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Abstract—A novel unsupervised video object segmentation al-
gorithm is presented, aiming to segment a video sequence to ob-
jects: spatiotemporal regions representing a meaningful part of
the sequence. The proposed algorithm consists of three stages: ini-
tial segmentation of the first frame using color, motion, and posi-
tion information, based on a variant of the K-Means-with-connec-
tivity-constraint algorithm; a temporal tracking algorithm, using
a Bayes classifier and rule-based processing to reassign changed
pixels to existing regions and to efficiently handle the introduction
of new regions; and a trajectory-based region merging procedure
that employs the long-term trajectory of regions, rather than the
motion at the frame level, so as to group them to objects with dif-
ferent motion. As shown by experimental evaluation, this scheme
can efficiently segment video sequences with fast moving or newly
appearing objects. A comparison with other methods shows seg-
mentation results corresponding more accurately to the real ob-
jects appearing on the image sequence.

Index Terms—Image sequence analysis, temporal tracking, tra-
jectory-based merging, video segmentation.

I. INTRODUCTION

D IGITAL video is an integral part of many newly emerging
multimedia applications. New image and video standards,

such as MPEG-4 and MPEG-7, do not concentrate only on ef-
ficient compression methods but also on providing better ways
to represent, integrate, and exchange visual information [1]–[3].
These efforts aim to provide the user with greater flexibility for
“content-based” access and manipulation of multimedia data.
Many multimedia applications benefit from this content-based
approach, including efficient coding of regions of interest in dig-
ital video, personalized user-interactive services, and sophisti-
cated query and retrieval from image and video databases. These
issues and objectives are currently addressed within the frame-
work of the MPEG-4 and MPEG-7 standards [4], [5].

Manuscript received April 29, 2002; revised March 27, 2003. This work
was supported in part by the EU Projects SCHEMA “Network of Excellence
in Content-Based Semantic Scene Analysis and Information Retrieval”
(IST-2001-32795), in part by the ATTEST “Advanced Three-Dimensional
Television System Technologies” (IST-2001-34396), and in part by COST211
quat. This paper was recommended by Associate Editor L. Onural.

V. Mezaris and M. G. Strintzis are with the Information Processing Labo-
ratory, Electrical and Computer Engineering Department, Aristotle University
of Thessaloniki, Thessaloniki 54124, Greece, and also with the Informatics and
Telematics Institute (ITI)/Centre for Research and Technology Hellas (CERTH),
Thessaloniki 57001, Greece.

I. Kompatsiaris is with the Informatics and Telematics Institute (ITI)/Centre
for Research and Technology Hellas (CERTH), Thessaloniki 57001, Greece.

Digital Object Identifier 10.1109/TCSVT.2004.828341

In order to obtain a content-based representation, an input
video sequence must first be segmented into an appropriate set
of arbitrarily shaped objects, termed the video object planes
(VOPs) in the MPEG-4 Verification Model, with each object
possibly representing a particular meaningful content of the
video stream [6]. This process may be required to be unsuper-
vised, depending on the targeted application (e.g., indexing
large video archives). The features of each object such as shape,
motion and color information can subsequently be coded into
the so-called Video Object Layer for transmission or storage or
they can be used for efficient indexing and retrieval. Although
the standards will provide the needed functionalities in order
to compose, manipulate, and transmit the “object-based”
information, the production of these objects is out of the scope
of the standards and is left to the content developer. Thus, the
success of any object-based approach depends largely on the
accurate segmentation of the scene based on its contents.

Several approaches have been proposed for video segmen-
tation, both supervised and unsupervised. The former require
human interaction for defining the number of objects present
in the sequence [7] or more often for grouping homogeneous
regions to semantic objects [8]–[10], while the latter require no
such interaction. Some segmentation approaches rely on seg-
menting each frame independently, focusing either on estimating
discontinuities in the decision space [11] or on classifying pixels
into regions based on their homogeneity with respect to the fea-
ture space [12]–[15]. Spatiotemporal objects are subsequently
formed by associating the already formed spatial regions using
their low-level features. A different approach is to use motion
information to perform motion projection, i.e., to estimate the
position of a region at a future frame, based on its current position
and its estimated motion features [16], [17], [7]. Alternatively,
one could restrict the problem of video segmentation to the
detection of moving objects, using primarily motion information
[18], [19], or by performing in parallel segmentation using
other decision spaces as well (e.g., intensity information) and
employing rule-based processing to enhance the motion seg-
mentation result [20]. The moving-object detection approaches
suffer from their inability to handle objects that halt at some time
and resume moving at a later time; the halted objects are treated
as background and as soon as they start moving again, they are
detected as newly-appearing objects.

In this paper, a homogeneity-based approach is adopted to
address the problem of unsupervised spatiotemporal segmen-
tation. The proposed spatiotemporal segmentation method is
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Fig. 1. Spatiotemporal segmentation algorithm overview.

based on initially applying an efficient two-dimensional (2-D)
segmentation algorithm to the first frame of the image sequence,
to produce an initial segmentation mask comprising regions
which are homogeneous both in color and in motion. Following
that, the formed regions are tracked in the subsequent frames,
using a Bayes classifier and rule-based processing. Newly
introduced regions are also detected and subsequently tracked.
Several variations of this general architecture can be found in
the literature [16], [17]. In contrast to those methods, however,
the proposed algorithm does not group the formed regions to
semantic objects, based on their motion, at the frame level. This
allows for the temporal tracking to be performed at the homoge-
neous region level rather than the semantic object level, using
the Bayes classifier for minimum mean-square error. In this
way, generic objects can be easily tracked, by tracking their con-
stituent homogeneous regions [17]. Motion information is used
at the sequence level to group regions to semantic objects based
on their long-term trajectories, as opposed to [16], [17], and [20].
Thus, the proposed system can efficiently handle objects that are
moving in some frames and are halted in other frames, as op-
posed to systems performing motion-based merging of regions
at the frame level. An overview of the proposed spatiotemporal
segmentation algorithm is presented in Fig. 1.

The general idea of rule-based processing (“combining re-
gions by a set of rules”) was originally presented in [20], where
segmentations of the same frame in different feature spaces were
combined to create a more accurate final segmentation. In our
method, rule-based processing is used for combining different
segmentations of a frame, created by various probabilistic cri-
teria being applied to the color features only. Motion informa-
tion is used in our method at the sequence level, as already
mentioned.

The paper is organized as follows. The segmentation algo-
rithm that uses spatial, color, and motion features to produce
an initial segmentation mask for the first frame of the sequence
is briefly discussed in Section II. In Section III, the algorithm
for tracking the already formed regions in the following frames
and detecting the introduction of new regions is developed. The
grouping in semantic objects of the spatiotemporal regions cre-
ated by the tracking process is presented in Section IV. The
method employed for determining which of the formed regions

correspond to the background is also discussed in this section.
Section V contains the results of an experimental evaluation and
comparison of the developed methods. Finally, conclusions are
drawn in Section VI.

II. FIRST FRAME SEGMENTATION

The segmentation algorithm employed for the segmentation
of the first frame is based on a variant of the -Means-with-
connectivity-constraint algorithm (KMCC), a member of the
popular -Means family [21]. The KMCC algorithm is an al-
gorithm that classifies the pixels into regions, taking into ac-
count not only the color information associated with each pixel
but also the position of the pixel, thus producing connected re-
gions rather than sets of chromatically similar pixels. In the past,
KMCC has been successfully used for model-based image se-
quence coding [22] and content-based watermarking [23]. The
variant used for first-frame segmentation introduces the use of
motion features, in combination with the color and position fea-
tures, using an appropriate pixel-region distance function.

The initial values required by the KMCC algorithm, including
the initial number of regions, are estimated using an initial clus-
tering procedure, based on breaking down the image to square
blocks and assigning a color feature vector and a motion feature
vector to each block [23]. The number of regions of the image
is initially estimated by applying a variant of the maximin algo-
rithm to this set of blocks. This is followed by the application
of a simple -Means algorithm to the blocks, being equal to
the number of regions estimated by the maximin algorithm. Fol-
lowing a component labeling procedure, the spatial, color, and
motion centers of the resulting components are calculated, to be
used as input to KMCC. This automated initial clustering pro-
cedure makes unnecessary any user intervention. The resulting
initial number of regions will be automatically adjusted during
the execution of the KMCC algorithm.

The proposed segmentation algorithm consists of the fol-
lowing stages.

• Stage 1. Extraction of the color and motion feature
vectors corresponding to each pixel

, where
are the frame dimensions. The three color components
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of the CIE color space are used as color fea-
tures, , whereas motion
feature vectors are calculated using a full search
block matching algorithm (FSA). It has been shown that

is more suitable for segmentation applications
than the widely used RGB color space, since it provides
perceptually uniform components [24].

• Stage 2. Estimation of the initial number of regions
and their color, motion, and spatial centers,

, respectively, using the aforementioned
initial clustering procedure. The superscript 1 denotes
that is a spatial region at the first frame of the sequence
(at time ). Region centers are defined throughout
this paper as the mean values of the corresponding pixel
features for all pixels belonging to the region.

• Stage 3. Classification of the pixels to regions using the
KMCC algorithm.

• Stage 4. Initial segmentation mask improvement by partial
reclassification of pixels to the formed regions.

The distance function of a pixel from a region , used by
the KMCC algorithm, is defined as follows:

(1)

where and
are the Euclidian distances between the pixel intensity, motion,
and spatial features and the region intensity, motion, and spatial
centers respectively, is the area of region calculated in
pixels, and is the average area of all regions: .
The regularization parameters are defined as

where is an estimation of the image contrast and
is the maximum allowed block displacements in both di-

rections, used by the FSA.
The result of the application of the segmentation algorithm to

the first frame is a segmentation mask , i.e., a grayscale image
comprising the spatial regions formed by the segmentation algo-
rithm, , in which different gray values

correspond to different regions: .
This mask is used for initiating the tracking process of Sec-
tion III. An overview of the first-frame segmentation algorithm
can be seen in a portion of Fig. 1. A detailed presentation of a
variant of this algorithm can be found in [23].

III. REGION TEMPORAL TRACKING

A. Temporal Tracking Overview

The temporal tracking module has two major functionalities:

• Tracking of existing regions, i.e., determining for each
pixel of frame the region to which it belongs, given
the mask and that region is present at that mask.

Fig. 2. Creation of mask R by temporal tracking, using mask R .

• Detecting the introduction of new objects and forming the
corresponding new regions.

These functionalities correspond to two distinct processing
steps, which are coupled with a mask fusion procedure that
properly combines the output of those steps to produce the seg-
mentation mask for time . Note that, as in the first frame
segmentation, the CIE color space is used for tracking,
due to its perceptual uniformity [24]; thus, before processing a
frame in any way, its color components
must be calculated. Additionally, it should be noted that the
image sequence , where is the total number
of frames to be processed, is assumed to belong to a single
shot; this can be easily enforced by applying a scene-change
detection method, as the one proposed in [25]. An overview of
the proposed temporal tracking algorithm is shown in Fig. 2.
A schematic example of the tracking process and the various
masks estimated during this procedure can be seen in Fig. 3.

Before proceeding in discussing each step of the temporal
tracking algorithm in detail, the notion of spatiotemporal region
should be defined.

Definition: A spatiotemporal region, denoted , is a set of
temporally adjacent spatial regions ,
all of which are nonempty and for

have been created by temporal tracking of spa-
tial region , using the probabilistic framework described in
Sections III-B–III-D

Any constituent spatial region of the spatiotemporal region
can also be symbolized as , where is the segmen-

tation mask corresponding to frame .

B. Tracking Existing Regions

The segmentation mask produced for the first frame of the
sequence is used for tracking the identified regions in the frame
that follows. The tracking process begins by evaluating for each
pixel the color difference between the cur-
rent and the previous frame (2), where are the
pixel color features after a simplification step, namely the ap-
plication of a 3 3 moving average filter to the original pixel
color features . The filter is applied to each com-
ponent of each frame independently. The resulting simplified
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Fig. 3. Schematic example of the tracking process. (a) Frame F . (b) Frame F , containing one rapidly moving object (circle), for which there is no overlapping
between the two frames, another moving object (rectangle), one newly appearing object (triangle), and one nonmoving object (background). (c) Segmentation
mask R . (d) Mask R , containing parts of two preexisting regions (rectangle, background) and five disputed regions. (e) Mask R , containing two regions.
(f) New-region mask R , containing two regions (circle, triangle). (g) Output of the mask fusion procedure: segmentation mask R . Note that the new region
circle identified in mask R has been associated with the circle object of mask R .

Fig. 4. Synthetic example of disputed regions and neighbor sets g : if (a) and (b) denote frames F ; F and (c) is the segmentation mask R , containing
regions s (leftmost rectangle), s (other rectangle), and s (background), then (d) shows the nondisputed pixels at time t (disputed are painted white).
(e) Disputed region s in black, associated with neighbor set g = fs ; s g [its neighbors can be seen in (d)]. (f) Disputed region s in black, associated with
neighbor set g = fs ; s ; s g.

color components are used only in evaluating the aforemen-
tioned color difference and aim at the reduction of the number
of isolated pixels marked as disputed as follows:

(2)

If this difference is below a reasonable threshold ,
pixel is considered to belong to the same region it belonged
to at time , thus where is in-
termediate segmentation mask. Otherwise, pixel is marked
as disputed: where is the
number of spatiotemporal regions identified until time
( ; at time
(see Section II); this may increase with time, as new regions are
identified using the procedure described in Section III-C). In this
way, up to disputed regions are formed in mask ; these
are broken down to the minimum number of connected dis-
puted regions , using a four-connectivity com-
ponent labeling algorithm [26]. Disputed regions are formed
for the purpose of restricting the reclassification of disputed
pixels to their neighboring nondisputed regions (Fig. 4); dis-
puted regions need not be homogeneous in some way, as the
nondisputed ones. Mask [Fig. 3(d)] at this intermediate level
contains the nonchanged parts of the preexisting regions and the

formed disputed regions and will be used for the detection of
newly introduced regions discussed in the next subsection.

Following that, pixels belonging to disputed regions
are classified to one of the nondisputed

regions and , to form the
mask [Fig. 3(e)], as follows. For each disputed region

, the corresponding set of neighboring
regions is identified; a synthetic example of this can be seen
in Fig. 4. The reclassification of each disputed pixel to a
nondisputed neighboring region is then performed using its
color feature vector only, using a Bayes classifier.

According to the Bayes classifier for minimum classification
error [27], a disputed pixel , is assigned to region
if

(3)

Using the Bayes Theorem [27], (3) can be rewritten as

(4)

The probability is the a priori probability of region ,
whereas probability is the density function of the
color features of pixels belonging to region . The latter could
be determined using the normalized histogram of each
color component for the pixels of region . Under the constant
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intensity assumption [28], the histograms at time ,
can be used instead; these are chosen over the histograms at
time , to prevent the calculations from being influenced by his-
togram deterioration due to many pixels being currently marked
as disputed. Thus, we have

(5)

where ;
is the number of pixels of region at time and

are its corresponding histograms.
Assuming that among the pixels of disputed region the a

priori probability of region is equal for all regions
, the classification criterion of (4) is simplified to: dis-

puted pixel , is assigned to region if

(6)

Since no connectivity constraint is enforced during the reclas-
sification of the disputed pixels, the connectivity of the formed
regions must be evaluated as soon as the reclassification is com-
pleted, using a four-connectivity component labeling algorithm
[26]; through this process, any existing nonconnected parts of
the formed regions and any regions smaller than

% of the frame pixels (fragments) are detected and subse-
quently appended: a fragment is appended to region

, where , for which the distance of their color
centers

(7)

is minimum.
The result of this intermediate procedure is a segmentation

mask [ , Fig. 3(e)] containing all nondisappearing regions
that existed in the previous frame. The detection of new objects
and fast-moving ones is described in Section III-C.

C. Detection of New Regions

New object detection is performed by creating a new mask
, containing possible new regions, starting from the inter-

mediate mask (see Section III-B). Following rule-based pro-
cessing, certain disputed regions contained in that mask are
treated as possibly new regions and eventually these are either
discarded or identified as valid new regions. The new-region
mask and mask are then fused, as discussed in Sec-
tion III-D.

For every nondisputed region and
, the following characteristic value is calculated:

The characteristic value is a measure of the homogeneity of
region at time , with respect to its color. For an ideally ho-
mogeneous region , whereas for a region lacking ho-
mogeneity would be close to zero. Since color homogeneity
was a key criterion for the initial formation of regions, value
is expected to be relatively high for all regions .

A similar characteristic value is calculated for every disputed
region as follows:

where is the set of neighbors of disputed region . Value
indicates how the homogeneity of the regions neighboring

, i.e. , would be affected if pixels were re-
assigned to them. Such a low value indicates that the pixels of
disputed region would compromise the homogeneity of any
of its neighboring regions; this is a good indication that a new
object has entered the scene, therefore a new region should be
formed.

Rule 1: A disputed region is identified as
a possible new region if , strictly defined as

For each disputed region that is identified as a possible new
region, the normalized histograms are cal-
culated and the probability is defined as

Rule 2: For every pixel of possible new region , mask
, initially , is updated by

Following the processing of all disputed regions of mask
according to rules 1 and 2, a component labeling algo-

rithm is applied to mask and connected components
that exceed a predefined size threshold , defined as

% of the total number of pixels of a
frame, are identified as valid new regions. These receive new
labels being the number of new
regions identified at time and being the number of
preexisting spatiotemporal regions.

D. Segmentation Mask Fusion

As soon as new object mask [Fig. 3(f)] is formed, seg-
mentation masks and [Fig. 3(e)] are fused to mask
[Fig. 3(g)], according to the following equation:

(8)

Following that, the merging of new regions with existing ones
and the association of new regions with extinct ones are evalu-
ated using rules 3 and 4.

Rule 3: A new region , is
appended to neighboring region , if their color
distance [see (7)] is below a threshold .

The above ensures that the color centers of any given new
region are not particularly similar to those of an existing neigh-
boring region; if this is the case, the new region is most likely to
be part of that preexisting region, and therefore it is appended
to it.
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Rule 4: A new region is asso-
ciated with extinct region if their
color distance is below a threshold and their
spatial distance is below a
threshold . The distances are calculated using the color and
spatial centers of regions at time and , respectively.
Following a successful association, pixels of region in re-
ceive the label of region and region ceases to exist.

Thresholds in the above rules require rea-
sonable values (in our experiments,

); small deviations from these values
should not influence the output of the algorithm, as experimen-
tally demonstrated in Section V.

The association of newly appearing objects at time with ob-
jects that become extinct at the same time is important for the
tracking of fast-moving objects that do not overlap if adjacent
frames are superimposed. These initially become extinct and
subsequently are associated with a newly appearing object, as
described by rule 4. To avoid making the smooth motion as-
sumption regarding region motion [29], which frequently fails
(see the ball object in Fig. 11), rule 4 does not take into account
the motion of the regions. The fact that not all regions have to be
associated between adjacent frames (as in video segmentation
schemes relying on segmenting each frame independently), but
only the regions for which tracking is lost, makes this approach
feasible. A demonstration of tracking a fast-moving object is in-
cluded in the experimental results section of this paper.

To enforce region connectivity, the above rule-based pro-
cessing is followed by the application of the four-connectivity
component labeling algorithm to mask and the merging of
any small nonconnected parts of the existing regions based on
color similarity, as in Section III-B.

IV. TRAJECTORY-BASED REGION MERGING AND

BACKGROUND DETECTION

A. Region Trajectory Calculation

The third and final module of the proposed segmentation al-
gorithm aims at grouping the tracked regions to different se-
mantic objects to produce the final segmentation masks

. This grouping will be performed using motion infor-
mation, i.e., the trajectories of the spatiotemporal regions over
the processed frames. It is therefore of importance to accurately
calculate the trajectory of each tracked region.

Several motion estimation algorithms aimed at various
applications have been proposed in the literature [30]–[32];
most of them belong to the family of block matching algorithms
(BMAs) [33], [34]. In the proposed segmentation algorithm,
an FSA is used. Although computationally intensive, the full
search algorithm has the advantage of not relying on the
assumption that the mean absolute difference (MAD) distortion
function increases monotonically as the search location moves
away from the global minimum, thus producing more accurate
motion vectors than most fast block matching techniques. In
addition to that, hardware implementation of the full search
algorithm is much easier than that of other block matching
algorithms due to its simplicity and regularity [35].

Following the calculation of motion vector
for every block , where

and is the dimen-
sion of the square blocks, the motion of region

, at time is estimated by the motion vectors of the
blocks belonging to it, using a least-squares approximation.
The bilinear motion model [36] is used for approximating
the motion of each region, being less susceptible to noise
than the commonly used affine model [37]. To accommodate
for possibly erroneous block motion vectors, due to blocks
overlapping moving object contours or due to extreme color
uniformity in parts of the frame, an iterative rejection scheme
is employed in estimating the parameters of the bilinear model
[36]; specifically, for each frame, the region motion parameters
are estimated and those blocks whose estimation error is higher
than the average are rejected. Upon convergence, the parameters

that minimize the motion compensation error
are estimated using the least-squares estimation method. Let

, be the blocks belonging to region . Then,

(9)

where is the block motion vector of
block belonging to region , calculated by block matching,
and

(10)

Variables are the spatial coordinates of block . This
process is similar to that suggested in [36] for global motion
estimation, with the difference that in our case it is applied to
arbitrarily-shaped spatial regions rather than entire frames.

This process produces a region motion parameter vector
; estimating for every provides a

region trajectory matrix , given as

(11)

Since region is not necessarily present in all segmentation
masks , a function is used to monitor
its presence as follows:

(12)

B. Unsupervised Region Merging

The goal of the trajectory-based region merging module is
to group the tracked homogeneous regions to semantic objects
under the assumption that regions belonging to the same ob-
ject have similar trajectories, as opposed to regions belonging
to different objects. It is further assumed that any object at any
given time should be a spatially connected component. To help
enforce the latter, the notion of spatiotemporal neighbors is
defined.

Definition: Two regions , are spatiotemporal neigh-
bors if they co-exist in at least one segmentation mask

, and they are spatial neighbors
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Fig. 5. Example of spatiotemporal neighbors: if the white, gray, and black regions in the above six frames denote spatiotemporal regions s ; s , and s ,
respectively, then s and s are spatiotemporal neighbors; s and s are spatiotemporal neighbors as well, despite the fact that s is not present in (f). Regions
s and s are not spatiotemporal neighbors, because s and s are not spatial neighbors for t = 1; 2; 6 [(a), (b), and (f)], despite the fact that they are spatial
neighbors for t = 3; 4; 5 [(c), (d), and (e), respectively].

in all segmentation masks that they co-exist in. A synthetic
example of spatiotemporal neighbors is given in Fig. 5.

The motion similarity of regions and that
are spatiotemporal neighbors over the examined frames is
defined by means of a per-frame motion distance

(13)

where is the motion similarity of the two regions
at time (equivalently, the motion distance of the two spatial
regions ), to be defined in the sequel.

The motion similarity of spatial regions is usually measured
by the increment of mean-square motion compensation error
[17]. Let be the sum of square compensation
errors for regions at time , comprising blocks,
respectively, and let be the corresponding
sum of square compensation errors using the motion model cal-
culated for region . Then, the increment of mean-square
motion compensation error is defined as

However, this similarity measure is not reliable when the sizes
of the two examined regions are significantly different.

In such cases, if, for example, , the motion model
parameters for region are approximately equal to those
for region , thus and

. Even if the average incre-
ment of the mean-square motion compensation error for the
pixels of region , is sufficiently
high, indicating that the new motion model cannot adequately
express its motion, can be sufficiently low for a
merging to take place, since . For the table tennis se-
quence [first frame in Fig. 6(a)], this is demonstrated in Fig. 7(a)
and (c), where small parts of the hand are merged with the sig-
nificantly larger background area, instead of merging with other
parts of the hand. To alleviate this problem, a new similarity
measure is proposed, the sum of mean-square error
increments, that demands both regions to be sufficiently well
represented by their common motion model for a merging to
take place:

The improvement achieved by adopting this region similarity
measure is illustrated in Fig. 7.

The trajectory-based region merging stage begins by en-
forcing the following two rules to the spatiotemporal regions
formed, in order to eliminate regions that are too thin or
have a short temporal duration, and thus cannot qualify for
representing a semantic object on their own.

Rule 5: If region has a temporal duration, calculated in
the number of frames, shorter than

, then it is forced to merge with its spatiotemporal neighbor
for which the distance is minimized.

Rule 6: If region is particularly thin,
,

where is the region size in pixels and
are the dimensions of its bounding box at time ,

then it is forced to merge with its spatiotemporal neighbor
that satisfies the following conditions:

(14)

(15)

and for which the distance is minimized. If no spa-
tiotemporal neighbor that satisfies the above conditions ex-
ists, condition (14) is dropped, followed by condition (15) if nec-
essary.

After the above two rules have been enforced, the remaining
regions are merged in an agglomerative manner [15], starting
from the region pairs for which the distance is min-
imized. After each merging, the motion parameter matrix of
the resulting region is updated. This process is similar in na-
ture with the Recursive Shortest Spanning Tree segmentation
method [14], where neighboring nodes are merged while con-
sidering the minimum of a cost function, and the cost value of
the new node is recalculated after the merging.

The merging process is based on the assumption that, for
the given region similarity measure, the desired mergings (e.g.,
mergings between spatiotemporal regions belonging to the same
object) are characterized by a lower value of the region simi-
larity measure, thus precede undesired mergings (those between
differently moving objects). Therefore, to allow for unsuper-
vised termination of this procedure, the point must be detected
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Fig. 6. First frame segmentation results for the CIF sequences (a) table
tennis and (b) coastguard: sequence first frame. (c) and (d) Corresponding
segmentation masks before the application of the Bayes-based enhancement
stage. (e) and (f) Corresponding segmentation masks after the application of
the enhancement stage. It is evident, particularly in the case of the tennis ball,
that the Bayes-based enhancement stage is effective in improving the initial
segmentation. (g) and (h) Results using the still-image segmentation method
of [20]. Not using motion features and attempting to avoid over-segmentation
resulted in small but important moving objects (racket, ball, and coastguard
ship) being missed.

where the last desired merging is followed by the first undesired
one. Since this transition is expected to result in a large step-up
of the value of the region similarity measure, as opposed to less
significant changes induced by consecutive desired or consecu-
tive undesired mergings, the process should stop when the ratio
of the error increase function between successive mergings is
maximized. The values of this ratio and the merging termina-
tion point are shown in Fig. 13 for four sequences.

Let be the value of the region sim-
ilarity measure for the merging that reduces the spa-
tiotemporal regions to : . These

Fig. 7. Supervised segmentation results for the CIF sequence table tennis:
(a) measuring region similarity by the increment of mean-square motion
compensation error, region number set to 8. (b) Measuring region similarity by
the sum of the mean-square error increments, for the same number of regions.
(c) and (d) Region number set to 6, region similarity measured as in (a) and
(b), respectively. It can be seen that the proposed region similarity measure [(b)
and (d)] performs better than the traditional approach used in (a) and (c).

Fig. 8. Comparison between Bayes-based reclassification and Euclidean-
distance-based reclassification for the improvement stage of the first frame
segmentation. (a) Detail of the first frame of the coastguard sequence.
(b) Coastguard ship after Euclidean-distance-based reclassification. (c) After
Bayes-based reclassification. It is clear that region boundaries are better formed
in (c).

values are computed prior to the actual merging procedure by
a simulation of it. Then, the actual agglomerative procedure
merges regions until the following ratio:

(16)

is maximized (for example, for the coastguard sequence the ratio
is maximized for (Fig. 13), thus three final objects are
created). According to (16), mergings characterized by a re-
gion similarity value lower or equal to are positively
desired; for the remaining ones, the error increase ratio is eval-
uated. Although the simplest case could be as-
sumed (meaning that only mergings not resulting in an increase
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Fig. 9. Segmentation results for the first 30 frames of the CIF table tennis sequence. (a), (d), (g), and (j) Segmentation masks for frames ]1; ]10; ]20, and
]30, respectively, produced by the proposed segmentation algorithm. The region identified as background is painted white. (b), (b), (h), and (k) Corresponding
segmentation results of Sifakis. (c), (f), (i), and (l) Corresponding segmentation results of the Cost211 Analysis Model.

of the sum of motion compensation errors are positively de-
sired), a slightly higher value was found to improve the robust-
ness of the merging termination. In our experiments, the value

was used; however, as documented in Section V,
the quality of the results is in fact highly insensitive to the value
of this threshold.

C. Supervised Region Merging

While this study addresses the problem of unsupervised spa-
tiotemporal segmentation, supervised operation of the proposed
algorithm is also possible by allowing the user to manually de-
fine the number of objects to be finally formed. Conformance
to the user’s desire is made possible by controlling the termina-
tion of the agglomerative process of the previous section by con-
stantly evaluating the number of formed regions; region merging

continues until the number of objects has reached the desired
one. It is assumed that the desired number of objects is not
greater than the number of remaining regions, after the enforce-
ment of rules 5 and 6; this assumption is valid in practice, since
experiments demonstrate that the frames before the application
of the trajectory-based merging are oversegmented.

D. Background Region Detection

Detecting which of the regions formed denotes the
background can be useful both in coding and in indexing
applications. Background detection, as soon as the image
sequence has been segmented to spatiotemporal objects, relies
on estimating the motion of the camera [38] and marking as
background the object or objects whose perceived trajectory is
coherent with the estimated camera motion.
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Fig. 10. Segmentation results for the first 30 frames of the CIF coastguard
sequence. (a), (c), (e), and (g) Segmentation masks for frames ]1; ]10; ]20, and
]30, respectively, produced by the proposed segmentation algorithm. The region
identified as background is painted white. (b), (d), (f), and (h) Corresponding
segmentation results of Sifakis. The Cost211 Analysis Model could not identify
any moving objects in the T = 30 first frames of this sequence; a moving object
was identified in following frames.

Camera motion is estimated by the method suggested in [36]
and employed, in combination with segmentation information,
for region motion estimation in Section IV-A. This process pro-
duces a camera trajectory matrix containing the parameters of
the bilinear motion model for all frames, by applying the itera-
tive rejection scheme to all blocks of each frame. Then, for every
object the following error increment function is calculated:

(17)

Fig. 11. Tracking results for a temporally subsampled by three table tennis
sequence, T = 10. (a)–(h) Final segmentation masks for frames 2–9, namely,
frames ]4; ]7; ]10; ]13; ]16; ]19; ]22, and ]25 of the original sequence. The
tennis ball is being tracked, although there is no overlapping of the ball object
between frames corresponding to mask pairs (b)–(c), (d)–(e), and (g)–(h).

Fig. 12. Segmentation results for a modified road surveillance sequence,
where T = 20 but frames ]5 to ]15 are identical; thus, the modified sequence
shows an object (car) that moves in frames ]1 to ]5, then halts for the next ten
frames, and subsequently resumes moving. (a) First frame. (b)–(d) Segmenta-
tion masks for frames ]1; ]10; and ]20, respectively.

where ;
are the mean-square motion compensation errors for region
at time , using the model parameters calculated for this region
[region trajectory matrix , see (11)] and for the camera
(camera trajectory matrix ), respectively.

If the background is treated as a spatiotemporal object itself,
then it can only be made of a single connected component in
order to comply with the connectivity constraint; this would
be the spatiotemporal region for which the value is
minimum. Alternately, if the constraint for background connec-
tivity is relaxed, as was the case in our experiments, an arbitrary
number of spatiotemporal regions may be assigned to the back-
ground, defined as the union of all regions for which the value

falls bellow an appropriate threshold.
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Fig. 13. Error increase ratio as a function of the number of regions. Starting
from the spatiotemporal regions produced by the temporal tracking module,
trajectory-based region merging takes place in an agglomerative fashion. This
process is terminated when the next merging to take place would take the error
increase ratio function to its global maximum. The termination point, indicating
the final number of objects created by the algorithm, is marked with a star in the
above diagrams. The values of the error increase ratio function are computed
prior to the actual merging procedure by a simulation of it.

V. EXPERIMENTAL RESULTS

The proposed algorithms were tested on a number of test
sequences. Here, results are presented for the table tennis and
coastguard CIF sequences, as well as two temporally modified
CIF sequences and the Miss America QCIF sequence.

Initially, the algorithm for first-frame segmentation, described
in Section II, was applied to the first frame of each sequence. In
Fig. 6(a) and (b), the first frames of two sequences are shown,
followed by the corresponding segmentation masks [Fig. 6(c)
and (d)] after the convergence of the KMCC algorithm.

At this point a variant of the Bayes classification procedure
described in Section III-B can be used for the initial mask im-
provement mentioned in Section II. This improvement stage re-
classifies the pixels on edges between objects, using a Bayesian
approach similar to the one described in Section III. Compared
to the approach of Section III, pixels are marked as disputed
by evaluating their proximity to region boundaries rather than
color difference between adjacent frames. The normalized his-
tograms for each region are calculated using only the pixels not
marked as disputed. The output of this procedure is presented
in Fig. 6(e) and (f). The usefulness of the improvement stage
can be seen in Fig. 6(e), where the tennis ball has a better shape
than in Fig. 6(c). Note that in both cases the first frame has been
somewhat oversegmented and, after the application of the afore-
mentioned improvement stage, no region contains parts of the
image belonging to two or more semantic objects. Comparison
with the still-image segmentation method of [23] shows the im-
portance of using motion features in detecting small but impor-
tant moving objects in the first frame [Fig. 6(g) and (h)]. Fig. 8
illustrates the superior performance of the Bayes-based reclas-
sification when compared to the Euclidean-distance-based re-
classification scheme, where pixels are assigned based on their
color difference with region centers.

Fig. 14. Segmentation results for the QCIF Miss America sequence, where
T = 30. (a) First frame. (b)–(d) Segmentation masks for frames ]1; ]10; and
]20, respectively.

Following the extraction of mask (segmentation mask cor-
responding to the first frame), tracking, as described in Sec-
tion III, is performed for the remaining frames of the sequence;
in our experiments, frames to , where for the table
tennis and coastguard sequences. The tracked regions are then
grouped to semantic objects using the unsupervised framework
of Section IV-B (Figs. 9 and 10). Before the creation of the final
segmentation masks shown in the aforementioned figures, the
background region detection method of Section IV-D was also
performed to identify which of the formed regions should be
assigned to the background. The resulting background object is
shown in white in those figures.

In addition to these experiments, the temporal tracking and
unsupervised trajectory-based merging algorithms were also ap-
plied to the first 10 frames of a temporally subsampled by three
table tennis sequence (Fig. 11), using the first frame segmen-
tation mask of Fig. 6(e). This aims to demonstrate the tracking
algorithm’s capability to handle fast moving objects that do not
overlap if adjacent frames are superimposed, in this case the ball
object.

In order to experimentally assess the advantage of employing
the long-term trajectory of regions, a modified road surveillance
sequence was used, with and frames to being
identical; thus, the modified sequence contains an object (car)
that moves in frames to , halts for the next ten frames, and
subsequently resumes moving. As shown in Fig. 12, the proposed
unsupervised algorithm identified correctly the moving object
in all frames, whereas any algorithm performing region merging
based on motion at the frame level would have lost track of it.

As can be seen from all of the aforementioned figures, the
image regions have been tracked successfully and the proposed
trajectory-based merging has grouped them in meaningful
objects. Furthermore, the background detection module has
succeeded in identifying the appropriate regions as background.
In Fig. 13, the different values of the error increase ratio of (16)
during theagglomerative mergingprocedure, and the termination
point of it, are shown for four sequences. Table I presents, for
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TABLE I
VALUES OF REGION SIMILARITY MEASURE FOR DESIRED/UNDESIRED MERGINGS

TABLE II
THRESHOLD DEPENDENCY EXPERIMENTS

Fig. 15. (a)–(d) Consequences of using threshold values deviating from those suggested, as discussed in Table II. In all cases the results are of good quality. In
those cases where the automatic termination of the trajectory-based merging procedure fails, as in (c), supervised segmentation can be used to produce the desired
number of objects.

each sequence, the values of region similarity measure
for the last merging performed (last desired one) and the one
that could have followed it (first undesired one). These figures
support the claim that the choice is not restrictive
or critical (Section IV-B); the minimum experimental value of

for a merging judged as undesired is over 15 times higher.
Additionally, Table Iclearly shows thatusinga fixed threshold for
terminating the merging procedure would have been insufficient.

The proposed unsupervised algorithm was also applied to the
Miss America QCIF sequence; results for are presented
in Fig. 14.

To test the threshold dependency of the algorithm, some ad-
ditional tests were conducted using threshold values deviating
from those described in the previous sections. The values used
for these tests and the corresponding results for the table tennis
sequence are summarized in Table II and Fig. 15; in all cases
the results are satisfactory. Comparable to these are the results
for the temporally subsampled table tennis, the modified road
surveillance, and the Miss America sequences. The coastguard

sequence was found to be immune to these threshold changes:
in all cases, three correct objects were created.

The results of the proposed unsupervised video segmentation
algorithm compare favorably to the results presented by Sifakis
[18], [39], where moving objects are detected by change detec-
tion using an appropriate reference frame and by subsequent ob-
ject localization using local color features. The proposed video
segmentation algorithm also compares favorably to the Cost211
Analysis Model [20]; this could not identify any moving ob-
jects in the first frames of the coastguard sequence
(Fig. 10); a moving object was identified in following frames.
Results of the Cost211 Analysis Model [20] for the table tennis
sequence are shown in Fig. 9; results of Sifakis [18] can be
seen in Figs. 9 and 10. Additional comparisons using the Miss
America sequence reveal that the proposed method does not pro-
duce oversegmentation of the facial area in contrast to, e.g., [17],
while in the table tennis sequence the ball is correctly tracked
in all frames, unlike, e.g., [40], where in some frames the ball is
merged with the background.
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TABLE III
LEGEND OF SYMBOLS

VI. CONCLUSION

A methodology was presented for the segmentation of image
sequences to semantic spatiotemporal objects. The proposed
methodology is based on the popular scheme of segmenting
the first frame and tracking the identified regions through the
remaining frames. However, it employs novel algorithms both
for first-frame segmentation and for tracking. In addition to
that, motion is handled in a different way, as it is utilized at the
sequence level rather than the frame level for merging regions
to semantic objects. The unsupervised video segmentation
algorithm resulting from combining the above algorithms
handles fast-moving, newly appearing, and disappearing re-
gions efficiently, as discussed in Section III and demonstrated
experimentally.

The proposed video segmentation algorithm is appropriate
for use as part of a content-based video coding scheme, in the
context of the MPEG-4 standard, or a content-based multimedia
application, such as video object querying, in the context of the
MPEG-7 standard.
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