall are commonly estimated by counting false positives
and false negatives in the experimentally retrieved set of scene
boundaries, rather than pairs of shots that belong to the same
scene. However, this approach can not correctly gauge scene
segmentation performance, since the number of errors does
not communicate error magnitude [5]. Misidentified scene
boundaries represent errors of different magnitude, which are
expected to play a different role to the system performance.
By defining Precision and Recall with the help of pairs of
shots that belong to the same scene, cases such as the above
can be handled successfully. However, as will be discussed in
the following subsection, even when using such a definition
the harmonic mean of these two measures continues to present
both theoretic and experimental shortcomings in comparison
to the DED.

2) Coverage-Overflow:Vendrig et. al. [5] developed two
novel measures that manage to express over-segmentation
and under-segmentation rates, referred to as Coverage and
Overflow ratio. Coverage (C) measures to what extent frames
belonging to the same scene are correctly grouped together,
while Overflow (OV) evaluates the quantity of frames that,
although not belonging to the same scene, are erroneously
grouped together. More specifically, the Coverage and Over-
flow of a video is the average Coverage and Overflow ratios
of its ground truth scenes. In order to estimate the Coverage
and Overflow of a ground truth scenevg

i , the experimentally
estimated scenesve

j , v
e
j+1, ..., v

e
j+k that overlap with it are

taken into account. Then, if operator||.|| denotes the duration
of a video segment (counted in shots), the Coverage C equals
the maximum overlap divided by the total scene duration:

Ci =
max(||ve

j ∩ vg
i ||, ||ve

j+1 ∩ vg
i ||, ..., ||ve

j+k ∩ vg
i ||)

||vg
i ||

(3)

On the other hand, in order to compute the Overflow
rate, the total overlap ofve

j , v
e
j+1, ..., v

e
j+k with the scenes

neighboring tovg
i (i.e. vg

i+1 and vg
i−1) is estimated and is

divided by the duration of these scenes:

OVi =
||ve

j ∩ vg
i+1||+ ||ve

j ∩ vg
i−1||+ ...||ve

j+k ∩ vg
i−1||

||vg
i+1||+ ||vg

i−1||
(4)

It should benoted that Coverage and Overflow optimal
values are100% and0% respectively. In order to account for
0 being the optimal Overflow value, in the F-score estimation
formula the quantity1−OV is used instead ofOV .

IEEE Transactions on Circuits and Systems for Video Technology, accepted for publication.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6111460



6

B. Evaluation setting

Assessingan evaluation method, such as the one proposed
here, is by no means a straightforward process. In the relevant
literature there are neither detailed qualitative explanations nor
experimental results that would provide supporting evidence
for the superiority of one or the other measure [5]. We have
chosen to address this problem by following an evaluation
setting that involves both qualitative and experimental com-
parison. The former is performed by identifying a number
of qualitative properties that a good measure is intuitively
expected to satisfy and checking whether they are exhibited by
the proposed method (and the other methods in the literature),
while the latter revolves around examining the processing time
that is required for tuning the parameters of a scene segmen-
tation system when one of the aforementioned measures is
used for guiding the parameter selection process. A user study
involving 6 non-expert users was also conducted.

In order to compare the three measures, we implemented
four different scene segmentation techniques, and used them
on three datasets. The scene segmentation techniques include
the original STG technique [23], an STG variation that em-
ploys high-level audio event descriptors instead of low-level
visual descriptors, as described in [11], and two multi-modal
scene segmentation techniques [25], [26]. The video datasets
are a documentary, a movie and a news one. The first is made
of 15 documentaries (513 minutes in total) from the collection
of the Netherlands Institute for Sound & Vision, also used
as part of the TRECVID dataset in 2009. The second one is
made of six movies (643 minutes in total). Finally, the news
dataset consists of3 hour-long news videos. These datasets
include 3459, 6665 and 1763 automatically detected shots,
and 525, 357 and 57 manually identified ground truth scenes,
respectively. It should be noted that in the news and movie
datasets the ground truth scenes usually include many more
shots than in the documentary one.

All experiments reported in the sequel were carried out on a
PC with an Intel Core 2 Quad Q9300 CPU and 4GB of RAM.

C. Analysis of qualitative properties of evaluation measures

In this subsection the comparison of DED,FCO andFPR

according to certain qualitative properties is conducted. It
should be noted that since DED is a dissimilarity measure,
while FCO and FPR are similarity measures,1 − DED is
employed instead in the comparisons.

1) Symmetry in scene boundary misidentification errors:
An example of a misidentification error is demonstrated in Fig.
2. The scene boundary which exists at the end of shotS1 is
misplaced bye shots, being detected either at the end of shot
S1 − e or at the end of shotS1 + e. It is reasonable to expect
that a good evaluation measure does not discriminate between
these two cases, i.e. that it generates identical results without
taking into account whether the estimated scene boundary is
found before or after the actual one. As a matter of fact, there
is no rationale that could support any differentiation of the two
cases.

It can be proven that if a scene boundary that exists at the
end of shotS1 is erroneously detected at the end of shotS1−e,

the harmonic mean of Coverage and Overflow,FCO(v1, v2, e),
is:

FCO =
2

||v1||+ ||v2|| ·

||v2||(||v1||+ ||v2|| − e)(||v1|| − e)
(||v1||2 + 2||v1||||v2|| − e(||v1||+ ||v2||)) (5)

where ||v1|| and ||v2|| is the duration, counted in shots, of
the scene to the left and to the right of the scene boundary,
respectively. Based on the above equation,FCO(v2, v1, e)
gives the harmonic mean if the scene boundary is detected
at the end of shotS1 + e instead. Since this formula is
not symmetric,FCO generates different scores for equivalent
errors, e.g. for the case of||v1|| = 30, ||v2|| = 70 ande = 3,
FCO(v1, v2, e) = 0.7323 andFCO(v2, v1, e) = 0.4388.

Symmetry in scene boundary misidentification errors is also
not satisfied by measureFPR. When a scene boundary that
exists at the end of shotS1 is erroneously detected at the end
of shot S1 − e, the harmonic mean of Precision and Recall,
FPR, is:

FPR(v1, v2, e) =
Q(v1, v2, e)

Q(v1, v2, e) + e(||v1||+ ||v2|| − 1)
(6)

whereQ(v1, v2, e) = ||v1||2 + ||v2||2 + e2 − (2e + 1)||v1|| −
||v2|| + e. In the above equationFPR(v2, v1, e) gives the
harmonic mean if the scene boundary is detected at the end of
shotS1 + e. Equation (6) is not symmetric, because quantity
Q is not symmetric. Consequently, theFPR measure also
generates different distance scores for equivalent errors.

On the other hand, DED by definition does not discriminate
between these types of errors and produces in both cases a
similarity value proportional to the error magnitude:

DED(v1, v2, e) = DED(v2, v1, e) =
e

(||v1||+ ||v2||) (7)

In order toquantify the expected asymmetry, for all videos
belonging to the 3 datasets that we use in this work, pairs
of synthetic segmentations were constructed by introducing
symmetric misplacements of each ground truth scene bound-
ary. Specifically, starting from the ground truth segmentation
and considering one scene boundary at a time, this boundary
was misplaced bye and−e shots, respectively, wheree was
selected randomly from the integer values that are smaller
than the minimum distance of that particular scene boundary
from its two adjacent scene boundaries (so that the introduced
misplacement would not lead to a violation of the scene
convexity restriction). A single value ofe was of course used
for each pair of scene boundary misplacements, to ensure their
symmetry. Then,DED, FPR andFCO values were estimated
(always in the range0 to 100%) by comparing each synthetic
segmentation with the ground truth one, and subsequently the
DED, FPR and FCO differences were calculated for each
pair of synthetic segmentations that present symmetric errors.
The mean and standard deviation of these differences, post-
processed so as to simulate the case where25% of the true
scene boundaries of each video are misplaced in this way, are
reported separately for each video dataset in Table I.
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Dataset DED Diff. FPR Diff. FCO Diff.
(µ± σ) (µ± σ) (µ± σ)

Documentary 0 ± 0 0.83%± 1.62% 6.81%± 7.92%
Movie 0 ± 0 0.61%± 1.17% 5.17%± 5.4%
News 0 ± 0 0.34%± 0.47% 2.78%± 2.21%

TABLE I
EXPERIMENTALLY ESTIMATED MEASURE DIFFERENCES FOR

SEGMENTATION PAIRS THAT PRESENT SYMMETRIC SCENE BOUNDARY

MISIDENTIFICATION ERRORS.

S1 S2
S1 + eS1 -e

30 100

27 100

FCO = 0.7323

33 100

FCO = 0.4388

Ground Truth

Method 1

Method 2

FPR = 0.949

FPR = 0.9468

DED = 0.97

DED = 0.97

Shot Index

Shot Index

Shot Index

Shot Index

Fig. 2. An example of a misidentification error evaluation withFCO , FPR

and DED. Vertical bars denote scene boundaries; the dotted vertical bars
represent erroneously detected ones. QuantitiesS1 and S2 denote the shot
indices of the last shot of the first and second scene, respectively. While both
scene segmentation methods1 and 2 misidentify the scene boundary by3
shots, only DED generates symmetric results.

2) Symmetry of errors located at the beginning and the end
of a scene:This property is similar to the one discussed above.
A scene segmentation technique should not be evaluated
differently if it “crops” the beginning or the end of a specific
scene. An example of this is shown in Fig. 3.

In order to quantify the expected asymmetry magnitude
between errors taking place at the beginning and the end of
a scene, an experimental strategy analogous to the previous
subsection was followed, where symmetric errors were simi-
larly introduced to each pair of adjacent scene boundaries. The
mean and standard deviation of the resultingDED, FPR and
FCO differences, as in the previous experiment, are reported
separately for each video dataset in Table II.

Dataset DED Diff. FPR Diff. FCO Diff.
(µ± σ) (µ± σ) (µ± σ)

Documentary 0 ± 0 7.17%± 8.39% 18.8%± 14.36%
Movie 0 ± 0 9.2%± 12.87% 18.97%± 16.33%
News 0 ± 0 2.94%± 3.59% 9.92%± 11.25%

TABLE II
EXPERIMENTALLY ESTIMATED MEASURE DIFFERENCES FOR

SEGMENTATION PAIRS THAT PRESENT SYMMETRIC ERRORS AT THE

BEGINNING AND AT THE END OF A SCENE.

As demonstrated by the results of Table II and also the
example of Fig. 3, only DED satisfies this property. Employing
FCO or FPR leads to different (non-symmetric) performance
estimates, induced by the different lengths of the adjacent
scenes.

S1 S3S1+e S2

Ground Truth

100 250

Method 1

125 300250

300

FCO = 0.7333

S2-e

Method 2

100 300225

FCO = 0.8575

FPR = 0.8906

FPR = 0.8298

DED = 0.9167

DED = 0.9167

Shot Index

Shot Index

Shot Index

Shot Index

Fig. 3. An example of a misidentification error evaluation withFCO , FPR

and DED. Vertical bars denote scene boundaries; the dotted vertical bars
represent erroneously detected ones. QuantitiesS1, S2 and S3 denote the
shot indices of the last shot of the first, second and third scene, respectively.
Method 1 misplaced the beginning of the second scene by25 shots, while
method2 misplaced the same scene’s end by25 shots. The two methods are
evaluated differently byFCO andFPR.

3) Satisfaction of metric property:In section III-A it was
proven that the DED measure is a metric. On the contrary,
FCO is not a metric, since it is not symmetric. For example,
if a video stream consists of100 shots and one scene and the
experimental segmentation identifies two equally-long scenes,
then FCO = 0.667. In the opposite case, i.e. when a video
stream includes two scenes of50 shots each and a scene seg-
mentation technique retrieves only one scene, thenFCO = 0.
So, generally

FCO(V1, V2) 6= FCO(V2, V1) (8)

where V1 and V2 are two segmentations of the same video
stream.

On the other hand, measureFPR satisfies the symmetry
property. This is proven by considering the definition of Recall
and Precision as the ratio of the intersection of the sets of
ground truth and experimental shot pairs belonging to the same
scene over the ground truthVG and the experimental setVE ,
respectively:

R(VG, VE) =
|VG ∩ VE |
|VG| , P (VG, VE) =

|VG ∩ VE |
|VE | (9)

FPR is definedas the harmonic mean of RecallR and
PrecisionP :

FPR(VG, VE) =
2

1
R + 1

P

=
2|VE ∩ VG|

|VE ∪ VG|+ |VE ∩ VG| (10)

FPR(VE , VG) estimatesthe similarity of the two segmenta-
tions. The corresponding distanceDPR(VE , VG) is given by
the following equation:

DPR = 1− FPR =
|VE ∪ VG| − |VE ∩ VG|
|VE ∪ VG|+ |VE ∩ VG| (11)
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It is straightforwardly understood thatDPR(VG, VE) =
DPR(VE , VG) and as a result the measure exhibits the sym-
metry property. However, the distanceDPR does not generally
satisfy the triangular inequality. For example, let us suppose
that a video stream consists of four shots, and three different
segmentationsV1, V2 andV3 have been defined for it:

V1 = {1, 2}, {3}, {4}
V2 = {1, 2}, {3, 4}

V3 = {1}, {2}, {3, 4}
In the above equations, the brackets denote scene bound-
aries. For segmentationsV1 and V3, the intersection of shot
pairs that belong to the same scene is void. Consequently
DPR(V1, V3) = 1. On the other hand|V1∩V2| = |V2∩V3| = 1
while |V1 ∪ V2| = |V2 ∪ V3| = 2. As a resultDPR(V1, V2) =
DPR(V2, V3) = 1/3 and DPR(V1, V2) + DPR(V2, V3) <
DPR(V1, V3). So, the implicit solution spaces employed when
usingFPR, as well asFCO, are non-metric spaces.

D. Further experimental comparison of performance mea-
sures

1) Computational complexity:It can be deduced from the
FPR definition that the performance evaluation of a video
segmentation involvingN shots requiresO(N2) operations.
Note that these operations can be no more complex than
a summation and a logical AND. On the other hand, in
order to compute eitherFCO or DED, the construction of
the co-occurrence matrix is required. This matrix is built by
sequentially browsing all shots of the video and thus requiring
O(N) operations. The co-occurrence matrix has a size of
|AG| × |AE |, where|AG| and |AE | is the number of scenes
in the ground truth and the experimental segmentation, re-
spectively. After its estimation,FCO computation involves all
co-occurrence matrix elements, but only linear combinations
of them. So, the overall computational complexity ofFCO is
O(N) + O(|AG| · |AE |).

Finally, DED also employs the co-occurrence matrix, which
is decomposed into sub-videos using splitting boundaries.
Consequently, the overall complexity is ofO(N)+O(DED)
where O(DED) is the complexity related to the total sub-
video DED estimation. The theoretical determination of this
computational complexity is not a trivial task, since it depends
on the number of splitting boundaries, as well as the number
of ground truth and experimentally estimated scenes. More
specifically, if the|AG| ground truth boundaries are experi-
mentally estimated with a Recall rateR and a Precision rate
P , then the video will be divided intoR · |AG| + 1 sub-
videos. These sub-videos will include, in total,(1−R) · |AG|
ground truth scene boundaries and(1−P ) · |AE | experimental
scene boundaries that are not sub-video boundaries as well.
Typical values of Recall and Precision, as those given in [24],
are significantly over50%. If this baseline performance is
assumed and|AE | and |AG| are assumed both equal to40,
then each sub-video would contain on average less than1
ground truth and less than1 experimentally estimated scene
boundaries. So, in practical situations the DED algorithm

computational complexity is expected not to be significantly
higher thanO(N). But, it should be mentioned that the worse
case complexity is higher than the one related toFCO, since
the job assignment complexity is cubic.

An experimental evaluation of the computational complexity
of DED, FPR and FCO was carried out on the datasets
of section IV-B, and the results (expressed as the ratio of
FPR or FCO computation time over DEDs computation time)
are given in Tables III, IV and V. These tables demonstrate
the higher efficiency of the DED measure. The observed
differences between the three datasets are explained by the
fact that in the news and the movie datasets, the video streams
comprise more shots, but are decomposed into fewer and
longer ground truth scenes. Consequently, theFPR computa-
tional cost, which is fully determined by the number of shots,
increases, while the computational cost associated with the
browsing of the co-occurrence matrix remains unaffected.

Method [23] [11] [25] [26]
FPR / DED 1.1959 1.1229 1.2156 1.0506
FCO / DED 9.6109 9.1970 6.9088 7.577

TABLE III
COMPUTATIONAL COST OFFPR AND FCO OVER DED IN THE

DOCUMENTARY DATASET.

Method [23] [11] [25] [26]
FPR / DED 5.133 3.1586 2.6934 2.8256
FCO / DED 4.0909 2.5779 3.2347 3.3698

TABLE IV
COMPUTATIONAL COST OFFPR AND FCO OVER DED IN THE MOVIE

DATASET.

Method [23] [11] [25] [26]
FPR / DED 8.6751 8.34 8.6081 8.9471
FCO / DED 2.9818 2.8892 2.557 2.6029

TABLE V
COMPUTATIONAL COST OFFPR AND FCO OVER DED IN THE NEWS

DATASET.

The efficiency of DED is to a great extent due to the
decomposition of the video to sub-videos (according to the
method of section III-C). This can be demonstrated if DED’s
computation time is contrasted with the computation time of a
DED variant that does not decompose the video to sub-videos.
The corresponding results are shown in Table VI. As will be
discussed in the next subsection, the computational complexity
that is associated with the evaluation of the measure plays a
critical role in the overall computation time that the parameter
tuning of a scene segmentation technique would require.

2) Parameter sampling density:The parameters of a scene
segmentation system, when no specific guidelines are avail-
able, are typically determined by search in the parameter
space; this involves a uniform sampling of the parameter
space [11]. This parameter tuning is conducted by varying
a parameter value that generates an error signal, where the
domain of the error signal is the parameter value space and

IEEE Transactions on Circuits and Systems for Video Technology, accepted for publication.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6111460



9

Dataset Documentary Movie News
Non-optimized computation

time / Optimized 2.4964 11.9849 34.439
computation time

TABLE VI
COMPUTATION TIME WITHOUT DECOMPOSING THE VIDEO TO SUB-VIDEOS

DIVIDED BY COMPUTATION TIME WHEN DECOMPOSING THE VIDEO TO

SUB-VIDEOS ACCORDING TO SECTIONIII-C.

the values of the error signal are the distances of the resulting
segmentations from the ground truth one. The latter distance
is calculated using a segmentation evaluation measure. The
computation time required for this process is affected not only
by the computational complexity of the evaluation measures
but also by the required parameter sampling density.

The minimum sampling density is determined by the
Nyquist-Shannon sampling theorem as being proportional to
the spectrum bandwidth of the error signal (i.e., assuming that
it is a bandlimited signal, to its highest frequency). It should
be noted that when a signal is multi-dimensional, i.e. more
than one parameters are tuned at the same time, then the
Nyquist-Shannon sampling theorem is applied separately in
each different dimension. In order to determine the highest
frequency, a thresholding is required, since in theory the
spectrum of any signal limited in time is not limited in
frequency. Instead of employing a strict, arbitrarily chosen
threshold, we selected20 different thresholds, varying from
0.1% of the total spectrum power to2%, and averaged the
results.

Furthermore, when conducting the experimental analysis, it
is not the analog error signal that is taken into account but
inevitably a digital approximation of it, which is generated
using a manually chosen sampling rate. In order to prevent
error signal aliasing, the sampling rate used to generate it
should exceed the Nyquist-Shannon rate. This can not be
theoretically guaranteed, since it would require a priori knowl-
edge of the signal spectrum under examination. However, this
problem may be circumvented by relying on the fact that
when sampling exceeds the Nyquist-Shannon rate then the
bandlimited spectrum is identical and independent from the
sampling frequency. So, the adopted strategy was to double
the sampling points until the spectra of all three approximate
error signalsePR, eCO, eDED stabilized. This strategy is
summarized in Algorithm 2. It should be noted that the number
of samples doubles (Step 5) before the termination control
(Step 6) in order to provide extra accuracy to the spectra
estimation.

The experimental setup was identical to the one employed
for computational complexity, i.e. it included the four scene
segmentation techniques and the three different datasets. The
results (comparing the highest frequency of the error signal
spectrum when using DED,FPR andFCO) are shown in Ta-
bles VII, VIII and IX. These tables show that theFPR/DED
or FCO/DED bandwidth ratio is not so much dependent on
the dataset, but rather on the employed scene segmentation
technique. However, it can be seen that in all experiments,
only on two occasions the sampling rate of the DED error
signal was required to be greater than that ofFCO, while

Algorithm 2 Sampling RateEstimationSummary
1: The error signalsePR, eCO, eDED are estimated for the3

different distance measures and for parameter values from0
to a maximum valueT . The sampling rate is fixed toT/R0.
QuantityR0, which determines the initial sampling rate, is
a constant.

2: Initialization: S = 1, fPR = FFT (ePR), fCO =
FFT (eCO), fDED = FFT (eDED).

3: λ = T/(2S ·R0)
4: The error signals are recomputed by estimating their values

for the additional parameter values(T · i)/(2S−1 ·R0) + λ,
i = 0, 1, 2, ..., 2S−1 ·R0 − 1.

5: S = S + 1.
6: The FFTs of the error signals are re-estimated and com-

pared to the correspondingf variables. If all of them are
similar to the correspondingfs, the algorithm terminates
and the sampling is performed with rateT/(2S ·R0). Else,
the estimated FFTs become the newfs and the algorithm
continues from Step 3.

DED outperformsFPR for all examined methods and datasets.
Consequently, it can be concluded that by employing DED, the
sampling required to tune the system parameters is more sparse
than if FPR or FCO were employed. The total computational
gain is estimated by multiplying the corresponding gain values
from Tables III to IX. It can be seen that through the use of
DED the scene segmentation tuning becomes much faster, with
a speed up factor that reaches up to10− 15 times.

Method [23] [11] [25] [26]
FPR / DED 1.3511 1.1244 1.3173 1.5475
FCO / DED 1.023 1.6635 1.7217 2.0594

TABLE VII
BANDWIDTH OF FPR AND FCO OVER DED IN THE DOCUMENTARY

DATASET.

Method [23] [11] [25] [26]
FPR / DED 1.2605 1.0671 1.089 1.431
FCO / DED 0.923 1.7809 1.7685 1.7534

TABLE VIII
BANDWIDTH OF FPR AND FCO OVER DED IN THE MOVIE DATASET.

Method [23] [11] [25] [26]
FPR/DED 1.0582 1.0653 1.0608 1.109
FCO /DED 0.8438 1.1794 1.2316 1.3993

TABLE IX
BANDWIDTH OF FPR AND FCO OVER DED IN THE NEWS DATASET.

E. User Study

In addition to the above experiments, we conducted a user
study involving 6 non-expert users in order to further assess
how well the results of the proposed DED measure match the
expectations of human evaluators. For the needs of this study
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we randomly producedtriplets of synthetic segmentations for
a subset of the videos of our datasets, and then selected 20
of those triplets for which the three considered evaluation
measures disagree in the ranking of each triplet’s segmen-
tations (e.g. segmentation triplets for whichDED suggests
that the first segmentation is the most similar to the manually-
created ground-truth one, whileFPR and FCO suggest that
the second and the third one are most similar to the ground
truth, respectively). The 20 triples were shown one by one
to a set of 6 non-expert users, who independently viewed the
(segmented) videos and ranked each of them, without having
any knowledge of the correspondingDED, FPR and FCO

values. The agreement of the user rankings with the rankings
generated by each measure was evaluated using normalized
inversion count [27] and the results are shown in Table X.
It can be seen that DED has significantly better (i.e., lower)
scores thanFPR andFCO.

Segmentation EvaluationMeasure DED FPR FCO

NormalizedInversionCount 0.16 0.37 0.53

TABLE X
RESULTS OF THE CONDUCTED USER STUDY. NORMALIZED INVERSION

COUNT EXPRESSES HOW WELL THE OUTPUT OF EACH EVALUATION

MEASURE AGREES WITH THE RESULTS OF HUMAN EVALUATORS(LOWER

SCORES INDICATE BETTER AGREEMENT).

Finally, a few qualitative examples of scene segmentation
evaluation are given in Fig. 4, illustrating the values of the
FPR, FCO and DED measures in realistic scene segmentation
cases. These examples further emphasize the superiority of
the DED metric in producing evaluation results which are in
better agreement with the human perception of segmentation
goodness, compared toFPR andFCO.

V. CONCLUSION

In this work a novel scene segmentation evaluation measure
was presented. Furthermore, an implementation that computes
this measure with less than cubic complexity was introduced.
For testing the metric’s ability to model efficiently the human
performance rating, a number of required measure properties
were introduced. The proposed measure and two baseline per-
formance measures were comparatively evaluated with respect
to their compliance with these properties. Furthermore, an
experimental setup was used to examine the computational
cost that is associated with the parameter tuning of a scene
segmentation system, when this process is guided by one
of these evaluation measures. These results, together with
the results of a small user study that was also conducted,
demonstrate that the presented measure outperforms those
currently employed in the literature and provides an effi-
cient approach to comparing automatic scene segmentation
techniques and to guiding the optimization of their param-
eters. The software implementation of DED is available at
http://mklab.iti.gr/project/ded.
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