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Abstract. This work deals with the problem of automatic temporal segmentation of a video into elemen-
tary semantic units known as scenes. Its novelty lies in the use of high-level audio information, in the form
of audio events, for the improvement of scene segmentation performance. More specifically, the proposed
technique is built upon a recently proposed audio-visual scene segmentation approach that involves the
construction of multiple scene transition graphs (STGs) that separately exploit information coming from
different modalities. In the extension of the latter approach presented in this work, audio event detection
results are introduced to the definition of an audio-based scene transition graph, while a visual-based scene
transition graph is also defined independently. The results of these two types of STGs are subsequently
combined. The results of the application of the proposed technique to broadcast videos demonstrate the
usefulness of audio events for scene segmentation and highlight the importance of introducing additional
high-level information to the scene segmentation algorithms.
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1 Introduction

Video temporal decomposition into elementary semantic units is an essential pre-processing task for a wide
range of video manipulation applications, such as video indexing, non-linear browsing, classification, etc. Video
decomposition techniques aim to partition a video sequence into segments, such as shots and scenes, according to
semantic or structural criteria. Shots are elementary structural segments that are defined as sequences of images
taken without interruption by a single camera [1]. On the other hand, scenes are often defined as Logical Story
Units (LSU) [2], i.e., as a series of temporally contiguous shots characterized by overlapping links that connect
shots with similar content. Figure 1 illustrates the relations between different kinds of temporal segments of a
video.

Early approaches to scene segmentation focused on exploiting visual-only similarity among shots [2, 3], to
group them into scenes. In [3], the Scene Transition Graph (STG) was originally presented. The Scene Transi-
tion Graph method exploits the visual similarity between key-frames of video shots to construct a connected
graph, whose cut-edges constitute the set of scene boundaries. Another recent uni-modal scene segmentation
technique [4] uses spectral clustering to conduct shot grouping, without taking into account temporal proximity.
Subsequently, the clustering outcome is used for assigning class labels to the shots, and the similarity between
label sequences is used for identifying the scene boundaries.

In the last years, several scene segmentation methods that exploit both the visual and auditory channel have
been developed, including [5–8]. In [5], a fuzzy k-means algorithm is used for segmenting the auditory channel
of a video into audio segments, each belonging to one of 5 classes (silence, speech, music etc.). Following the
assumption that a scene change is associated with simultaneous change of visual and audio characteristics, scene
breaks are identified when a visual shot boundary exists within an empirically-set time interval before or after
an audio segment boundary. In [6], visual information usage is limited to the stage of video shot segmentation.
Subsequently, several low-level audio descriptors (i.e., volume, sub-band energy, spectral and cepstral flux) are
extracted for each shot. Finally, neighboring shots whose Euclidean distance in the low-level audio descriptor
space exceeds a dynamic threshold are assigned to different scenes. In [7], audio and visual features are extracted
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Fig. 1. Video stream decomposition to frames, shots and scenes.

for every visual shot and serve as input to a Support Vector Machines (SVM) classifier, which decides on the class
membership (scene-change / non-scene-change) of every shot boundary. However, this requires the availability
of sufficient training data. Although audio information has been shown in these and other previous works to
be beneficial for the task of scene segmentation, higher-level audio features such as speaker clustering or audio
event detection results are not frequently exploited. In a recent work [8], the use of audio scene changes and
automatic speech recognition (ASR) transcripts together with visual features is proposed; audio scene changes
are detected using a multi-scale Kullback-Leibler distance and low-level audio features, while latent semantic
analysis (LSA) is used for calculating the similarity between temporal fragments of ASR transcripts. In [9], the
combined use of visual features and some high-level audio cues (namely, speaker clustering and audio background
characterization results) for constructing scene transition graphs was proposed.

In this work, this definition of the scene as a Logical Story Unit is adopted and the method of [9] is extended
in order to exploit richer high-level audio information. To this end, a large number of audio event detectors
is employed, and their detection scores are used for representing each temporal segment of the audio-visual
medium in an audio event space. This representation together with an appropriate distance measure is used,
in combination with previously exploited high-level audio (e.g. speaker clustering results) and low-level visual
cues, for constructing a combination of different scene transition graphs (Multi-Evidence STG - MESTG) that
identifies the scene boundaries. The rest of the chapter is organized as follows: an overview of the proposed
approach is presented in Sect. 2. Audio event definition and the use of audio events in representing video
temporal segments are discussed in Sects. 3 and 4, while Sect. 5 presents the proposed MESTG approach.
Experimental results are presented in Sect. 6 and conclusions are drawn in Sect. 7.

2 Overview of the Proposed Approach

Scene segmentation is typically performed by clustering contiguous video shots; the proposed MESTG approach
is no exception to this rule. Thus, scene segmentation starts with the application of the method of [1] for
generating a decomposition S of the video to visual shots,

S = {si}I
i=1 . (1)

Subsequently, as illustrated in Fig. 2, visual feature extraction is performed. Audio segmentation, which includes,
among others, speaker clustering and background classification stages [10] [11], is also performed in parallel.
This audio segmentation process results in the definition of a partitioning of the audio stream,

A = {αx}X
x=1 , αx = [t1x, t2x] , (2)

where t1x and t2x are the start- and end-times of audio segment αx. For each αx, the speaker identity of it and
its background class are also identified during audio segmentation; we use σ(αx) to denote the speaker identity
of αx, if any, and β(αx) to denote its background class. Audio event detection, as discussed in detail in the
following section, is also performed. Using the resulting features, i.e.,
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Fig. 2. Overview of the proposed scene segmentation scheme.

– HSV histograms of shot key-frames,
– Speaker clustering results,
– Audio background classification into one of three categories (noise, silence, music),
– Detection results (confidence values) for a multitude of audio events,

the proposed MESTG method proceeds with the definition of two types of scene transition graphs (audio STG,
visual STG) and a procedure for subsequently merging their results.

3 Audio Events

For the purpose of scene segmentation, let us define an audio event as a semantically elementary piece of
information that can be found in the audio stream of a video. Telephone ringing, dog barking, music, child
voice, traffic noise, explosions are only at few of a wide range of possible audio events. As can be deduced from
the audio event definition, more than one audio events may coexist in one temporal segment and may even
temporally overlap with each other. For example, in a shot where a person stands by a street and talks, several
speech- and traffic-related audio events are expected to coexist.

It is intuitionally expected that taking into account audio event detection results may contribute to improved
video scene segmentation. This is based on the reasonable assumption that the presence of the same audio event
in more than one adjacent or neighboring audio segments may be a good indication of their common scene
membership. On the contrary, the presence of completely different audio events in adjacent temporal segments
may be a good indication of their different scene membership, which reveals the presence of a scene boundary.

The first step in testing the validity of the above assumptions is the definition of a number of meaningful
audio events and of appropriate methods for their detection. This work integrates two different sets of audio
events. Different detection methodologies are used for each set.

3.1 Audio Segmentation

The first set includes the type of audio event that is dealt with by an audio segmentation (or diarization)
module. Audio segmentation can mean many different things. In this chapter, we restrict its meaning to the
type of segmentation that can be performed on the audio signal alone, without taking into account its linguistic
contents. This type of segmentation can be done in several tasks. Acoustic Change Detection (ACD) is the
task responsible for the detection of audio locations where speakers or background conditions have changed.
Speech/Non-Speech (SNS) classification is responsible for determining if the audio contains speech or not (i.e.,
it results in a binary classification of the audio signal to either Speech or Non-Speech). Gender Detection (GD)
distinguishes between male and female gender speakers (i.e., given a speech segment, it results in a binary
classification of it to either Male or Female); however, an age-directed segmentation can be also useful as part of
the gender detection task, for detecting children voices for instance. Background Conditions (BC) classification
indicates whether the background audio signal (i.e, the audio signal, excluding any speech that may be part of it)
is clean (:nothing is heard), musical (:music is heard), or noisy. Speaker Clustering (SC) identifies all the speech
segments produced by the same speaker. Speaker Identification (SID) is the task of recognizing the identity of
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Table 1. List of the 14 audio-segmentation related events.

Child Voice Female Voice Male Voice

Speech Voice With Background
Noise

Voice With Background
Music

Music Non Vocal Music Vocal Music

Clean Background Noise Background Music Background

Telephone Band People Talking

certain often recurring speakers, such as news anchors or very important personalities, by their voice, based on
a classifier that is trained specifically for such speakers of interest (similarly in principle to how face recognition
algorithms can be trained to identify specific people of interest, e.g. a particular political figure, by their faces).
More recently, the term speaker diarization (SD) became synonymous to segmentation into speaker-homogeneous
regions, answering the question “Who spoke when?”. Altogether, 14 different events are automatically detected
by this audio segmentation module (ex: Male Voice, Voice With Background Noise, Music, etc.) [12]. The list is
included in Table 1. Note, however, that this figure does not include the information provided by the Speaker
Clustering component on the cluster identity, which is also exploited for scene segmentation in this work.

The audio segmentation components are mostly model-based, making extensive use of feed-forward fully
connected Multi-Layer Perceptrons (MLPs) that are trained with the back-propagation algorithm. All the
classifiers (realizing tasks SNS, GD, BC, and SID, as defined above) share a similar architecture: a MLP with
9 input context frames of 26 coefficients (12th order Perceptual Linear Prediction (PLP) plus energy and
deltas), two hidden layers with 250 sigmoidal units each and the appropriate number of softmax output units
(one for each class), which can be viewed as giving a probabilistic estimate of the input frame belonging to
that class. Despite the Acoustic Change Detection and Speech/Non-speech blocks being conceptually different,
they were implemented simultaneously in the SNS component, considering that a speaker turn is most often
preceeded by a small non-speech segment. The output of the SNS MLP classifier is smoothed using a median
filter, and processed by a finite-state machine, involving confidence and duration thresholds. When a speaker
change is detected, the first tsum frames of that segment are used to calculate gender, background conditions,
and speaker identification classifications (e.g. anchors). Each classifier computes the decision with the highest
average probability over all the tsum frames. The Speaker Clustering component, which uses an online leader-
follower strategy, tries to group all segments uttered by the same speaker. The first tsum frames (at most) of
a new segment are compared with all the same-gender clusters found so far. Two SC components are used
in parallel (one for each gender). A new speech segment is merged with the cluster with the lowest distance,
provided that it falls below a predefined threshold. The distance measure for merging clusters is a modified
version of the Bayesian Information Criteria [11]. Our latest addition to the audio segmentation module is a
telephone bandwidth detector. Given the lack of a large manually labeled corpus, a bootstrapping approach has
been adopted in which a simple Linear Discriminant Analysis (LDA) classifier has been trained with a small
amount of manually labeled data in order to generate automatic transcriptions for the posterior development
of a binary MLP classifier. The adopted feature set consisted of 15 logarithmic filter bank energies extracted at
a frame rate of 20 ms with a time shift of 10 ms, and corresponding deltas.

The background classifier was initially trained with only broadcast news data that had very limited examples
of music and noisy backgrounds, and were inconsistently labeled in terms of these conditions. This motivated
the development of alternative classifiers with extended training data reflecting a wide variety of conditions.
The related detectors are: Music, Vocal Music, Non Vocal Music and Speech (another speech detector, using
multi-layer perceptrons, also exists, corresponding to the People Talking event).

The new Gaussian mixture models (GMMs) included 1024 mixtures, and were trained using a different set of
features (Brightness, Bandwidth, Zero Crossing Rate, Energy, Audio Spectrum Envelope and Audio Spectrum
Centroid), extracted from 16 kHz audio, with 500 ms windows and 10 ms step. Silences were removed from the
audio. Four models were trained: World, Speech, Non-Vocal Music, and Vocal Music.

Each of the GMM models was used to retrieve log likelihood values for each frame. Frame confidence values
were calculated by dividing the log likelihood values for each model by the sum of all log likelihood values for
all four models. The Vocal, Non-Vocal and Speech models were used for the Vocal Music, Non Vocal Music and
Speech event detectors. The Music detector is the sum of the confidence values for the Vocal and Non-Vocal
models. Segment confidence values were obtained by averaging the frame confidence values.
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Table 2. List of 61 additional audio events corresponding to noise-like sounds.

Airplane Engine Jet Airplane Engine Propeller Animal Hiss

Baby Whining or Crying Bear Bell Electric

Bell Mechanic Big Cat Birds

Bite Chew Eat Bus Buzzer

Car Cat Meowing Chicken Clucking

Child Laughing Cow Crowd Applause

Digital Beep Dog Barking Dolphin

Donkey Door Open or Close Drink

Elephant or Trumpet Electricity Explosion

Fire Fireworks Frog

Glass Gun Shot Heavy Gun Shot Light

Hammering Helicopter Horn Vehicle

Horse Walking Insect Buzz Insect Chirp

Moose or Elk or Deer Morse Code Motorcycle

Paper Pig Rattlesnake

Saw Electric Saw Manual Sheep

Siren Telephone Ringing Bell Telephone Ringing Digital

Thunder Traffic Train

Typing Walk or Run or Climb
Stairs (Hard)

Walk or Run or Climb
Stairs (Soft)

Water Whistle Wind

Wolf or Coyote or Dog
Howling

3.2 Finer Discrimination of Noisy Events

The second set of events targets a finer discrimination of noise-like sounds, such as Dog Barking, Siren, Crowd
Applause, Explosion, etc. [13]. The greatest difficulty in building automatic detectors for this type of event
is the lack of corpora manually labeled in terms of these events. This motivated the adoption of a very large
sound effect corpus for training, given that it is intrinsically labeled, as each file typically contains a single type
of sound. The corpus includes approximately 18,700 files with an estimated total duration of 289.6h, and was
provided by one of the partners in the VIDIVIDEO project (B&G)5. The list of 61 events for which this corpus
provided enough training material is shown in Table 2.

Most of the training files have a sampling rate of 44.1kHz. However, many were recorded with a low bandwidth
(< 10kHz). This motivated a uniform downsampling to 16 kHz. This corpus was used to train one-against-all
detectors for each concept by building concept-specific and world models. Our initial set of detectors was SVM-
based, and the experiments were made using the LIBSVM toolkit [14]. Preliminary experiments compared
the performance of a limited set of features: Perceptual Linear Prediction (PLP) or Mel-Frequency Cepstral
Coefficients (MFCC) coefficients (19 + energy + deltas), Zero Crossing Rate (ZCR), brightness, and bandwidth.
The latter are, respectively, the first and second order statistics of the spectrogram, and they roughly measure
the timbre quality. The world model was build using between 92 and 96 files, of which an average of 31 were used
as the development set. As a starting point, analysis windows of 0.5s with 0.25s overlap were adopted. Three
different kernels were considered for the SVM (linear, polynomial and radial basis function (RBF)). Overall, the
best results were obtained with the latter kernel. The difference between the performance of MFCC and PLP
coefficients was not significant.

As a result of the event detection process discussed in this and the previous section, a total of 75 audio
events are defined and, based on the output of the corresponding detectors, a vector EV ,

EV = [ev(1), ev(2), ..., ev(J)], J = 75, (3)

of confidence values is extracted and stored for each audio segment.

5 Netherlands Institute for Sound & Vision, http://instituut.beeldengeluid.nl/
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3.3 Audio Event Detection Performance

The Audio Segmentation components were tuned to the Broadcast New (BN) domain, which justifies the
evaluation of their performance in a test set of six 1-hour long BN shows. The classification error rate of the
SNS and GD blocks are comparable to the state of the art: 4.7% and 2.4%, respectively. 6 As explained, the
BC results could not be considered reliable as the manual labels unfortunately lacked consistency.

The speaker clustering performance for news anchors shows very good results due to the SID models (4.1%
Diarizition Error Rate (DER)). For the other speakers the results are not so good (26.0% DER). In part, these
results can be attributed to the long duration of the BN shows, which have an average of 64 different speakers
per news show, and also to the very large percentage of speech with loud background noise, mainly from street
interviews.

The telephone bandwidth classifier was not evaluated in this data set, which did not include telephone data
labels. The rate of correctly classified frames in the validation data set, obtained by the LDA classifier, was
99.8%. In other BN test sets, the rate achieved by the MLP was lower, which we also attributed to the high
variability of the training data.

For the audio events of the second set, the performance was first evaluated in terms of F-measure, in a
development set of sound effects. The results were generally very good (above 0.8). The worst results were
obtained with Door, Fireworks, Hammering, and Saw Manual. The performance with real-life data (movies,
documentaries, talk shows and broadcast news), however, is much more challenging than the classification of
isolated events. The worse performance can often be due to the fact that audio events almost never occur
separately, being corrupted by music, speech, background noise and/or other audio events.

4 Audio Event-based Segment Representation and Similarity Evaluation

For enabling the effective representation of temporal segments in the audio event space, and the evaluation of
segment dissimilarity on the basis of audio events, two tasks are necessary: the normalization of the extracted
audio event vectors, and the definition of an appropriate event vector distance measure.

Audio event vector normalization is motivated by the diversity of the distributions of confidence values
among different event detectors for a given video. This is in part due to the differences in the actual frequency
of appearance of different events within the video. For example, in a video with a female narrator speaking
throughout the entire video and a thunder-like sound being heard in just a couple of shots, it is expected that
the “female voice” audio event will receive very high confidence values in many shots, while the “thunder” audio
event is likely to receive high or moderate confidence values in just the shots where the thunder-like sound is
heard, and even lower values in all others. However, the high or moderate confidence values that the latter audio
event receives should be considered as a strong indication in favor of those shots’ common scene membership. In
order for them to receive the due attention during scene segmentation, the normalization of confidence values
depending on their distribution for each audio event is proposed, and a very simple (most likely non-optimal)
normalization approach is adopted in this work. Specifically, if ev(j) is the initial confidence value of the j-th
audio event in a temporal segment, and maxevj is the maximum value of the j-th audio event in all the temporal
segments of the video, then the normalized confidence value ẽv(j) is:

ẽv(j) =
ev(j)

maxevj
. (4)

Following event vector normalization, the definition of a shot dissimilarity measure is based on the assumption
that not only the difference of audio event confidence values between two segments, but also the absolute
confidence values themselves, are important. Indeed, if for a given audio event two segments present similarly
low confidence values, the only deduction that can be made is that this audio event is most probably not present
in both segments; no conclusion can be drawn on the semantic similarity of these two segments. On the contrary,
if two segments present similarly high confidence values, then it can be inferred that the same audio event is
present in both segments, and this concurrence reveals a significant semantic similarity. The commonly used
L1 distance or other Minkowski distances would not satisfy the above requirements, since they depend only on

6 A recent version of the GD component achieved the first place in the Interspeech 2010 Paralinguistic Challenge in the
category of Male/Female/Child classification [15].
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the difference of the confidence values. Instead of them, a variation of the Chi-test distance is employed in this
work. If ẼV 1, ẼV 2 are two normalized audio event vectors, then their distance D is defined as:

D(ẼV 1, ẼV 2) =

√√√√
J∑

j=1

(ẽv1(j)− ẽv2(j))2

ẽv1(j) + ẽv2(j)
. (5)

It can be seen that this dissimilarity measure does not depend only on the difference of the audio event
vectors, satisfying the previously discussed dissimilarity measure requirements.

5 Multi-evidence Scene Transition Graph Method

5.1 Audio STG Definition

The definition of the ASTG is based on the following assumptions:

– Scene boundaries are a subset of the visual shot boundaries of the video (i.e., a visual shot cannot belong
to more than one scenes).

– Each audio segment cannot belong to more than one scenes. The same holds for a set of temporally con-
secutive audio segments that share the same σ(.), β(.) values and exhibit similar audio events. Two audio
segments are said to exhibit similar audio events if the distance between their audio event vectors, as defined
in Sect. 4, is lower than an empirical threshold.

– Audio event similarity and the distribution of speaker identities across two shots (or two larger temporally
contiguous video segments) can serve as measures of audio similarity.

Based on these assumptions, an ASTG is constructed as follows (Fig. 3):

– Step 1. The similarity of temporally adjacent audio segments αx, αx+1 is examined, starting from α1.
Denoting ẼV x, ẼV x+1 the audio event vectors of αx, αx+1 respectively, the two audio segments are merged
if σ(αx) = σ(αx+1), β(αx) = β(αx+1), and D(ẼV x, ẼV x+1) < Tev, where Tev is an empirically defined
threshold. For simplicity, the audio segments resulting from this merging step and used in the next step
continue to be denoted αx.

– Step 2. Merging of visual shots is performed: for every αx, the visual shots that temporally overlap with it
by at least Ta msec are merged to a video unit.

– Step 3. The video units formed in step 2 are clustered according to the dissimilarity ∆(.) of their speaker
identity distributions and the distance D(.) of their audio event vectors. The two dissimilarity measures are
linearly combined to produce a one-dimensional distance measure. Assignment of two video units to the
same cluster requires both this distance measure and the temporal distance between them to be lower than
certain thresholds.

– Step 4. A connected graph is formed, in which the nodes represent the clusters of video units and a directed
edge is drawn from a node to another if there is a shot included the first node that immediately precedes
any shot included in the second node [3], [9]. The collection of cut-edges, i.e., the edges that, if removed,
result in two disconnected graphs, constitutes the set of estimated video scene boundaries.

It should be noted that the speaker identity distribution of a video unit is:

Hx = [h1 h2 ... hG] , (6)

where G is the total number of speakers in the video, according to the speaker clustering results, and hg,
g = 1, . . . , G, is defined as the time that speaker g is active in the video unit divided by the total duration of
the same video unit. The L1 metric is used as similarity function ∆(Hx,Hy).

5.2 Visual STG Definition

Similarly to ASTG, a scene transition graph based on visual information (VSTG) is defined. The VSTG com-
prises nodes, which contain a number of visually similar and temporally neighboring shots, and edges which
represent the time evolution of the story. Visual similarity of shots is evaluated by calculating the Euclidean
distance of HSV-histogram vectors of shot key-frames. More details on the visual scene transition graph can be
found in [3].
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Fig. 3. An example of ASTG construction according to the algorithm of Sect. 5.1. The video stream is initially decom-
posed into 8 audio segments (a1 to a8) and 6 video shots (s1 to s6). Firstly, the audio segments that are adjacent and
present same background class, speaker identity and also similar audio events are merged (a2 and a3). Subsequently, in
step 2 shots s3 and s4, which overlap with audio segment a3 by more than a threshold, are merged into a video unit. On
the contrary, shots s1 and s2 are not merged, since the overlapping of s2 with audio segment a1 is minimal. In the third
step, speaker identity distributions and audio event vectors are estimated for each video unit and their dissimilarity is
used to determine which video units should be assigned to the same cluster (Unit 1 and Unit 3 are assigned to the same
cluster; Unit 4 and Unit 5 are also assigned to a single cluster). Finally, the scene transition graph is constructed and as
a result, in this example, the video units are joined to form 2 scenes.

5.3 Visual and Audio Scene Transition Graph Merging

In [9] we introduced a probabilistic scene transition graph merging approach that combines the visual and audio
STGs and simultaneously reduces the dependency of the proposed approach on STG construction parameters.
Similarly to this approach, in this work multiple VSTGs are created, each using a different randomly selected
set of parameter values. Then, the fraction pv

i of VSTGs that identify the boundary between shots si and si+1

as a scene boundary (i.e., the number of such VSTGs, divided by the total number of generated VSTGs) is
calculated and used as a measure of our confidence on this being a scene boundary, based on visual information.
The same procedure is followed for audio information using multiple ASTGs, resulting in confidence values pa

i .
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Subsequently, these confidence values are linearly combined to result in an audio-visual confidence value pi:

pi = V · pv
i + U · pa

i . (7)

Finally, all shot boundaries for which pi exceeds a threshold form the set of scene boundaries estimated by
the proposed MESTG approach. In the above formula, U and V are global parameters that control the relative
weight of the ASTGs and VSTGs in the audio-visual scene boundary estimation.

6 Experimental Results

For experimentation, a test-set of 7 documentary films (229 minutes in total) from the collection of B&G
was used. Application of the shot segmentation algorithm of [1] to this test-set and manual grouping of the
shots to scenes resulted in 237 ground truth scenes. For evaluating the results of the proposed and other
scene segmentation techniques, the Coverage and Overflow measures, proposed in [16] for scene segmentation
evaluation, were employed. Coverage measures to what extent frames belonging to the same scene are correctly
grouped together, while Overflow evaluates the quantity of frames that, although not belonging to the same
scene, are erroneously grouped together. More detailed definitions of these two measures can be found in [16].
The optimal values for Coverage and Overflow are 100% and 0% respectively. The F-score is defined in this
work as the harmonic mean of C and 1−O, to combine Coverage and Overflow in a single measure,

F =
2C(1−O)

C + (1−O)
, (8)

where 1−O is used in the above definition instead of O to account for 0 being the optimal value of the latter,
instead of 1.

Using the above test-set and measures, the proposed approach (MESTG) was compared with the audio-
visual scene segmentation technique (AVSTG) of [9], the methods of [5] and [4], and the visual scene transition
graph (VSTG). For constructing the latter, the required parameter values were chosen by experimentation, as
in [3]. For the MESTG and AVSTG approaches, the probabilistic merging procedure discussed in Sect. 5.3 was
followed, involving the creation of 1000 ASTGs and 1000 VSTGs with different parameters for estimating the
required probability values. Weights V , U of (7) were tuned with the use of least squares estimation and one
video manually segmented into scenes; the resulting values were 0.482 and 0.518 respectively. The results of
experimentation are shown in Table 3, where it can be seen that the use of audio events in MESTG leads to
an increase of Coverage by 1.89% and a decrease of Overflow by 0.34%, compared to the AVSTG. The MESTG
approach also significantly outperforms the methods of [3], [5] and [4].

Furthermore, we have compared four different alternatives for constructing the audio scene transition graph.
The first one (SP1) uses only the speaker identity distribution, while omitting steps 1 and 2 of the ASTG
construction algorithm of Sect. 5.1. The other 3 variations use the proposed ASTG construction algorithm
and differentiate only in terms of the considered audio descriptors. Specifically, SP2 makes use only of speaker
identity distribution (6), whereas SPAE1 additionally employs the 14 audio events of Table 1. Finally, in SPAE2
the ASTG is built as proposed in this work, i.e, it exploits the speaker identity distribution, the 14 audio events
of Table 1 and the 61 audio events of Table 2.

In the experimentation we examined the results of these variations both when they are used by themselves for
scene segmentation and when each of them is combined with the visual STG, using the merging approach of Sect.
5.3. It should be noted that the combination of SP2 and the visual STG leads to the technique that is proposed
in [9] (AVSTG), while the combination of SPAE2 and the visual STG results in the MESTG, presented in this
work. The results of experimentation are shown in Table 4. It can be seen that none of the audio segmentation
techniques can provide adequate scene segmentation accuracy when used in isolation. However, when combined
with the visual STG, the additional improvement that each portion of the audio information contributes to can
be seen by comparing the results of the last row of Table 4. Specifically, the proposed approach is shown to
outperform the other 3 variations by at least 1.07% when used along with the VSTG. Finally, as it is shown in
Table 4, omitting steps 1 and 2 of the ASTG construction algorithm reduces the system performance by 2.79%.

In Figs. 4 and 5 two examples of the outcome of MESTG, AVSTG and VSTG are shown. In contrary to
MESTG, both the VSTG and AVSTG approaches fail to cluster all shots into a single scene in these examples.
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Table 3. Performance evaluation of MESTG and comparison with literature works.

Method VSTG [3] [5] [4] AVSTG [9] MESTG

Coverage (%) 79.18 77.93 70.13 83.86 85.75

Overflow (%) 17.81 13.88 21.93 11.05 10.71

F-Score 80.66 81.82 73.89 86.33 87.48

Table 4. Performance evaluation of 4 different audio STG variations in the documentary database. The first part of the
table reports the performance of each variation when used by itself for scene segmentation. The second part reports the
overall performance when each variation is combined with the visual STG as described in Sect. 5.3.

Method SP1 SP2 SPAE1 SPAE2

Coverage (%) 58.7 67.14 58.86 69.29

Overflow (%) 20.32 26.67 28.77 31.72

F-Score 67.6 70.1 64.46 68.78

Coverage (%) 78.5 83.86 84.43 85.75

Overflow (%) 10.73 11.05 11.53 10.71

F-Score 83.54 86.33 86.41 87.48

VSTG


AVSTG


MESTG


Fig. 4. A scene segmentation example. In each row, video shots are represented by one keyframe. According to the
ground truth segmentation, all depicted shots belong to a single scene, related to field sprays in which shots of airplanes
spraying interchange with farmers talking. It can be seen that the VSTG alone erroneously detects 3 scene boundaries,
i.e., a scene boundary is declared in all shot boundary positions where the visual signal changes significantly, providing
that there is no repetitive pattern (e.g. the same person re-appearing, as is the case with the second of the two farmers
shown above). AVSTG cannot fully remedy this over-segmentation, whereas MESTG manages to assign all 8 shots to
the same scene, making use of the common airplane sound that is found in all shots in which a speaker is not included.

7 Conclusions

In this work the use of high-level audio events for the improvement of scene segmentation performance was
examined, and a multi-modal scene segmentation technique exploiting audio events and other audio-visual
information was proposed. The proposed technique was shown to outperform previous approaches that did
not exploit high-level audio events. Future extensions of this work include experimentation with additional
measures for evaluating similarity in the audio event space, and the use of additional audio events, as well as
other high-level audio-visual information, for further improving the accuracy of the results.
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VSTG


AVSTG


MESTG


Fig. 5. A scene segmentation example. In each row, video shots are represented by one keyframe. These correspond to
part of a single scene, formed by shots from a firework contest. No speech is contained in this part of the video; the audio
content is limited to the sounds caused by the fireworks. As can be seen, both VSTG and AVSTG fail to recognize that
the 7-th and 8-th shot also belong to the same scene with the rest of the shots, due to the fact that these are neither
very similar in terms of appearance nor can be linked to the same speakers, in the absence of speech. On the contrary,
MESTG manages to cluster all shots into a single scene, again demonstrating the significance of non-speech-related audio
events.
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