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Abstract—In this paper, an approach to semantic video analysis
that is based on the statistical processing and representation
of the motion signal is presented. Overall, the examined video
is temporally segmented into shots and for every resulting
shot appropriate motion features are extracted; using these,
hidden Markov models (HMMs) are employed for performing
the association of each shot with one of the semantic classes
that are of interest. The novel contributions of this paper lie in
the areas of motion information processing and representation.
Regarding the motion information processing, the kurtosis of
the optical flow motion estimates is calculated for identifying
which motion values originate from true motion rather than
measurement noise. Additionally, unlike the majority of the
approaches of the relevant literature that are mainly limited
to global- or camera-level motion representations, a new repre-
sentation for providing local-level motion information to HMMs
is also presented. It focuses only on the pixels where true
motion is observed. For the selected pixels, energy distribution-
related information, as well as a complementary set of features
that highlight particular spatial attributes of the motion signal,
are extracted. Experimental results, as well as comparative
evaluation, from the application of the proposed approach in the
domains of Tennis, News and Volleyball broadcast video, and
Human Action video demonstrate the efficiency of the proposed
method.

Index Terms—Hidden Markov models (HMMs), kurtosis, mo-
tion representation, semantic video analysis.

I. Introduction

THE RAPID progress in hardware technology has led
to an enormous increase of the total amount of video

content generated every day and of the available means for
distributing it. Additionally, large-scale video archives are now
accessible by the average user more than ever, while in many
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cases access to video archives is part of users’ every day
activities at either personal or professional level. To this end,
new needs and issues arise regarding the efficient and skillful
manipulation of video content. This has triggered intense
research efforts toward the development of sophisticated and
user-friendly systems for the indexing, search and retrieval of
video sequences [1].

More recently, the fundamental principle of simulating the
way that humans perceive and process the visual information
and incorporating such models into video manipulation tech-
niques has been widely adopted. These approaches shift video
analysis methods toward a semantic level, thus attempting
to bridge the so-called semantic gap [2]. A wide variety of
semantic video analysis approaches have been proposed. In
[3], an ontology framework, making use of explicitly defined
axioms, facts, and rules, is presented for detecting events in
video sequences. It is based on the idea that complex events are
constructed from simpler ones by operations such as sequenc-
ing, iteration, and alternation. A large-scale concept ontology
for multimedia (LSCOM) is designed in [4] to simultaneously
cover a large semantic space and increase observability in
diverse broadcast News video data sets. In [5], support vector
machines (SVMs), which perform on top of specific feature
detectors, are employed for detecting semantically meaningful
events in broadcast video of multiple field sports. Additionally,
in [6], Bayesian networks (BNs) are employed for detecting
concepts of a lexicon using cues derived from audio, visual
and text features. Among the various machine learning (ML)
techniques, it is hidden Markov models (HMMs) [7] that have
been used most extensively for video analysis tasks, due to
their suitability for modeling pattern recognition problems
that exhibit an inherent temporality. In [8], a HMM-based
system is developed for extracting highlights from baseball
game videos. An approach that supports the detection of events
such as “foul” and “shot at the basket” in basketball videos is
presented in [9].

A prerequisite for the application of any semantic video
analysis technique is the compact, appropriate for the analysis
task at hand and the adopted analysis methodology, repre-
sentation of the content low-level properties, such as color,
motion, and so on. In video analysis, the focus is on motion
representation, since the motion signal bears a significant
portion of the semantic information that is present in a
video sequence. To this end, a series of approaches for the
extraction and representation of discriminative motion-based
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features from the video stream have been proposed [10].
Motion activity features of video segments are utilized for
realizing semantic characterization of video content in [11],
[12]. Camera-level motion representations are proposed in [13]
and [14], for performing semantic video annotation. Leonardi
et al. utilize motion indices like camera operations and the
presence of shot cuts for realizing semantic video indexing
[15]. Additionally, the notion of “motion texture” is introduced
in [16] for modeling the motion patterns of a video clip, while
Adams et al. use the attributes of motion and shot length to
define and compute the so called “tempo” measure in order
to detect particular semantic events in movie videos [17].
Moving to a finer level of granularity, Dagtas et al. [18] use
a semi-manual object tracking algorithm for estimating the
trajectory of the foreground moving objects and subsequently
utilize this information for detecting the semantic events of
interest. Roach et al. [19] utilize a quantitative measure of
the rate of change in the motion of the foreground objects
along with a simple parametric camera motion model for
identifying the genre of videos. Moreover, an entropy-based
criterion is proposed in [20] to characterize the pattern and
intensity of object motion in a video sequence as a function of
time.

In addition to the motion representations that have been
proposed for semantic video analysis in the general case,
a series of well-performing domain-specific approaches, i.e.,
approaches that exploit specific facts and characteristics of the
motion signal that are only present in the examined domain,
have also been proposed for tasks like sports [21]–[23] and
News [24], [25] video analysis, and Human Action recogni-
tion [26]–[28]. Other elaborate approaches for motion-based
recognition that employ complex statistical models include the
extraction of temporal textures [29], Gibbs [30] and Gaussian
[31] modeling, and more general spatio-temporal patterns [32],
[33].

Regarding more specific motion representations for use
together with HMMs, a plurality of approaches have also been
proposed. In [34], the dominant motion over the entire image
field of view is used for detecting semantic events in rugby
broadcast videos. In [35], the motion energy redistribution is
calculated for every frame and subsequently a set of motion
filters is employed for estimating the frame dominant motion,
in an attempt to detect semantic events in various sports
videos. Huang et al. consider the first four dominant motion
vectors and their appearance frequencies, along with the mean
and the standard deviation of motion vectors in the frame,
for performing scene classification [36]. Additionally, global-
level cinematic features of motion, namely the average motion
magnitude, the motion entropy, the dominant motion direction,
and camera pan/tilt/zoom factors are used for identifying the
genre of sports video in [37]. In [38], the median of the
frames’ mean motion magnitude values is estimated for every
GOP, for realizing video genre classification. Moreover, Gibert
et al. estimate the principal motion direction of every frame
[39], while Xie et al. calculate the motion intensity at frame
level [40], for realizing sport video classification and structural
analysis of soccer video, respectively. Although significant
research efforts have been devoted for developing generic

systems for HMM-based semantic video analysis, the majority
of the proposed motion representations is mainly limited to
global- or camera-level motion processing approaches and the
potential of analyzing the motion signal at local-level has not
been sufficiently investigated.

In this paper, an approach to semantic video analysis, which
is based on the statistical processing and representation of the
motion signal, is presented. Under the proposed approach, the
examined video is segmented into shots and motion features
are extracted for each estimated shot. These features serve
as input to HMMs, which perform the association of each
shot with one of the semantic classes that are of interest in a
possible application case. The novel contributions of this paper
lie in the areas of motion information processing and represen-
tation. In particular, higher order statistics, namely the kurtosis,
of the optical flow motion estimates are calculated for identify-
ing which motion values originate from true motion rather than
measurement noise, resulting in the robust estimation of activ-
ity areas over a series of frames. This is motivated by the fact
that higher order statistics (including the kurtosis) become zero
for Gaussian (or nearly Gaussian) data [41], and can therefore
effectively detect outlying signals. In the literature, the kurtosis
has been used extensively to separate signals from noise, in
blind source separation, equalization, face recognition [42]–
[44]. In this paper, the kurtosis of the inter-frame illumination
changes is shown to produce a more robust estimate of pixel
activity than directly considering the optical flow estimates
for extracting activity areas via e.g. thresholding. Additionally,
unlike the majority of the approaches of the relevant literature
that are mainly limited to global- or camera-level motion
representations, a new representation for providing local-level
motion information to HMMs is presented. It focuses only on
the pixels that are characterized as active in the corresponding
activity area mask, i.e., the pixels where true motion is
observed. For the selected pixels, energy distribution-related
information, as well as a complementary set of features that
highlight particular spatial attributes of the motion signal, are
extracted. As will be seen by the experimental evaluation of
the proposed approach, the combination of energy distribution-
related information and spatial attributes of the motion sig-
nal efficiently captures the semantics present in the visual
medium.

The paper is organized as follows: Section II discusses the
statistical analysis of the motion signal. The proposed motion
feature representation is detailed in Section III. Section IV
outlines how HMMs are employed for performing motion-
based classification. Experimental results from the application
of the proposed approach in various domains, as well as
comparative evaluation with other approaches of the literature,
are presented in Section V, and conclusions are drawn in
Section VI.

II. Statistical Motion Analysis

Most of the previously proposed elaborate approaches
for statistical processing of the motion signal (e.g., [29],
[31], [45]) are limited to constrained application environ-
ments. In this section, a statistical analysis approach is pre-
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sented for analyzing the motion in various kinds of video.
In particular, the proposed method aims to extract reli-
able information about the activity that is present within
a video scene, by estimating the kurtosis of each pixel’s
activity in order to localize the pixels where true motion is
observed.

The motivation for the use of the kurtosis to localize active
pixels is the fact that it has been shown to be a robust detector
of outliers in Gaussian noise [46], as it is asymptotically
insensitive to it. This property has led to its use in numerous
applications. In blind source separation, the kurtosis is used to
suppress the noise present in each separate source component
[44], as its value is maximized when the data is the actual
signal (and not interference noise). The kurtosis has been
shown to be a reliable measure of outliers in non-Gaussian
noise as well [47], [48], so its use is extended to applications
where the noise is not strictly Gaussian. For example, it has
been used for face recognition, where noisy components are
separated from non-noisy ones by maximizing the kurtosis of
the latter [43].

In this paper, the kurtosis is used to localize active and
static pixels in a video sequence, serving as a measure of each
pixel’s activity. The kurtosis is shown to have low values when
a pixel is static, and higher values in active pixels. Under the
proposed approach, the pixel activity is measured using the
motion energy estimates described in Section II-A, as they
provide meaningful information about the amount of activity
taking place [35], [49]. The motion energy for static pixels
originates from measurement noise, which is usually modeled
by a Gaussian distribution. The motion energy of active pixels
will be significantly higher, and an outlier to the randomly
distributed measurement noise. Thus, the kurtosis of the active
pixels’ motion energy is expected to be higher than that of the
static pixels.

A. Motion Analysis Pre-processing

The examined video sequence is initially segmented into
shots, which constitute the elementary image sequences of
video. For shot detection, the algorithm of [50] is used, mainly
due to its low computational complexity. This results in a
set of shots, denoted by S = {si, i = 1, ..., I}; under the
proposed approach each shot will be associated with one of the
supported semantic classes, denoted by E = {ej, j = 1, ..., J},
on the basis of its semantic contents. After shot segmentation,
each shot si is further divided into a set of sequential non-
overlapping time intervals of equal duration, denoted by Wi =
{wir, r = 1, ..., Ri}, starting from the first frame. The duration
of each interval, i.e., the length of the selected time window,
is set equal to TW . For every time interval wir, an individual
observation vector will be estimated for representing its motion
information, to support shot-class association.

In parallel to temporal video segmentation, a dense motion
field is estimated for every frame. The optical flow estima-
tion algorithm of [51] was used for computing this dense
motion field, since satisfactory results can be obtained by its
application in a variety of motion estimation cases. From the
computed dense motion field a corresponding motion energy

field is calculated, according to the following equation:

M(x, y, t) = ‖−→V (x, y, t)‖ (1)

where −→
V (x, y, t) is the estimated dense motion field, ‖.‖

denotes the norm of a vector, and M(x, y, t) is the resulting
motion energy field. Variables x, y get values in the ranges
[1, Vdim] and [1, Hdim] respectively, where Vdim and Hdim are
the motion field vertical and horizontal dimensions (same
as the corresponding frame dimensions in pixels), whereas
variable t denotes the temporal order of the frames. The
choice of transforming the motion vector field to an energy
field is based on the observation that the latter often provides
more appropriate information for motion-based recognition
problems [35], [49].

B. Kurtosis Field Estimation and Activity Area Extraction

The motion energy estimates, M(x, y, t), at each pixel
represent changes in illumination that originate either from
measurement noise, or from pixel displacement (true motion)
and measurement noise. This can be expressed as the following
hypotheses:

H0 : M0(x, y, t) = n(x, y, t)

H1 : M1(x, y, t) = o(x, y, t) + n(x, y, t) (2)

where o(x, y, t) represents the noiseless motion energy field
and n(x, y, t) additive noise. There is no prior knowledge about
the statistical distribution of measurement noise, however the
standard assumption in the literature is that it is independent
from pixel to pixel, and follows a Gaussian distribution [52].
This leads to the detection of which velocity estimates corre-
spond to a pixel that is actually moving by simply examining
the non-Gaussianity of the data [53]. The classical measure of
a random variable’s non-Gaussianity is its kurtosis, defined by

kurtosis(ψ) = E[ψ4] − 3(E[ψ2])2 (3)

where ψ is a random variable. The kurtosis value for Gaussian
data is zero.

Since the measurement noise is approximated by a Gaussian
distribution, the kurtosis of a static pixel’s illumination
changes (corresponding to H0 in (2)) over a series of frames
will also be zero. Consequently, the pixels that undergo true
motion can be located by estimating their kurtosis. For this
purpose, the kurtosis of every pixel’s motion energy estimates
M(x, y, t) is calculated over a time interval wir, according to
the following equation:

Kir(x, y) = E[M(x, y, t)4] − 3(E[M(x, y, t)2])2 (4)

where Kir(x, y) is the estimated kurtosis field and the expec-
tations E[·] are approximated by the corresponding arithmetic
means. When a pixel’s illumination changes follow a precisely
Gaussian distribution, Kir(x, y) will be equal to zero. It should
be noted that, even when the unknown noise in the motion esti-
mates deviates from the Gaussian model, the kurtosis remains
appropriate for finding the active pixels. This is because their
values are outliers, compared to the measurement noise values,
and in [48] it is proven that the kurtosis is a robust, locally
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Fig. 1. Example of kurtosis field and activity area mask computation for a News broadcast video sequence.

Fig. 2. Kurtosis estimates for the active (a) and static (b) pixels of the
example of Fig. 1.

optimum test statistic for the detection of outliers, even in the
presence of non-Gaussian noise.

Following the estimation of the kurtosis field, the distinction
between ‘active’ and ‘static’ pixels can be made by simple
thresholding. Since there is no generally applicable way to
determine the value of this threshold, the following well-
performing value was selected after experimentation:

TH = |Kir(x, y)| + 4 · σ|Kir(x,y)| (5)

where the arithmetic mean |Kir(x, y)| and standard deviation
σ|Kir(x,y)| are calculated over all the kurtosis fields Kir(x, y) that
have been computed for all shots si of a set of annotated video
content that has been assembled for training purposes. Using
this value, for every estimated kurtosis field a corresponding
activity area mask is computed, according to the following
equation:

Air(x, y) =

{
1, if |Kir(x, y)| ≥ TH

0, otherwise
(6)

where Air(x, y) is the estimated binary activity area mask.
In order to demonstrate how the kurtosis estimates provide

reliable localization of active pixels, an indicative example

showing the estimated kurtosis field and the corresponding
binary activity area mask for a News domain video, and specif-
ically a sequence showing an anchor presenting the News,
is given in Fig. 1. In order to further examine the kurtosis
values, the area of the active pixels for the same sequence
is also manually determined. Using the manually obtained
ground truth, the motion energy estimates of the ‘active’
pixels are separated from the corresponding estimates of the
‘static’ ones. For this particular video sequence, consisting of
288 × 352 pixel frames (total of 101 376 pixels per frame),
there are 13 564 active and 87 812 static pixels. In Fig. 2,
two plots are illustrated; a histogram of the kurtosis of the
manually determined active pixels’ motion energy values, and
the corresponding one of the static pixels’ energy estimates.
It is evident from this figure that the kurtosis of the active
pixels obtains much higher values than that of the static
pixels. Specifically, its mean value over the entire sequence
is 0.0281 for the active pixels, while for the static ones the
respective value is 5.9391 × 10−7. Hence, for this particular
video sequence, the static pixels’ mean kurtosis is equal to
0.0156% of the mean kurtosis of all frame pixels. Thus, it is
shown from this example that the kurtosis fields can provide
a reliable indicator for localizing the active pixels in a video
sequence.

In Fig. 3, additional examples of kurtosis field estimation
and activity area mask computation for video sequences from
various domains are given. In particular, a segment of a
broadcasted Tennis game is depicted (first row), showing a
player performing a service hit. As can be seen, the only
motion that is present in the sequence is the movement of
the player performing the hit, which results in a kurtosis
field with high values over the pixels that belong to the
player’s silhouette. Additionally, a scene of a person running
is illustrated (second row), where the active pixels correspond
to the displacement of the silhouette of the subject during
the scene. In the above examples, the proposed approach
has succeeded in ignoring noisy motion estimates originating
mainly from random illumination changes.

C. Effect of Noise on Kurtosis-Based Activity Area

In this section, the effect of noise on the computation of
the activity area mask is examined. Specifically, the kurtosis
of noisy motion energy estimates, i.e., when M(x, y, t) =
o(x, y, t) + n(x, y, t) ((2)), where o(x, y, t) corresponds to the
noiseless motion energy field and n(x, y, t) to the additive
noise, is calculated. It is assumed without loss of general-
ity that n(x, y, t) is zero-mean Gaussian and, for notational
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Fig. 3. Examples of kurtosis field and activity area mask computation for additional video sequences.

simplicity, the indices (x, y, t) in the equations that follow are
not included; hence, M = o + n. The higher order moments of
these variables are denoted by mok = E[ok], mMk = E[Mk].
Then

(o + n)4 = (o2 + n2 + 2on)2

= o4 + n4 + 6o2n2 + 4o3n + 4on3 (7)

and its expected value is

E[(o + n)4] =E[o4 + n4 + 6o2n2 + 4o3n + 4on3]

=mo4 +mn4 + 6mo2mn2 + 4mo3mn1 + 4mo1mn3

=mo4 +mn4 + 6mo2mn2 (8)

where it has been considered that mn1 = 0, and mo1 = 0, as
the mean can be subtracted from the random variable o. Also

E[(o + n)2] = E[o2 + n2 + 2on] = mo2 +mn2 ⇒ (9)

E2[(o + n)2] = (mo2 +mn2)2 = m2
o2 +m2

n2 + 2mo2mn2. (10)

The kurtosis is defined as Ko+n = E[(o + n)4] − 3E2[(o + n)2],
and (8), (10) lead to

Ko+n = mo4 +mn4 + 6mo2mn2

− 3m2
o2 − 3m2

n2 − 6mo2mn2

= mo4 +mn4 − 3m2
o2 − 3m2

n2 = Ko +Kn (11)

where the general definition of the kurtosis is used in the last
equality. Equation (11) has a central role in demonstrating the
robustness of the kurtosis for the extraction of the activity area.
Additive noise n(x, y, t) is most often modeled as a Gaussian
distribution. However, the kurtosis of Gaussian random vari-
ables is equal to zero, so Kn = 0 and

KM ≡ Ko+n = Ko. (12)

In other words, the kurtosis of the motion energy estimates
remains unaffected by additive Gaussian noise. It should be
noted that, even when the additive noise cannot be modeled
by a Gaussian distribution, the kurtosis remains robust to noise

and does not deviate significantly (if not at all) from its value
in the noiseless case.

In order to demonstrate the robustness of the proposed
approach, a comparison with a similar concept, namely
that of motion energy images (MEIs) [33] is presented. In
[33], the pixels of activity are localized by direct thres-
holding of inter-frame differences and estimating the union
of the resulting binary masks. Inter-frame illumination dif-
ferences are reliable only for high-quality indoors videos,
but can be replaced by flow estimates for noisier data (in
this paper the optical flow estimation algorithm cited in
Section II-A was used). With respect to the MEIs calculation
procedure, i.e., direct thresholding of the motion energy fields
and consequently estimating the union of the resulting binary
masks, it is obvious that they cannot eliminate the effect of
additive Gaussian noise. Thus, the kurtosis-based activity areas
are expected to be more robust and reliable in the presence of
noise than the MEIs, as already shown theoretically.

In Fig. 4, indicative activity area and MEI estimation results,
with noiseless data (rows 2 and 4) and in the presence
of Gaussian additive noise (rows 3 and 5), are illustrated.
Initially, a News broadcast video sequence showing an anchor
presenting the News was used (first column). As can be seen,
both the MEI and activity area provide an accurate localization
of the pixels that move in the absence of noise. However,
when additive noise is present, the MEI is seriously affected
compared to the respective activity area, since it confuses noisy
pixels with moving ones. Additionally, a comparison was con-
ducted for a video of a person clapping (second column). As
can be seen, the MEI contains significant amount of inaccurate
estimations, i.e., it mistakes static pixels for moving ones, even
in the absence of noise, whereas the corresponding activity
area does not contain any artifacts. Moreover, when noise is
added to the data, the activity area remains unaffected, while
the MEI becomes significantly more erroneous. Additional
videos that were also examined depict a person running (third
column), a rally event from a Tennis broadcast game (fourth
column) and a player performing a service hit (fifth column).
As expected, the activity area remains more robust to the
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Fig. 4. MEI and activity area estimation with noiseless data (rows 2 and 4) and in the presence of Gaussian additive noise (rows 3 and 5).

additive noise than the MEI, which looses significant amount
of activity information. In order to numerically evaluate the
robustness of the two methods, the MEI and the activity
area were estimated for ten videos belonging to different
domains (including those of Fig. 4), in the absence and in the
presence of noise. The computed masks were compared with
the manually extracted ground truth regions of active pixels,
by evaluating the percentage of pixels that were correctly
classified (either as active or as static). In the absence of noise,
it was found that both algorithms exhibited high recognition
rates (correct pixel classification rate > 98%). On the other
hand, when noise was present, the proposed kurtosis-based
approach led to a 96.16% correct pixel classification rate,
whereas the MEI one resulted in 88.51% of the pixels being
correctly classified.

III. Motion Representation

The majority of the HMM-based analysis methods present
in the relevant literature are focusing only at global- or
camera-level motion representation approaches, as detailed in
Section I. Nevertheless, local-level analysis of the motion
signal can provide significant cues which, if suitably exploited,
can facilitate in efficiently capturing the underlying semantics
of the examined video. To this end, a new representation
for providing local-level motion information to HMMs is
presented here. It must be noted that the motion information
processing described in this section applies to a single shot
si at any time, thus indices i are omitted in this section for
notational simplicity.

As already described in Section II, the kurtosis fields
constitute a robust indicator for identifying pixels that undergo
true motion. For representing the motion in the shot, it is
reasonable to focus only on the pixels that are characterized
as active in the corresponding activity area mask, i.e., the
pixels where true motion is observed. These are more likely

to bear significant information about the motion patterns that
are discriminative for every supported class. In particular, for
every computed activity area mask Ar(x, y) a corresponding
‘localized’ mask ALr (xl, yl), where xlε[xL0

r , x
L1
r ] (1 ≤ xL0

r ≤
xL1
r ≤ Vdim) and ylε[yL0

r , y
L1
r ] (1 ≤ yL0

r ≤ yL1
r ≤ Hdim), is

estimated. This localized mask is defined as the axis-aligned
minimum rectangle that includes all the active pixels of the
respective Ar(x, y), while maintaining the same aspect ratio.
The corresponding ‘localized’ kurtosis field is denoted by
KL
r (xl, yl), and comprises those pixels of Kr(x, y) that belong

to ALr (xl, yl). The remainder of the motion analysis procedure
considers only the KL

r (xl, yl) and ALr (xl, yl).

A. Polynomial Approximation

The estimated localized kurtosis field, KL
r (xl, yl), is usually

of high dimensionality, which decelerates the video process-
ing, while motion information at this level of detail is not
always required for the analysis purposes. Thus, it is down-
sampled, according to the following equations:

K�
r (xλ, yλ) = KL

r (xd, yd)

xd = xL0
r +

2xλ − 1

2
· Vs, yd = yL0

r +
2yλ − 1

2
·Hs

xλ = 1, ...D, yλ = 1, ...D

Vs = �x
L1
r − xL0

r

D
�, Hs = �y

L1
r − yL0

r

D
� (13)

where K�
r (xλ, yλ) is the estimated down-sampled localized

kurtosis field and Hs, Vs are the corresponding horizontal
and vertical spatial sampling frequencies. As can be seen
from (13), the dimensions of the down-sampled field are
predetermined and set equal to D. It must be noted that if any
of the sides of the localized kurtosis field is smaller than D
(i.e., when xL1

r − xL0
r < D or yL1

r − yL0
r < D), then KL

r (xl, yl)
is interpolated so that its smaller side equals D, while
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Fig. 5. Examples of localized kurtosis field estimation and approximation by polynomial function. (a) First frame of sequence. (b) Kurtosis field.
(c) Localized kurtosis field. (d) Polynomial approximation.

maintaining the same aspect ratio as the original kurtosis
field Kr(x, y). Subsequently, the interpolated field, ḰL

r (x́l, ýl),
is down-sampled according to (13), where ḰL

r (x́d, ýd) is used
instead of KL

r (xd, yd). Interpolation is performed using the
bilinear method.

According to the HMM theory [7], the set of sequential
observation vectors that constitute an observation sequence
need to be of fixed length and simultaneously of low-
dimensionality. The latter constraint ensures the avoidance
of HMM under-training occurrences. Thus, a compact and
discriminative representation of motion features is required.
For that purpose, the aforementioned K�

r (xλ, yλ) field,
which actually represents a higher order statistic of the
motion energy distribution surface, is approximated by a 2-D
polynomial function of the following form:

f (p, q) =
∑
b,c

abc · ((p− p0)b · (q− q0)c) ,

0 ≤ b, c ≤ T and 0 ≤ b + c ≤ T (14)

where T is the order of the function, abc its coefficients and
p0, q0 are defined as p0 = q0 = D

2 . The approximation is
performed using the least-squares method.

In Fig. 5, indicative examples of localized kurtosis field
estimation and consequent approximation by a polynomial
function are illustrated for various videos, showing the first
frame of the sequence (first row), the estimated kurtosis field

(second row), the resulting localized kurtosis field (third row)
and its corresponding polynomial approximation K̂�

r (xλ, yλ)
(row 4). As can be seen from this figure, the motion anal-
ysis localizes to the areas where increased motion activity
is observed, while the subsequent polynomial approximation
efficiently captures the most dominant local-level energy-
distribution characteristics of the motion signal.

The proposed approximation of motion energy distribution,
although quite simple, provides a very compact motion repre-
sentation, since it estimates a low-dimensionality observation
vector, while achieving to efficiently capture the most dom-
inant motion characteristics of the examined video segment.
Despite its sometimes rough approximation, the polynomial
coefficients are experimentally shown to perform well in a
number of different domains.

B. Spatial Attributes Extraction

While the estimated polynomial coefficients abc are used
for approximating the computed localized kurtosis field
K�
r (xλ, yλ), they do not capture spatial information regarding

the size and position of the latter on the image grid. To this
end, three additional spatial features (relative area, center of
gravity, and displacement of center of gravity) are employed
to compactly express this information. Moreover, a few other
spatial features are also introduced to further emphasize partic-
ular spatial properties of the motion signal (like the orientation,
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rectangularity, etc. of the respective localized activity area),
based on experimentation. All the aforementioned features,
which constitute complementary information to the computed
polynomial coefficients, are calculated from the estimated
ALr (xl, yl) mask. In particular, the employed features, which
are extracted for every time interval wr, are defined as follows.

1) Relative Area of the estimated ALr (xl, yl) provides a
quantitative measure of the size of the overall area where
increased motion activity is observed

arear =
(xL1
r − xL0

r ) · (yL1
r − yL0

r )

Vdim ·Hdim
. (15)

2) Center of gravity of the active pixels’ region denotes the
position of the activity area on the image grid

−−→
CGr = (CG0

r , CG
1
r )

CG0
r =

∑
xl

∑
yl
xl · ALr (xl, yl)

Vdim · ∑
xl

∑
yl
ALr (xl, yl)

CG1
r =

∑
xl

∑
yl
yl · ALr (xl, yl)

Hdim · ∑
xl

∑
yl
ALr (xl, yl)

. (16)

3) Displacement of the active pixels’ center of gravity in
sequential time intervals

−−−→
DCGr = (CG0

r − CG0
r−1, CG

1
r − CG1

r−1). (17)

4) Rectangularity denotes how dense the active pixels’ area
is. It is defined as the percentage of the active pixels’
minimum bounding rectangle (MBR) that belongs to the
respective ALr (xl, yl)

rectangularityr =

∑
xm

∑
ym
ALr (xm, ym)

(xM1
r − xM0

r ) · (yM1
r − yM0

r )
(18)

where xmε[xM0
r , xM1

r ], ymε[yM0
r , yM1

r ], and
{xM0
r , xM1

r , yM0
r , yM1

r } denotes the MBR of the active
pixels (xL0

r ≤ xM0
r ≤ xM1

r ≤ xL1
r , y

L0
r ≤ yM0

r ≤ yM1
r ≤

yL1
r ).

5) Elongatedness of the active pixels’ MBR represents the
thickness of the estimated activity area

elongatednessr =
xM1
r − xM0

r

yM1
r − yM0

r

. (19)

6) Orientation, which denotes the overall direction of the
active pixels’ region

orientationr =
1

2
· tan−1 2 · µ11

µ20 − µ02
(20)

where µ11, µ20, µ02 are the corresponding central
moments of ALr (xl, yl).

7) Accumulated active pixels ratio is defined as the per-
centage of the total number of active pixels that are
estimated from the beginning of shot si and are present
in the current time interval wr. This feature, which
is particularly discriminative for periodic motions or
movements with constant velocity, achieves to efficiently
model the variation of motion intensity in time and is
defined as follows:

Rr =
Er∑r
ŕ=1 Eŕ

, Er =
∑
xl

∑
yl

ALr (xl, yl). (21)

The adopted spatial features express in a compact way
particular attributes of the motion signal. Along with the intro-
duced polynomial coefficients (Section III-A), they achieve to
provide a more complete motion representation and efficiently
capture the semantics that are present in the visual medium,
facilitating in reaching improved classification performance.

IV. HMM-Based Classification

As outlined in Section I, HMMs constitute a powerful
statistical tool for solving problems that exhibit an inherent
temporality, i.e., consist of a process that unfolds in time
[7], [54]. The fundamental idea is that every process is
made of a set of internal states and every state generates
an observation when the process lies in that state. Thus,
the sequential transition of the process among its constituent
states generates a corresponding observation sequence. The
latter is characteristic for every different process. It must be
noted that a HMM requires a set of suitable training data for
adjusting its internal structure, i.e., for efficiently modeling the
process with which it is associated. At the evaluation stage,
the HMM, which receives as input a possible observation
sequence, estimates a posterior probability, which denotes the
fitness of the input sequence to that model.

Under the proposed approach, HMMs are employed for
associating every video shot with a particular semantic class,
due to their increased applicability to modeling the temporal
characteristics of the video sequence. In accordance to the
HMM theory, each class corresponds to a process that is to
be modeled by an individual HMM and the features extracted
from the video stream constitute the respective observation
sequences. Specifically, since the polynomial coefficients and
spatial attributes of the motion signal are estimated for a time
interval wir of shot si (as detailed in Section III), they are
used to form a single observation vector. These observation
vectors for all wir of shot si form a respective shot observation
sequence. Then, a set of J HMMs is employed, where an
individual HMM is introduced for every defined class ej ,
in order to perform the association of the examined shot,
si, with the defined classes, ej , based on the computed shot
observation sequence. More specifically, each HMM receives
the aforementioned observation sequence as input and es-
timates a posterior probability, which indicates the degree
of confidence hij with which class ej is associated with
shot si. HMM implementation details are discussed in the
experimental results section.

V. Experimental Results

In this section, experimental results from the application
of the proposed approach in various domains, as well as
comparative evaluation with other approaches in the litera-
ture, are presented. Although the approach is generic, i.e., it
can be directly applied to any possible domain of concern
without the need for domain-specific algorithmic modifications
or adaptations, particular domains need to be selected for
experimentation; to this end, the domains of Tennis, News
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and Volleyball broadcast video, and Human Action video are
utilized in this paper.

A. Tennis Domain

For experimentation in the domain of Tennis broadcast
video, four semantic classes of interest were defined, co-
inciding with four high-level semantic events that typically
dominate a broadcasted game. These are:

1) rally: when the actual game is played;
2) serve: is the event starting at the time that the player is

hitting the ball to the ground, while he is preparing to
serve, and finishes at the time the player performs the
service hit;

3) replay: when a particular incident of increased impor-
tance is broadcasted again, usually in slow motion;

4) break: when a break in the game occurs, i.e., the actual
game is interrupted for example after a point is gained,
and the camera may show the players resting or the
audience.

Then, a set of 8 videos showing professional Tennis games
from various international tournaments was collected. After
the temporal segmentation algorithm of [50] was applied, a
corresponding set of 886 shots was formed, which were man-
ually annotated according to the respective event definitions.
Out of the aforementioned videos, 4 (total of 499 shots; rally:
191, serve: 50, replay: 31, break: 227) were used for training
the developed HMMs structure, while the remaining 4 (total
of 387 shots; rally: 130, serve: 45, replay: 20, break: 192)
were used for evaluation.

Every shot was further divided into a set of sequential time
intervals of equal duration, as described in Section II-A. The
duration of every interval, TW , was set equal to 0.40 sec,
based on experimentation (the respective value for the News,
Volleyball, and the Human Action domains was set equal
to 0.40 sec, 0.40 sec, and 0.80 sec, respectively). It has been
observed that small deviations from this value resulted into
negligible changes in the overall detection performance. Then,
for every resulting interval the corresponding kurtosis field,
Kir(x, y), and activity area mask, Air(x, y), were calculated, as
detailed in Section II-B. Subsequently, the respective localized
kurtosis field, KL

ir(xl, yl), and activity area mask, ALir(xl, yl),
were computed with respect to the estimated active pixels.
Local-level energy distribution-related information, as well as
spatial attributes of the motion signal were estimated from
KL
ir(xl, yl) and ALir(xl, yl), as described in Sections III-A and

III-B, respectively. A third order polynomial function was used
for the approximation procedure, according to (14), since it
produced the most accurate approximation results. The value
of the parameter D in (13), which is used to define the
horizontal, Hs, and vertical, Vs, spatial sampling frequencies,
was set equal to 40. This value was shown to represent a
good compromise between the need for time efficiency and
accuracy of the polynomial approximation. Significantly lower
values of D were shown to result into the generation of very
few samples that could not be utilized for robust polynomial
approximation. The motion features extracted for every time
interval were used to form the motion observation sequence

for the respective shot, which was in turn provided as input to
the developed HMM structure in order to associate the shot
with one of the supported classes, as described in Section IV.
It must be noted that the values of every feature are normalized
so that they have zero mean and standard deviation equal to
one.

Regarding the HMM structure implementation details, fully
connected first order HMMs, i.e., HMMs allowing all pos-
sible hidden state transitions, were utilized for performing
the mapping of the low-level motion features to the high-
level semantic classes. For every hidden state the observations
were modeled as a mixture of Gaussians (a single Gaussian
was used for every state). The employed Gaussian mixture
models (GMMs) were set to have full covariance matrices for
exploiting all possible correlations between the elements of
each observation. Additionally, the Baum–Welch (or Forward–
Backward) algorithm was used for training, while the Viterbi
algorithm was utilized during the evaluation. Furthermore, the
number of hidden states of the HMMs was considered as a free
variable. The developed HMM structure was realized using the
software libraries of [55].

In order to demonstrate and comparatively evaluate the
efficiency of the proposed method, the following experiments
were made:

1) application of the complete proposed approach
(Sections II–IV);

2) application of the proposed approach without con-
sidering the spatial attributes of Section III-B;

3) application of the proposed approach of Section II
combined with a variant of the approach of III-A,
where Kir(x, y) is used in place of the localized kur-
tosis field KL

ir(xl, yl) (the spatial attributes presented
in III-B are also not used);

4) application of the approach of Sections III and IV in
combination with MHIs and MEIs [33] rather than
the kurtosis fields and activity areas of Section II;

5–7) application of the methods of [36], [39], and [40].

Experiments 1 and 2 are conducted in order to highlight
the added value of incorporating spatial attributes of the
motion signal in the classification process, along with local-
level energy distribution-related information. Additionally, the
performance of the proposed method is compared to the case
when only global-level polynomial approximation of the kur-
tosis field is performed (experiment 3). In order to investigate
the effectiveness of the proposed kurtosis field and activity area
in capturing the characteristics of the motion signal, they are
quantitatively evaluated against the temporal template motion
representation approach presented in [33] (experiment 4). In
particular, Bobick et al. introduce the motion energy image
(MEI) for denoting the pixels where motion has occurred
in an image sequence. The latter is constructed by simple
thresholding of the inter-frame difference at selected frames
of the sequence and then computing the union of the resulting
binary masks. Additionally, the motion history image (MHI)
is proposed for describing the recency of motion and is
produced by combining the aforementioned binary masks,
where each mask is appropriately weighted with respect to
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its order in time. For realizing the performance comparison,
an individual MEI and a corresponding MHI are computed
for every estimated time interval wir (Section II-A). It must
be noted that instead of utilizing inter-frame difference for
computing the MHIs and MEIs, the estimated motion energy
fields, M(x, y, t), were employed. The latter are more robust to
noise and provide a more accurate motion intensity field. Then,
energy-distribution related information and spatial attributes
of the motion signal are estimated from the computed MHI
and MEI, respectively, as detailed in Sections III-A and III-B.
Subsequently, class association is performed as described
in Section IV. The proposed method is also comparatively
evaluated against the representation approaches for providing
motion information to HMM-based systems, with respect to
semantic video analysis tasks, presented in [36], [39], and
[40]. Specifically, Huang et al. consider the first four dominant
motion vectors and their appearance frequencies, along with
the mean and the standard deviation of motion vectors in
the frame [36]. On the other hand, Gibert et al. estimate the
principal motion direction of every frame [39], while Xie et al.
calculate the motion intensity at frame level [40].

In Table I, quantitative class association results are given
for the aforementioned experiments in the form of confusion
matrices. The value of the overall classification accuracy is
also given for each experiment. The latter is defined as the
percentage of the video shots that are associated with the cor-
rect class. It has been regarded that arg maxj(hij) (Section IV)
indicates the class ej that is associated with shot si.

From the results presented in Table I, it can be seen that
the proposed local-level representation approach for providing
motion information to HMMs achieves an overall classifica-
tion accuracy of 86.05%. More specifically, the class rally
is recognized correctly at a high rate (98.46%), since it
corresponds to a representative and distinguishable motion
pattern. Additionally, classes serve and break also exhibit
satisfactory results (82.22% and 81.77%, respectively). Re-
garding the recognition of replay, it presents a relatively low
recognition rate (55.00%) and is mainly confused with class
break. The latter is justified by the observation that replays are
important incidents during the game that are broadcasted again
usually in a close-up view and in slow-motion. Thus, they are
expected to present similar local motion characteristics with
class break. From the presented results, it can also be seen
that the combination of local-level energy distribution-related
information and spatial attributes of the motion signal leads to
improved recognition results, compared to the case when only
local-level energy distribution-related information is used. In
particular, the incorporation of spatial features, extracted from
the estimated localized activity area mask (ALir(xl, yl)), leads to
an increase of 10.86%, in the overall classification accuracy.
Moreover, the detection of some classes (e.g. serve and replay)
is particularly favored by the incorporation of the spatial
features. The proposed motion representation approach is also
advantageous compared to the case where only global-level
energy distribution-related information is utilized. The latter
is mainly due to the inefficacy of the global-level polynomial
approximation to capture particular local characteristics of the
motion signal. Additionally, it is shown that the proposed

TABLE I

Semantic Class Association Results in the Tennis Domain for

Experiments (1) to (7) (e1 : Rally , e2 : Serve, e3 : Replay, and e4 :

Break)

Actual Associated Class

Method Class e1 e2 e3 e4

Proposed approach e1 98.46% 0.77% 0.00% 0.77%

(1) e2 2.22% 82.22% 0.00% 15.56%

e3 5.00% 0.00% 55.00% 40.00%

e4 5.73% 8.85% 3.65% 81.77%
Overall Accuracy: 86.05%

Local-level polynomial e1 97.69% 1.54% 0.00% 0.77%

approximation without e2 2.22% 55.56% 4.44% 37.78%

spatial attributes e3 0.00% 20.00% 35.00% 45.00%

(2) e4 6.25% 16.67% 8.33% 68.75%
Overall Accuracy: 75.19%

Global-level e1 96.15% 3.08% 0.00% 0.77%

polynomial e2 4.44% 60.00% 8.89% 26.67%

approximation e3 0.00% 10.00% 50.00% 40.00%

(3) e4 5.21% 9.90% 11.46% 73.44%
Overall Accuracy: 78.29%

Proposed approach e1 99.23% 0.77% 0.00% 0.00%

using method of [33] e2 4.44% 62.22% 22.22% 11.11%

(4) e3 0.00% 10.00% 65.00% 25.00%

e4 13.54% 11.46% 33.33% 41.67%
Overall Accuracy: 64.60%

Method of [36] e1 97.69% 0.77% 0.00% 1.54%

(5) e2 6.67% 57.78% 8.89% 26.67%

e3 0.00% 15.00% 15.00% 70.00%

e4 8.33% 9.38% 4.17% 78.13%
Overall Accuracy: 79.07%

Method of [39] e1 91.54% 8.46% 0.00% 0.00%

(6) e2 35.56% 35.56% 11.11% 17.78%

e3 25.00% 20.00% 10.00% 45.00%

e4 18.23% 15.10% 10.42% 56.25%
Overall Accuracy: 63.31%

Method of [40] e1 93.85% 6.15% 0.00% 0.00%

(7) e2 6.67% 26.67% 51.11% 15.56%

e3 0.00% 20.00% 40.00% 40.00%

e4 8.33% 14.58% 36.46% 40.63%
Overall Accuracy: 56.85%

kurtosis field and activity area lead to increased detection
rates for most of the supported classes, as well as in overall
detection accuracy, compared to the corresponding MHI and
MEI. Only for the class replay, the use of MHI and MEI
leads to significantly increased recognition performance. This
is due to the fact that replay shots typically exhibit zoom-in
and fading, and the combination of MHI and MEI is experi-
mentally shown to be somewhat more suitable for modeling
such effects. Furthermore, it should be noted that this large in
percentage difference corresponds to only 2 more shots being
misclassified, since the total number of replay shots in the
real broadcast Tennis video collection used for experimentation
was relatively low and equal to 20. Finally, it can be observed
that the proposed approach outperforms the algorithms of [36],
[39], and [40], for all supported classes. This verifies that local-
level analysis of the motion signal can lead to increased class
association performance.
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TABLE II

Semantic Class Association Results in the News Domain for

Experiments (1) to (7) (e1 : Anchor , e2 : Reporting, e3 : Reportage,

and e4 : Graphics)

Actual Associated Class
Method Class e1 e2 e3 e4

Proposed approach e1 95.45% 2.27% 2.27% 0.00%
(1) e2 14.63% 63.41% 19.51% 2.44%

e3 4.44% 3.33% 90.00% 2.22%
e4 6.25% 0.00% 6.25% 87.50%

Overall Accuracy: 86.83%

Local-level polynomial e1 95.45% 4.55% 0.00% 0.00%
approximation without e2 39.02% 41.46% 19.51% 0.00%

spatial attributes e3 8.33% 10.56% 75.00% 6.11%
(2) e4 12.50% 0.00% 12.50% 75.00%

Overall Accuracy: 73.31%

Global-level e1 90.91% 9.09% 0.00% 0.00%
polynomial e2 12.20% 73.17% 14.63% 0.00%

approximation e3 5.00% 13.89% 80.00% 1.11%
(3) e4 6.25% 0.00% 31.25% 62.50%

Overall Accuracy: 79.72%

Proposed approach e1 97.73% 2.27% 0.00% 0.00%
using method of [33] e2 19.51% 63.41% 17.07% 0.00%

(4) e3 10.00% 8.89% 77.22% 3.89%
e4 25.00% 0.00% 6.25% 68.75%

Overall Accuracy: 77.94%

Method of [36] e1 86.44% 11.86% 0.00% 1.69%
(5) e2 21.43% 57.14% 21.43% 0.00%

e3 5.75% 25.86% 66.67% 1.72%
e4 40.63% 3.13% 0.00% 56.25%

Overall Accuracy: 67.80%

Method of [39] e1 18.18% 4.55% 0.00% 77.27%
(6) e2 7.32% 17.07% 43.90% 31.71%

e3 1.67% 8.89% 80.00% 9.44%
e4 12.50% 6.25% 0.00% 81.25%

Overall Accuracy: 61.21%

Method of [40] e1 52.27% 6.82% 0.00% 40.91%
(7) e2 9.76% 39.02% 29.27% 21.95%

e3 6.11% 23.33% 63.89% 6.67%
e4 6.25% 18.75% 0.00% 75.00%

Overall Accuracy: 59.07%

B. News Domain

For the domain of News broadcast video, the following
semantic classes were defined:

1) anchor: when the anchor person announces the News in
a studio environment;

2) reporting: when live-reporting takes place or a
speech/interview is broadcasted;

3) reportage: comprises the displayed scenes, either in-
doors or outdoors, relevant to every broadcasted News
item;

4) graphics: when any kind of graphics is depicted in the
video sequence, including News start/end signals, maps,
tables or text scenes.

Following a procedure similar to the one described in Section
V-A, 24 videos of News broadcast from Deutsche Welle1

were collected and the corresponding training and test sets
were formed, comprising 338 (anchor: 70, reporting: 46,
reportage: 174, graphics: 48) and 582 (anchor: 91, reporting:
85, reportage: 374, graphic: 32) shots, respectively.

1http://www.dw-world.de/

In Table II, quantitative class association results are given
for the News domain, where the same experiments and com-
parative evaluations as for the Tennis domain were conducted.
From this table, it can be seen that the proposed method
accomplishes an overall classification accuracy of 86.83%.
In particular, the classes anchor, reportage and graphics are
correctly identified at high recognition rates (95.45%, 90.00%
and 87.50%, respectively). Regarding the class reporting,
although it exhibits satisfactory results (63.41%), it tends to
be confused with anchor and reportage. The latter is caused
by the fact that speech or interview occurrences may present
similar motion patterns with anchor speaking or reportage
scenes, respectively. Additionally, it can be observed that
the proposed combination of local-level energy distribution-
related information and spatial attributes of the motion signal
is also advantageous for this particular domain, compared to
the cases where either solely local-level energy distribution-
related information is used or only global-level polynomial
approximation of the kurtosis field is performed. In particular,
the incorporation of the spatial features leads this time to
an increase of 13.52%, in the overall classification accuracy,
while the detection of classes reporting and reportage is
particularly favored. On the other hand, only the classification
rate of reporting is enhanced when global-level information
is used, since the latter is proven to bear more discriminative
information for this particular class. Moreover, the presented
results show that the proposed kurtosis field and activity area
lead to increased classification rates for most of the supported
classes, as well as in overall classification accuracy, compared
to the case when the MHI and MEI of [33] are utilized.
Finally, it is shown that the proposed approach outperforms
the methods of [36], [39] and [40] for all supported classes,
similarly to the Tennis domain.

C. Volleyball Domain

For experimentation in the domain of Volleyball broadcast
video, four semantic classes of interest were defined, which
coincide with four high-level semantic events that typically
dominate a broadcasted game. In particular, the same events
defined for the Tennis domain, i.e., rally, serve, replay and
break, were also used for this domain.

Following a procedure similar to the one described in
Sections V-A and V-B, 14 videos of Volleyball broadcast from
the Beijing 2008 men’s olympic Volleyball tournament were
collected and the corresponding training and test sets were
formed, comprising 388 (rally: 108, serve: 55, replay: 44,
break: 181) and 517 (rally: 131, serve: 80, replay: 51, break:
255) shots, respectively.

In Table III, quantitative class association results are given
for the Volleyball domain, where the same experiments and
comparative evaluations as for the Tennis and News domains
were conducted. From the presented results, it can be seen
that the proposed method achieves an overall classification
accuracy of 88.39%. In particular, the classes rally, serve
and break are correctly identified at high recognition rates
(94.66%, 87.50% and 90.59%, respectively). Regarding the
class replay, although it exhibits satisfactory results (62.75%),
it is mainly confused with class break, similarly to the Tennis
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TABLE III

Semantic Class Association Results in the Volleyball Domain for

Experiments (1) to (7) (e1 : Rally, e2 : Serve, e3 : Replay, and e4 : Break)

Actual Associated Class
Method Class e1 e2 e3 e4

Proposed approach e1 94.66% 1.53% 0.00% 3.82%
(1) e2 0.00% 87.50% 0.00% 12.50%

e3 0.00% 3.92% 62.75% 33.33%
e4 0.78% 7.45% 1.18% 90.59%

Overall Accuracy: 88.39%

Local-level polynomial e1 93.89% 0.76% 2.29% 3.05%
approximation without e2 0.00% 65.00% 1.25% 33.75%

spatial attributes e3 11.76% 3.92% 66.67% 17.65%
(2) e4 3.92% 9.41% 7.06% 79.61%

Overall Accuracy: 79.69%

Global-level e1 93.89% 1.53% 0.00% 4.58%
polynomial e2 0.00% 87.50% 1.25% 11.25%

approximation e3 1.96% 3.92% 68.63% 25.49%
(3) e4 1.96% 5.49% 13.73% 78.82%

Overall Accuracy: 82.98%

Proposed approach e1 91.60% 3.82% 0.76% 3.82%
using method of [33] e2 7.50% 72.50% 5.00% 15.00%

(4) e3 3.92% 17.65% 52.94% 25.49%
e4 5.10% 3.92% 54.51% 36.47%

Overall Accuracy: 57.64%

Method of [36] e1 88.55% 8.40% 1.53% 1.53%
(5) e2 3.75% 77.50% 6.25% 12.50%

e3 3.92% 15.69% 54.90% 25.49%
e4 0.78% 9.41% 19.61% 70.20%

Overall Accuracy: 74.47%

Method of [39] e1 67.18% 6.87% 23.66% 2.29%
(6) e2 5.00% 36.25% 30.00% 28.75%

e3 5.88% 43.14% 41.18% 9.80%
e4 32.55% 12.94% 19.61% 34.90%

Overall Accuracy: 43.91%

Method of [40] e1 72.52% 19.08% 3.82% 4.58%
(7) e2 16.25% 66.25% 2.50% 15.00%

e3 11.76% 23.53% 35.29% 29.41%
e4 6.67% 20.00% 42.75% 30.59%

Overall Accuracy: 47.20%

domain results. Additionally, it can be observed that the
proposed combination of local-level energy distribution-related
information and spatial attributes of the motion signal results
in improved recognition performance for most of the defined
classes as well as overall, compared to the cases where either
solely local-level energy distribution-related information is
used or only global-level polynomial approximation of the
kurtosis field is performed. Moreover, it leads to increased
classification rates compared to the case when the MHI and
MEI of [33] are utilized and also outperforms the methods of
[36], [39] and [40], similarly to the Tennis and News domains.

D. Human Action Domain

The performance of the proposed method was also evaluated
for the task of Human Action recognition. It must be noted
that for this particular task a series of dedicated approaches,
exhibiting high recognition rates, have already been presented
in the literature. The proposed method, although it does not
exploit specific facts and characteristics that are only present in
this domain (like human body silhouette extraction [56], body
pose estimation [57], etc.), which can significantly facilitate
the recognition procedure, nevertheless presents satisfactory
results.

Regarding the set of semantic classes of interest, these
coincide with the following Human Actions: boxing, hand-
clapping, handwaving, jogging, running, and walking. The
video database of [58] was used for experimentation in this
domain. In this database, each of the aforementioned actions
was performed several times by 25 subjects in 4 different
scenarios, namely outdoors, outdoors with scale variation,
outdoors with different clothes and indoors. The corresponding
training and test sets, which include instances of all scenarios
and are defined in the database, comprise 760 (boxing: 126,
handclapping: 124, handwaving: 126, jogging: 128, running:
128, walking: 128) and 864 (boxing: 144, handclapping: 144,
handwaving: 144, jogging: 144, running: 144, walking: 144)
shots, respectively.

For the experimental evaluation, the experiments 1–4 de-
fined in Section V-A were conducted. Additionally, the per-
formance of the proposed method was compared with the
action recognition approach presented in [58], where Schüldt
et al. utilize local space-time features for identifying Human
Actions. Comparison with the approaches [36], [39], and [40]
is omitted, since they perform worse than the dedicated method
of [58].

In Table IV, quantitative class association results are shown.
From the presented results, it can be seen that the proposed ap-
proach achieves an overall classification accuracy of 76.59%.
Specifically, classes boxing, handclapping, handwaving and
walking exhibit high recognition rates (93.01%, 78.47%,
85.42%, and 90.28%, respectively). Regarding the classes
running and jogging, they present relatively low recognition
rates (58.89% and 53.61%, correspondingly) and they tend
to be confused with classes jogging and walking, respectively.
The latter is caused by the fact that individual subjects perform
the same actions in different ways; a person may run as fast
as someone else is jogging, while the jogging action of an
individual may be very similar to the walking one of an
other person. Thus, it is reasonable, even for an individual
human observer, that these two pairs of actions are confused.
Moreover, it can be seen that generally actions that involve arm
moves (boxing, handclapping, handwaving), are efficiently
distinguished from more extensive body movements (jogging,
running, walking). Additionally, the presented results indicate
that the proposed local-level motion representation approach
is again advantageous, compared to the case where only local-
level energy distribution-related information or global-level
polynomial approximation of the kurtosis field is utilized.
In particular, the incorporation of spatial features leads to
an increase of 15.29% in the overall class association ac-
curacy, compared to the case where only local-level energy
distribution-related information is used, while the detection
of some classes, namely handwaving, jogging and running,
is significantly favored. Moreover, it can also be seen that
the proposed kurtosis field and resulting activity area prove
to be more efficient in capturing the characteristics of the
motion signal in this particular domain, compared to the
motion representation approach of [33]. Finally, it is shown
that the proposed method, although it has not been designed
for the specific task of Human Action recognition, outperforms
the method of [58] for most of the supported classes, as well
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TABLE IV

Semantic Class Association Results in the Human Action Domain for Experiments (1) to (4) and Comparison with [58] (e1 : Boxing, e2 :

Handclapping, e3 : Handwaving, e4 : Jogging, e5 : Running, and e6 : Walking)

Actual Associated Class
Method Class e1 e2 e3 e4 e5 e6

Proposed approach e1 93.01% 0.00% 2.80% 0.00% 0.00% 4.20%
(1) e2 17.36% 78.47% 4.17% 0.00% 0.00% 0.00%

e3 3.47% 4.17% 85.42% 1.39% 1.39% 4.17%
e4 0.00% 0.00% 0.00% 53.61% 15.28% 31.11%
e5 0.00% 0.00% 0.00% 36.25% 58.89% 4.86%
e6 0.00% 0.00% 0.00% 9.72% 0.00% 90.28%

Overall Accuracy: 76.59%

Local-level polynomial e1 81.12% 9.79% 3.50% 0.00% 0.00% 5.59%
approximation without e2 6.94% 80.56% 11.81% 0.00% 0.00% 0.69%

spatial attributes e3 9.72% 17.36% 60.42% 8.33% 1.39% 2.78%
(2) e4 1.39% 1.39% 0.69% 29.86% 6.25% 60.42%

e5 6.25% 2.08% 2.78% 38.19% 27.78% 22.92%
e6 1.39% 0.69% 0.00% 9.03% 0.69% 88.19%

Overall Accuracy: 61.30%

Global-level e1 87.41% 2.10% 3.50% 0.70% 1.40% 4.90%
polynomial e2 34.72% 64.58% 0.69% 0.00% 0.00% 0.00%

approximation e3 14.58% 13.19% 64.58% 4.86% 2.78% 0.00%
(3) e4 0.00% 0.00% 2.08% 25.69% 11.11% 61.11%

e5 0.00% 0.00% 0.00% 38.89% 31.25% 29.86%
e6 3.47% 2.08% 3.47% 2.78% 5.56% 82.64%

Overall Accuracy: 59.33%

Proposed approach e1 81.12% 6.29% 5.59% 2.10% 0.00% 4.90%
using method of [33] e2 20.83% 56.94% 20.14% 0.00% 2.08% 0.00%

(4) e3 11.81% 6.94% 81.25% 0.00% 0.00% 0.00%
e4 0.00% 0.00% 0.00% 84.03% 4.17% 11.81%
e5 0.00% 0.00% 0.00% 35.42% 63.19% 1.39%
e6 0.00% 0.00% 0.00% 15.97% 4.17% 79.86%

Overall Accuracy: 74.39%

Method of [58] e1 97.92% 0.69% 0.69% 0.00% 0.00% 0.69%
e2 35.42% 59.72% 3.47% 0.00% 0.00% 1.38%
e3 20.83% 4.86% 73.61% 0.00% 0.00% 0.69%
e4 0.00% 0.00% 0.00% 60.42% 16.67% 22.92%
e5 0.00% 0.00% 0.00% 38.89% 54.86% 6.25%
e6 0.00% 0.00% 0.00% 16.19% 0.00% 83.81%

Overall Accuracy: 71.72%

as in overall classification accuracy. The latter demonstrates
the robustness of the proposed method and its efficiency
in achieving high recognition rates in domain-specific tasks,
despite its generic nature.

E. Spatial Features Effectiveness

In order to further evaluate the contribution of the different
kinds of spatial features presented in Section III-B, two addi-
tional experiments were conducted, with the spatial features
divided to two sets: i) the ones defining the size and position
of the localized activity area on the image grid (relative area,
center of gravity and displacement of center of gravity), and
ii) the remaining features that emphasize particular spatial
attributes of the motion signal. For the Tennis domain the
combined use of the polynomial coefficients with the spatial
features of set (i) leads to an increase of 7.50% in the overall
classification performance, while with the features of set (ii)
instead of those of set (i) the increase is 3.36%, compared to
the performance reached by using solely the polynomial coef-
ficients. The corresponding increase for the News, Volleyball
and Human Actions domains is 11.03%, 7.16%, 11.59% and
4.51%, 3.48%, 5.56%, respectively. Taking into account the
classification results reported in Tables I–IV, it can be seen

that both sets of features contribute to increased performance
over the use of the polynomial coefficients alone, while the
use of either one of the two sets leads to inferior performance
compared to using both of them at the same time; the latter
results to 10.86%, 13.52%, 8.70% and 15.29% increase of
overall classification accuracy over the use of the polynomial
coefficients alone, for the Tennis, News, Volleyball, and Human
Actions domain, respectively.

F. Effect of the Degree of the Polynomial Function

In order to investigate the effect of the introduced poly-
nomial function’s degree on the overall shot-class association
performance, experiments 1 and 2 (defined in Section V-A)
were conducted again for different values of the degree T
(see (14)) of the polynomial function. In particular, the shot-
class association performance was evaluated when parameter
T receives values ranging from 2 to 6. Values greater than 6
for parameter T resulted in significantly decreased recognition
performance. The corresponding shot classification results for
all supported domains are illustrated in Table V.

From the presented results it can be seen that the use of
a 3rd order polynomial function leads to the best overall
performance for both experiments in all defined domains.
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TABLE V

Semantic Class Association Results for Different Values of

the Order T of the Polynomial Function for Experiments (1)

and (2) (Overall Accuracy)

Domain
Method T Tennis News Volleyball Human Action

Proposed 2 82.17% 86.12% 85.11% 73.46%
approach 3 86.05% 86.83% 88.39% 76.59%

(1) 4 81.91% 85.05% 87.23% 67.09%
5 82.17% 83.63% 87.04% 68.25%
6 79.59% 83.27% 85.30% 65.12%

Local-level poly- 2 73.90% 70.11% 77.95% 55.04%
nomial approxi- 3 75.19% 73.31% 79.69% 61.30%
mation without 4 74.42% 72.24% 78.72% 58.29%
spatial attributes 5 74.94% 71.53% 78.34% 60.49%

(2) 6 74.16% 70.46% 75.63% 54.00%

Lower values of T (T = 2) resulted in compact but at the same
time very coarse kurtosis field approximation, which led to de-
creased shot classification accuracy. On the other hand, greater
values of T (T = 4, 5, 6), although resulted in more accurate
approximation of the localized kurtosis fields compared to the
case of T = 3, they led to the generation of observation vectors
of significantly higher dimensionality. This fact, which gener-
ally hinders efficient HMM-based classification (as described
in Section III-A), resulted again in decreased shot classification
accuracy. It must be noted that for the cases of the 5th and 6th
order polynomial function, HMM under-training occurrences
were observed for both experiments in all domains, mainly due
to the high dimensionality of the corresponding observation
vectors. In order to perform HMM-based classification for
these cases, principal component analysis (PCA) was used
for reducing the dimensionality of the observation vectors, as
in [34], [59]. The target dimension of the PCA output was
set equal to the dimension of the observation vector that is
generated when using a 4th order polynomial function, i.e., the
highest value of T for which HMM under-training occurrences
were not observed, while the resulting data were shown to
still account for approximately 90% of the variance in the
original data, which is typically the assumption in the relevant
literature [34].

VI. Conclusion

In this paper, a generic approach to semantic video analysis
that is based on the statistical processing and representation
of the motion signal was presented. The proposed method
employs the kurtosis of the optical flow motion estimates for
identifying which motion values originate from true motion
rather than measurement noise, resulting in the robust esti-
mation of activity areas over a series of frames. Additionally,
a new representation for providing local-level motion infor-
mation to HMMs is presented. This is based on the elegant
combination of energy distribution-related information with a
complementary set of features that highlight particular spatial
attributes of the motion signal. Experimental results in various
domains demonstrated the efficiency of the proposed approach.
Future work includes the examination of more sophisticated
motion analysis techniques, as well as corresponding color

and audio processing schemes, for realizing semantic video
analysis based on multimodal information.
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