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ABSTRACT
In this paper, a motion-based approach for detecting high-
level semantic events in video sequences is presented. Its
main characteristic is its generic nature, i.e. it can be di-
rectly applied to any possible domain of concern without the
need for domain-specific algorithmic modifications or adap-
tations. For realizing event detection, the video is initially
segmented into shots and for every resulting shot appropri-
ate motion features are extracted at fixed time intervals,
thus forming a motion observation sequence. Then, Hidden
Markov Models (HMMs) are employed for associating each
shot with a semantic event based on its formed observation
sequence. Regarding the motion feature extraction proce-
dure, a new representation for providing local-level motion
information to HMMs is presented, while motion character-
istics from previous frames are also exploited. The latter
is based on the observation that motion information from
previous frames can provide valuable cues for interpreting
the semantics present in a particular frame. Experimental
results as well as comparative evaluation from the applica-
tion of the proposed approach in the domains of tennis and
news broadcast video are presented.

Categories and Subject Descriptors
I.2.6 [Learning]: Concept learning; I.2.10 [Vision and
Scene Understanding]: Video analysis; I.4.8 [Scene Anal-
ysis]: Motion

General Terms
Algorithms, Experimentation

Keywords
Hidden Markov Models, event detection, motion represen-
tation, accumulated motion fields
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1. INTRODUCTION
Given the continuously increasing amount of video con-

tent generated everyday and the richness of the available
means for sharing and distributing it, the need for efficient
and advanced methodologies regarding video manipulation
emerges as a challenging and imperative issue. As a con-
sequence, intense research efforts have concentrated in the
development of sophisticated and user-friendly systems for
skilful management of video sequences [3][6]. To this end,
several approaches have been proposed in the literature re-
garding the tasks of indexing, searching, summarization and
retrieval of video content [23][15].

Most recent approaches adopt the fundamental principle
of shifting video manipulation techniques towards the pro-
cessing of the visual content at a semantic level, thus at-
tempting to bridge the so called semantic gap [22] and ef-
ficiently capture the underlying semantics of the content.
Among these methodologies, approaches that exploit a pri-
ori knowledge have been particularly favored and have so far
exhibited promising results. Prior knowledge, when used,
guides low-level features extraction and facilitates high-level
description derivation and semantic inference.

Depending on the adopted knowledge acquisition process,
knowledge-assisted techniques are mainly divided into two
categories, namely model-based and Machine Learning (ML)-
based approaches. Model-based techniques make use of ex-
plicitly defined axioms, facts and rules, which are stored
in appropriate knowledge structures such as ontologies and
semantic nets. In [8], an ontology framework is proposed
for detecting events in video sequences, based on the notion
that complex events are constructed from simpler ones by
operations such as sequencing, iteration and alternation. A
large-scale concept ontology for multimedia (LSCOM) is de-
signed in [17] to simultaneously cover a large semantic space
and increase observability in diverse broadcast news video
data sets. On the other hand, ML-based approaches utilize
probabilistic methods for acquiring the appropriate implicit
knowledge that will enable the mapping of the low-level
audio-visual data to high-level semantic concepts and en-
tities. In [28], a HMM-based framework is proposed, which
models semantics in different levels of semantic granularity
and supports the decomposition of complex analysis prob-
lems into simpler sub-problems. Moreover, in [20], Support
Vector Machines (SVMs), which perform on top of specific
feature detectors, are employed for detecting semantically
meaningful events in broadcast video of multiple field sports.
Although many methods have already been presented for re-
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alizing knowledge-assisted video analysis, most of them are
only limited to domain specific applications, i.e. they ex-
ploit specific facts and characteristics that are only present
in the examined domain, thus failing to effectively handle
the problem of semantic video analysis at a more generic
level.

In this paper, a motion-based approach for detecting high-
level semantic events in video sequences, while making use
of ML algorithms for implicit knowledge acquisition, is pre-
sented. On the contrary to the majority of the methods
present in the relevant literature, its main characteristic is
its generic nature, i.e. it can be directly applied to any pos-
sible domain of concern without the need for domain-specific
algorithmic modifications or adaptations. In particular, only
the high-level semantic events of concern need to be defined
and a corresponding set of annotated video content needs
to be provided for training purposes. The former represent
semantically meaningful incidents that are of interest in a
possible application case and have a temporal duration. For
realizing event detection, the examined video sequence is
initially segmented into shots. For every shot appropriate
motion features are extracted at fixed time intervals, thus
forming a motion observation sequence. Then, HMMs are
employed for performing the association of each shot with
one of the supported events based on its formed observa-
tion sequence. Prior to this, the provided set of annotated
video content is used for training the utilized HMMs, i.e.
for acquiring the appropriate implicit knowledge that will
enable the mapping of the low-level audio-visual data to the
defined high-level semantic events. Regarding the motion
feature extraction procedure, unlike the majority of the ap-
proaches of the relevant literature, local-level analysis is sup-
ported for efficiently capturing the semantics of the visual
medium. This is based on a new representation for provid-
ing local-level motion information to HMMs and is different
in nature from the ‘points of interest’-based local-level anal-
ysis commonly used for dedicated tasks like human action
recognition [21]. Furthermore, motion characteristics from
previous frames are additionally exploited. This is based
on the observation that motion information from previous
frames can provide valuable cues for interpreting the seman-
tics present in a particular frame and results into an accu-
mulated motion field. The final outcome of the overall video
analysis framework outlined above is a semantic event as-
sociated with every shot, to which the examined video is
decomposed. Experimental results as well as comparative
evaluation from the application of the proposed approach
in the domains of tennis and news broadcast video are pre-
sented.

The paper is organized as follows: Section 2 presents an
overview of the relevant literature. Section 3 describes how
HMMs are employed for realizing semantic event detection.
The video pre-processing steps are described in Section 4.
Section 5 outlines the proposed local-level motion represen-
tation and Section 6 details the methodology followed for
incorporating motion characteristics from previous frames.
Experimental results are presented in Section 7 and conclu-
sions are drawn in Section 8.

2. RELATED WORK
HMMs have been widely used in speech recognition sys-

tems, due to their reported capability in modeling pattern
recognition problems that exhibit an inherent temporality

[19]. The wide variety of approaches where HMMs have
been utilized include [25], where an HMM-based system is
developed for recognizing distant-talking speech, [5], where
a framework of online hierarchical transformation of HMM
parameters is proposed for adaptive speech recognition, [24],
where a weighted HMM and a subspace projection algorithm
are proposed to address the discrimination and robustness
issues for HMM-based speech recognition, and [29], where a
scalable architecture for realizing real-time speech recogniz-
ers is presented.

Many recent research efforts in the field of semantic video
analysis have also adopted the HMM theory as well in an
attempt to benefit from the significant advantages and char-
acteristics that HMMs present. In [11], a HMM-based sys-
tem is proposed for performing joint scene classification and
video temporal segmentation. In [9], a comparative study of
three individual approaches for solving the problem of au-
dio/visual mapping with the usage of HMMs is presented.
Wang et al. proposes a multi-level framework to automati-
cally recognize the genre of sports video [26]. Additionally,
in [10], a HMM-based system is presented for categorizing a
video sequence into one of a set of predefined sport classes.

An important topic in video analysis tasks is the detec-
tion of high-level semantic events, i.e. incidents that are of
increased semantical importance and which can be used for
realizing efficient and effective video indexing, searching and
retrieval. Thus, increased research activity has been devoted
in the development of appropriate systems for accurate and
robust detection of semantic events in videos for several ap-
plication cases. In [4], a HMM-based system is developed
for extracting highlights from baseball game videos. An ap-
proach that supports the detection of events such as ‘foul’
and ‘shot at the basket’ in basketball videos is presented in
[16]. Additionally, Gaussian Mixture Hidden Markov Mod-
els (GMHMMs) are used in [14] for identifying traffic events.
In [28], a HMM-based framework is presented, where events
are detected under the fundamental principle of decompos-
ing a complex analysis problem into simpler sub-problems
and automatically integrating those subproblems for recog-
nition. Moreover, HMMs are used in [27] for identifying
the events ‘play’ and ‘break’ in soccer videos. Additional
approaches include the works of [2] and [12], where layered
HMMs and a priori domain specific information is integrated
into HMMs, respectively.

Despite the plurality of the proposed approaches and the
significant results that have already been presented, the ma-
jority of the developed algorithms are domain specific and
the need for a generic approach arises as a challenging re-
search issue. Moreover, motion analysis is mainly limited to
global or camera motion level, which is not always adequate.
In the following sections the individual steps of the proposed
method which aims to overcome the aforementioned limita-
tions are presented in detail.

3. HIDDEN MARKOV MODELS
HMMs constitute a powerful statistical tool for solving

problems that have an inherent temporality, i.e. they consist
of a process that unfolds in time [19][7]. The fundamental
idea is that every process is made of a set of internal states
and every state generates an observation when the process
lies in that state. Thus, the sequential transition of the pro-
cess among its constituent states generates a corresponding
observation sequence. The latter is characteristic for every
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different process. It must be noted that a HMM requires a
set of suitable training data for adjusting its internal struc-
ture, i.e. for efficiently modeling the process with which it
is associated. At the evaluation stage, a HMM, which re-
ceives as input a possible observation sequence, estimates a
posterior probability, which denotes the fitness of the input
sequence to that model.

Under the proposed approach, HMMs are employed for
detecting high-level semantic events in video sequences. In
accordance to the HMM theory, each event corresponds to
a process that is to be modeled by an individual HMM
and the features extracted from the video stream constitute
the respective observation sequences. More specifically, the
first step in the development of the proposed video analysis
framework is the definition of a set of high-level semantic
events, denoted by E = {ej , j = 1, ..J}. The latter repre-
sent semantically meaningful incidents that are of interest
in a possible application case and have a temporal duration.
A set of annotated video content, denoted by Utr, is used
for training the utilized HMMs, while a similar set, denoted
by Ute, is formed for the subsequent evaluation stage.

4. VIDEO PRE-PROCESSING
At the signal level, the examined video sequence is initially

segmented into shots, which constitute the elementary im-
age sequences of video. For shot detection the algorithm of
[13] is used, mainly due to its low computational complexity.
Output of the segmentation algorithm is a set of shots, de-
noted by S = {si, i = 1, ...I}, to which the examined video
is decomposed. Under the proposed approach each shot will
be associated with one of the supported events, ej , on the
basis of its semantic contents.

After the examined video is segmented into shots, a set
of frames are selected at equally spaced time intervals for
each shot si starting with the first frame of it. The time
interval between two sequentially selected frames, i.e. the
temporal sampling frequency, is denoted by SFt. Then, a
dense motion field is estimated for every selected frame. The
optical flow estimation algorithm of [18] was used for com-
puting this dense motion field, since satisfactory results can
be obtained by its application in a variety of motion es-
timation cases. From the computed dense motion field a
corresponding motion energy field is calculated, according
to the following equation:

K(b, c, t) = ‖−−−−−→V (b, c, t)‖ (1)

where
−−−−−→
V (b, c, t) is the estimated dense motion field, ‖.‖ de-

notes the norm of a vector, and K(b, c, t) is the resulting
motion energy field. Variables b, c get values in the ranges
[1, Vdim] and [1, Hdim] respectively, where Vdim and Hdim

are the motion field vertical and horizontal dimensions, whe-
reas variable t denotes the temporal order of the selected
frames. The choice of transforming the motion vector field
to an energy field is justified by the observation that often
the latter provides more appropriate information for motion-
based recognition problems [28]. Then, low-pass filtering is
performed to the computed field for denoising and removing
intense motion discontinuities. The resulting low-passed mo-
tion energy field, M(b, c, t), is of high dimensionality, which
decelerates the video processing, while motion information
at this level of detail is not always required for the analysis
purposes. Thus, it is consequently down-sampled, according

to the following equations:

R(x, y, t) = M(
2x − 1

2
· V Sstep,

2y − 1

2
· HSstep, t) (2)

x = 1, ...D , y = 1, ...D (3)

V Sstep =
Vdim

D
, HSstep =

Hdim

D
(4)

where R(x, y, t) is the estimated down-sampled motion en-
ergy field and HSstep, V Sstep are the corresponding hori-
zontal and vertical spatial sampling frequencies. As can be
seen from Eq. 3, the dimensions of the down-sampled field
are predetermined and set equal to D. Since the aforemen-
tioned down-sampled motion energy fields, R(x, y, t), are es-
timated for all the selected frames of each shot si, they are
in turn utilized to compute the respective motion observa-
tion sequence. The latter will be used in order to associate
the respective shot with a particular event ej , as will be
described in the sequel.

5. POLYNOMIAL APPROXIMATION
As already described in Section 2, the majority of the

methods present in the relevant literature are focusing only
at global- or camera-level motion processing approaches [10]
[16]. Nevertheless, local-level analysis of the motion signal
can provide significant cues which, if suitably exploited, can
facilitate in efficiently capturing the underlying semantics of
the examined video. Thus, a new representation for provid-
ing local-level motion information to HMMs is presented.

According to the HMM theory [19], the set of sequen-
tial observation vectors that constitute an observation se-
quence need to be of fixed length and simultaneously of low-
dimensionality. The latter constraint ensures the avoidance
of HMM under-training occurrences. Thus, a compact and
discriminative representation of motion features is required.
For that purpose, the down-sampled motion energy field,
R(x, y, t), estimated for every selected frame (as described
in Section 4), and which actually represents a motion energy
distribution surface, is approximated by a 2D polynomial
function, of the following form:

f(p, q) =
∑
k,l

akl · ((p − p0)
k · (q − q0)

l) , (5)

0 ≤ k, l ≤ T and 0 ≤ k + l ≤ T (6)

where T is the order of the function, akl its coefficients and
p0, q0 are defined as p0 = q0 = D

2
. The approximation was

performed using the least-squares method. In Fig. 1, indica-
tive motion energy field approximation results are illustrated
for tennis broadcast videos, showing the selected frame (first
column), the estimated dense motion field (second column),
the resulting motion energy field (third column) and its cor-

responding polynomial approximation, R̂(x, y, t), (column
4). As can be seen from this figure, the polynomial ap-
proximation efficiently captures the most dominant motion
characteristics.

The polynomial coefficients are calculated for every se-
lected frame and are used to form an observation vector.
These observation vectors are in turn utilized to form a re-
spective shot observation sequence, namely the motion ob-
servation sequence, as described in Section 1. Then, a set of
J HMMs is employed, where an individual HMM is intro-

223



duced for every defined event ej , in order to perform the as-
sociation of the examined shot, si, with the defined events,
ej , based on motion information. More specifically, each
HMM receives as input the aforementioned motion observa-
tion sequence and at the evaluation stage returns a poste-
rior probability, which represents the observation sequence’s
fitness to the particular model. This probability indicates
the degree of confidence, denoted by hij , with which event
ej is associated with shot si. The pairs of all supported
events and their respective degrees of confidence computed
for shot si, comprise the shot’s hypothesis set Hi, where
Hi = {hij , j = 1, ...J}.

The proposed approximation of motion energy distribu-
tion approach, although quite simple, accomplishes to pro-
vide a very compact motion representation, since it esti-
mates a low-dimensionality observation vector, while achiev-
ing to efficiently capture the most dominant motion charac-
teristics of the examined frame. Despite its sometimes rough
approximation, the polynomial coefficients accomplish to en-
compass even relatively small motion energy changes. Thus,
polynomial coefficients, as will be shown in the experimen-
tations part as well, constitute an effective motion represen-
tation approach for HMMs, since the estimated observation
vectors are of low-dimensionality and simultaneously they
are made of adequately statistical independent quantities,
which facilitate HMMs to efficiently adjust their internal
structure to these data.

6. ACCUMULATED MOTION ENERGY
FIELD COMPUTATION

As described in the previous section, motion energy infor-
mation and especially local-level motion energy distribution
information from sequentially selected frames can provide
valuable cues which can significantly facilitate the detection
of high-level semantic events in videos. Nevertheless, motion
energy distribution at a particular frame may not always
provide adequate amount of information for discovering the
underlying semantics of the examined video sequence, since
different events may present similar motion patterns over a
period of time. This fact generally hinders the identifica-
tion of the correct event through the examination of motion
features at distinct sequentially selected frames. In this sec-
tion, an approach is presented for overcoming this problem,
i.e. the problem of distinguishing between events that may
present similar motion patterns over a period of time dur-
ing their occurrence. Specifically, the fundamental idea of
the proposed method is the incorporation of motion energy
distribution information from previous frames for efficiently
capturing the semantics present in a particular frame. The
latter results into an accumulated motion energy field.

In particular, as described in Section 4, for every selected
frame, an individual low-passed motion energy distribution
field, M(b, c, t), is calculated (Eq. 2). Then, while taking
into account the previously mentioned observations and con-
siderations, for each selected frame an accumulated motion
energy distribution field is formed, according to the follow-
ing equation:

Macc(b, c, t, τ) =

∑τ
0 w(τ) · M(b, c, t − τ)∑τ

0 w(τ)
, τ = 0, 1, ... , (7)

where t is the current frame, τ denotes previously selected

frames and w(τ) is a time-dependent normalization factor
which receives different values for every previous frame. A-
mong other possible realizations, the normalization factor
w(τ) is modeled by the following time descending function:

w(τ) =
1

vf ·τ , v > 1 . (8)

As can be seen from Eq. 8, the accumulated motion en-
ergy distribution field takes into account motion informa-
tion from previous frames and, in particular, it gradually
adds decreasing importance to motion information from dis-
tant frames to the currently examining one. The respective
down-sampled accumulated motion energy field is denoted
by Racc(x, y, t, τ) and is calculated similarly to Eq. 2-4 using
Macc(b, c, t, τ) instead of M(b, c, t).

In order to better demonstrate the usefulness and the ef-
ficiency of the proposed approach, an example of comput-
ing the accumulated motion energy fields for two individ-
ual events of the tennis broadcast domain is illustrated in
Fig. 2. The first frame (first row) corresponds to a mo-
ment in time when the event break occurs. Specifically, the
player is walking along the court holding her racket after
a point has been gained. The second frame (second row)
corresponds to a moment when the event serve occurs and
particularly when the player is starting her attempt to serve
while standing-up. The corresponding motion energy fields
are presented in the second column. From a careful observa-
tion, it can be seen that the two fields present similar motion
characteristics, since in both cases the player’s silhouette is
formed, which may lead to the incorrect identification of the
corresponding events. In columns 3 and 4, the estimated ac-
cumulated fields are illustrated when motion characteristics
from the previous (Macc(b, c, t, τ), τ = 1) and the previous
two frames (Macc(b, c, t, τ), τ = 2) are taken into account,
respectively. It can be seen that the two resulting accumu-
lated motion fields, especially for the second case, present
significant dissimilarities with respect to motion energy dis-
tribution, which can facilitate in the discrimination between
the two events.

Since the down-sampled accumulated motion energy field,
Racc(x, y, t, τ), is computed for every selected frame, a pro-
cedure similar to the one described in Section 5 is followed
for providing motion information to the respective HMM
structure and realizing event detection based on motion fea-
tures. The difference is that now the accumulated energy
fields, Racc(x, y, t, τ), are used during the polynomial ap-
proximation process, instead of the motion energy fields,
R(x, y, t). In Fig. 3, indicative results of energy field polyno-
mial approximations, while exploiting motion characteristics
from previous frames, are presented. As can be seen from
this figure, where the same frames as in Fig. 1 are used, the
utilized polynomial function captures and efficiently models
the motion energy distribution dissimilarities when no in-

formation (R̂acc(x, y, t, τ), for τ = 0) and information from

previous frames (R̂acc(x, y, t, τ), for τ = 2) is exploited,
respectively.

7. EXPERIMENTAL RESULTS
In this section experimental results from the application

of the proposed method, as well as comparative evaluation
with other approaches in the literature, are presented. Al-
though the method is generic, i.e. it can be directly ap-
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Figure 1: Examples of motion energy field approximation with polynomial function

plied to any possible domain of concern without the need
for domain-specific algorithmic modifications or adaptations
(as described in Section 1), particular domains need to be
selected for experimentation; to this end, the domains of ten-
nis and news broadcast video are utilized in this work. For
the selected domains, the corresponding sets of high-level
semantic events that are of interest and a brief description
of their respective definitions are given in the sequel.

Tennis domain:

rally when the actual game is played

serve is defined as the event starting at the time that the
player is hitting the ball to the ground, while he is
preparing to serve, and finishes at the time the player
performs the servis hit

replay when a particular incident of increased importance
is broadcasted again, usually in slow motion

break when a break in the game occurs, i.e. the actual
game is interrupted for example after a point is gained,
and the camera may show the players resting or the
audience

News domain:

anchor when the anchor person announces the news in a
studio environment

reporting when live-reporting takes place or a speech\ in-
terview is broadcasted

reportage comprises of the displayed scenes, either indoors
or outdoors, relevant to every broadcasted news item

graphics when any kind of graphics is depicted in the video
sequence, including news start\end signals, maps, ta-
bles or text scenes

For experimentation in the tennis domain, a set of 12 videos
showing professional tennis games from various international
tournaments was collected. After the temporal segmenta-
tion algorithm described in Section 4 was applied, a corre-
sponding set of 1449 shots was formed, which were manually
annotated according to the respective tennis domain event
definitions. From the aforementioned videos, 4 of them (499
shots) were used for training the developed HMMs structure
(training set Utr, described in Section 3) and the remaining 8
(950 shots) were used for evaluation (testing set Ute). A sim-
ilar procedure was followed for the news domain; 24 videos
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Selected frame Macc(b, c, t, τ), for τ = 0 Macc(b, c, t, τ), for τ = 1 Macc(b, c, t, τ), for τ = 2

Figure 2: Examples of accumulated motion energy field estimation

of news broadcast from Deutsche Welle1 were collected and
the respective sets Utr and Ute comprising 342 and 582 shots
respectively, were formed.

For every shot a set of frames was subsequently selected
at equally spaced time intervals, as described in Section 4.
The value of the temporal sampling frequency, SFt, was set
to 125ms based on experimentation. It has been observed
that small variations around this value resulted into negligi-
ble changes in the overall detection performance. Then, for
every selected frame the respective accumulated low-passed
down-sampled motion energy field, Racc(x, y, t, τ), was esti-
mated and subsequently approximated by a 2D polynomial
function, as described in Sections 6 and 5, respectively. A
third order polynomial function was used for the approxi-
mation procedure, according to Eq. 5, since it produced the
most accurate approximation results. The value of the pa-
rameter D in Eq. 3-4, which is used to define the horizontal,
HSstep, and vertical, V Sstep, spatial sampling frequencies,
was set equal to 40. This value was shown to represent a
good compromise between the need for time efficiency and
effective polynomial approximation. Significantly lower val-
ues were shown to result into the generation of very few
samples that could not be utilized for robust polynomial ap-
proximation. Additionally, the values of parameters v and
f that define the time descending function in Eq. 8 were
set equal to 3 and 0.5, respectively, after experimentation.
The estimated polynomial coefficients were used to form the
motion observation sequence for every shot, which was in
turn provided as input to the developed HMMs structure in
order to associate the shot with one of the supported events,
as described in Section 5.

Regarding the HMM structure implementation details,
fully connected first order HMMs, i.e. HMMs allowing all
possible hidden state transitions, were utilized for perform-
ing the mapping of the low-level motion features to the high-
level semantic events. For every hidden state the obser-
vations were modeled as a mixture of Gaussians (a single
Gaussian was used for every state). The employed Gaus-
sian Mixture Models (GMMs) were set to have full covari-
ance matrices for exploiting all possible correlations between

1http://www.dw-world.de/

the elements of each observation. Additionally, the Baum-
Welch (or Forward-Backward) algorithm was used for train-
ing, while the Viterbi algorithm was utilized during the eval-
uation. Furthermore, the number of hidden states of the
HMMs was considered as a free variable. The developed
HMM structure was realized using the software libraries of
[1].

In Table 1, quantitative event detection results are given
in the form of the calculated confusion matrices when the
accumulated motion energy fields, Racc(x, y, t, τ), are used
during the approximation step for τ = 0, 1, 2 and 3, respec-
tively. Note that τ = 0 corresponds to the case where no
motion information from previous frames is exploited. Ad-
ditionally, the value of the overall detection accuracy is also
given. The latter is defined as the percentage of the video
shots that are assigned the correct event. It must be noted
that shots containing commercials were not taken into ac-
count during the evaluation, while it has been regarded that
arg maxj(hij) denotes the event ej that is eventually associ-
ated with shot si.

From the observation of the presented results (first method
in Table 1), it can be seen that generally the proposed poly-
nomial approximation approach for providing motion infor-
mation to HMMs is beneficial, since an overall detection
accuracy of 74.01% and 77.22% is reached for the tennis
and the news domain, respectively. This verifies the claim
that the approximation of the motion energy field with a
polynomial function achieves to efficiently capture the most
dominant motion characteristics and models them suitably
in a form that can be utilized effectively by HMMs. More
specifically, in the tennis domain the event rally is recognized
correctly at a high rate (93.15%), since it presents a rep-
resentative and distinguishable motion pattern. Addition-
ally, events serve and break also exhibit satisfactory results
(69.57% and 66.95%, respectively). Regarding the recogni-
tion of replay, it presents a relatively low recognition rate
(38.46%) and is mainly confused with serve and break. The
latter is justified by the observation that replays are actually
important incidents during the game that are broadcasted
again usually in a close-up view and in slow-motion. Thus,
it is expected to present similar local motion characteristics
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Figure 3: Examples of motion energy field approximation with polynomial function without and with ex-
ploitation of motion information from previous frames

with the events serve and break. On the other hand, for the
news domain events anchor, reportage and graphics are cor-
rectly identified at high recognition rates (79.55%, 79.44%
and 87.50%, respectively). With respect to the event re-
porting, although it exhibits satisfactory results (60.98%),
it tends to be confused with anchor and reportage. The lat-
ter is caused by the fact that speech or interview occurrences
may present similar motion patterns with anchor speaking
or reportage scenes, respectively.

Table 1 also depicts the impact of the exploitation of the
introduced accumulated motion energy fields for different
values of τ on the performance of the proposed algorithm.
As can be seen from the presented results, the event de-
tection performance generally increases for both domains
when the accumulated motion energy fields, Racc(x, y, t, τ),
are used for small values of τ (τ = 1, 2), compared to the
case where no motion information from previous frames is
utilized during the motion energy fields computation, i.e.
when τ = 0. Specifically, a maximum increase of 3.08% in
the overall event detection accuracy is observed when τ = 1
for the tennis domain, and a corresponding increase of 2.85%
is presented when τ = 2 for the news domain. For the afore-
mentioned cases, some events of each domain are particu-
larly favored by the utilization of the introduced accumu-

lated motion energy fields. The above results justify the
claim that incorporating information from previous frames
during the motion energy field computation can facilitate in
distinguishing between events that present similar motion
patterns over a period of time during their occurrence. On
the other hand, from the above table it can be seen that
when the value of τ is further increased, the overall perfor-
mance improvement decreases and for the particular case of
τ = 3 for the tennis domain it diminishes. This is mainly
due to the fact that when taking into account information
from many previous frames the estimated accumulated mo-
tion fields for each frame tend to become very similar. Thus,
polynomial coefficients tend to have also very similar values
and hence HMMs cannot observe a characteristic sequence
of features that unfolds in time.

In Table 2, the performance of the proposed method is
compared with the motion representation approaches for
providing motion information to HMM-based systems pre-
sented in [10] and [27]. Specifically, Gilbert et al. makes
use of the available motion vectors for estimating the prin-
cipal motion direction of every frame [10]. Additionally, Xie
et al. calculates the motion intensity at frame level [27].
From the presented results, it can be easily observed that
the proposed approach outperforms the aforementioned al-
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gorithms for most of the supported events as well as in over-
all detection accuracy for both supported domains. More
specifically, only the method proposed by Xie [27] presents
a higher recognition rate for the event replay (61.54%) in
the tennis domain. This is due to replays exhibiting char-
acteristic global camera motion patterns (like zoom-ins and
zoom-outs), which were better represented by motion inten-
sity estimation at frame level. The presented results verify
that local-level analysis of the motion signal can lead to in-
creased event detection performance.

8. CONCLUSIONS
In this paper, a motion-based approach for detecting high-

level semantic events in video sequences was presented. The
proposed algorithm is generic, i.e. it can be directly ap-
plied to any possible domain of concern without the need for
domain-specific algorithmic modifications or adaptations. It
is based on a new representation for providing local-level
motion information to HMMs, while motion characteristics
from previous frames are also exploited. Experimental re-
sults in the domains of tennis and news broadcast video
demonstrated the efficiency of the proposed approach. Fu-
ture work includes the examination of more sophisticated
motion representation schemes for motion-based recognition
applications and the investigation of corresponding algo-
rithms for color/audio signal processing that will allow the
integration of the proposed motion-based approach in a mul-
timodal event detection scheme.
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Table 2: Comparative event detection results
Tennis domain

Actual Detected Event Overall
Method Event Rally Serve Replay Break Accuracy

Rally 94.52% 1.37% 0.00% 4.11%
Serve 0.00% 73.91% 4.35% 21.74%

Racc(x, y, t, τ) Replay 0.00% 38.46% 38.46% 23.08%
for τ = 1 Break 9.32% 11.02% 8.47% 71.19% 77.09%

Rally 89.04% 9.59% 1.37% 0.00%
Serve 56.52% 21.74% 8.70% 13.04%

Method Replay 15.38% 30.77% 23.08% 30.77%
of [10] Break 27.97% 14.41% 2.54% 55.08% 60.79%

Rally 93.15% 6.85% 0.00% 0.00%
Serve 8.70% 30.43% 26.09% 34.78%

Method Replay 7.69% 15.38% 61.54% 15.38%
of [27] Break 14.41% 16.10% 32.20% 37.29% 55.95%

News domain
Actual Detected Event Overall

Method Event Anchor Reporting Reportage Graphics Accuracy

Anchor 75.00% 25.00% 0.00% 0.00%
Reporting 4.88% 70.73% 24.39% 0.00%

Racc(x, y, t, τ) Reportage 1.11% 12.22% 82.22% 4.44%
for τ = 2 Graphics 0.00% 6.25% 0.00% 93.75% 80.07%

Anchor 18.18% 4.55% 0.00% 77.27%
Reporting 7.32% 17.07% 43.90% 31.71%

Method Reportage 1.67% 8.89% 80.00% 9.44%
of [10] Graphics 12.50% 6.25% 0.00% 81.25% 61.21%

Anchor 52.27% 6.82% 0.00% 40.91%
Reporting 9.76% 39.02% 29.27% 21.95%

Method Reportage 6.11% 23.33% 63.89% 6.67%
of [27] Graphics 6.25% 18.75% 0.00% 75.00% 59.07%
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