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Abstract. In this work the use of feature tracks for the detection of high-level features (concepts) in video
is proposed. Extending previous work on local interest point detection and description in images, feature
tracks are defined as sets of local interest points that are found in different frames of a video shot and
exhibit spatio-temporal and visual continuity, thus defining a trajectory in the 2D+Time space. These
tracks jointly capture the spatial attributes of 2D local regions and their corresponding long-term motion.
The extraction of feature tracks and the selection and representation of an appropriate subset of them
allow the generation of a Bag-of-Spatiotemporal-Words model for the shot, which facilitates capturing the
dynamics of video content. Experimental evaluation of the proposed approach on two challenging datasets
(TRECVID 2007, TRECVID 2010) highlights how the selection, representation and use of such feature
tracks enhances the results of traditional keyframe-based concept detection techniques.
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1 Introduction

The development of algorithms for the automatic understanding of the semantics of multimedia and in particular
of video content, and the semantic indexing by means of high-level features (concepts) corresponding to semantic
classes (objects, events) is currently one of the major challenges in multimedia research. This is motivated by the
ever-increasing pace at which video content is generated, rendering any annotation scheme that requires human
labor unrealistically expensive and unpractical for use on anything but a very restricted subset of the generated
content, which may be of unusually high value or importance (e.g. cinema productions, medical content).

Research efforts towards the goal of high-level video feature extraction have followed in the last decade or so
several different directions that have the potential to contribute to this goal, ranging from temporal or spatio-
temporal segmentation [1, 2] to key-frame extraction, video content representation using global shot or image
features, local interest point detection and description [3], creation of visual lexicons for video representation
(Bag-of-Words [4]), machine learning for associating low-level and high-level features, etc. Typically, techniques
belonging to several of the aforementioned categories need to be carefully combined for extracting high-level
video features. The latter are useful in a wide variety of media organization and analysis tasks, including
interactive retrieval and the detection of scenes and high-level events in video [5, 6].

This work focuses on video content representation, and in particular builds upon previous work on local
interest point detection and description to propose the extraction, selection and representation of feature tracks.
These features compactly describe the appearance and the long-term motion of local regions and are invariant,
among others, to camera motion, in contrast to both 2D interest point descriptors and their known extensions
to spatio-temporal interest points. The proposed feature tracks are shown to be suitable for the generation of a
Bag-of-Spatiotemporal-Words (BoSW) model that facilitates capturing the dynamics of video content, allowing
the more reliable detection of high-level features that have a strong temporal dimension (e.g. “people-dancing”).

The rest of the chapter is organized as follows: in Sect. 2, previous work on local interest point detection and
description is discussed. In Sect. 3, feature track extraction and selection are presented, while the representation
of feature tracks using the LIFT descriptor and the use of such descriptors for building a Bag-of-Spatiotemporal-
Words model are discussed in Sect. 4. Experimental results are reported in Sect. 5 and finally conclusions are
drawn in Sect. 6.
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2 Related Work

Several approaches to scale-invariant interest point detection and description in still images have been proposed
and are widely used in still image understanding tasks (image classification, object detection, etc.), as well as
in other applications. SIFT [3] is probably the most widely adopted method; SIFT-based descriptors are shown
in [7] to outperform several previously proposed techniques for local region description. More recent work on
this topic includes SURF [8], which focuses mostly on speeding-up the interest point detection and description
process, and [9], which examines the introduction of color information to the original grey-value SIFT. For
the application of high-level feature extraction in generic image collections, the above descriptors are typically
used to build a Bag-of-Words (BoW) model [4], which involves the definition of a “vocabulary” of visual words
(typically, created by clustering the interest point descriptors coming from a large number of images and then
selecting the resulting centroids as words) and the subsequent representation of each image as the histogram of
the visual words (i.e., corresponding interest points) found in it.

Large-scale video analysis for the purpose of high-level feature extraction, using local features, is in most
cases performed at the key-frame level [10]. Thus, the video analysis task reduces to still image analysis. This
has obvious advantages in terms of computational complexity, but on the other hand completely disregards
the temporal dimension of video and the wealth of information that is embodied in the evolution of the video
frames along time. The temporal evolution of the video signal, i.e. motion, is generally considered to convey very
important information in video, being a key element of several video understanding and manipulation tasks, e.g.
retrieval [11]. Long-term region trajectories in particular, rather than the motion at the frame level, have been
shown to be very useful for video segmentation, indexing and retrieval in several works (e.g. [1]). Similarly to
other analysis tasks, the use of video data in excess of one single key-frame (e.g. using multiple key-frames per
shot [12], or treating all frames as key-frames and also considering their temporal succession [13]) for high-level
feature extraction has been shown to lead to improved results.

In order to introduce temporal information in the interest-point-based representation of video shots, in [14]
spatial interest points are detected using the SIFT methodology and additional motion constraints; the detected
points are described using both visual and motion information. In [15], the use of spatio-temporal (as opposed
to spatial-only) interest point detectors is proposed. Spatio-temporal interest points are defined as locations
in the video where intensity values present significant variations both in space and in time. In [16] and other
works, such points are used for human action categorization, since the abrupt changes in motion that trigger the
detection of spatio-temporal interest points can be useful in discriminating between different classes of human
activity (walking, jumping, etc.). However, spatio-temporal interest points define 3D volumes in the video data
that typically neither account for possible camera motion nor capture long-term local region trajectories. To
alleviate these drawbacks, the tracking of spatial interest points across successive frames has been proposed for
applications such as object tracking [17] and the visualization of pedestrian traffic flow in surveillance video
[18]. In [19], the problem of object mining in video is addressed by tracking SIFT features and subsequently
clustering them, to identify differently moving objects within a shot. In [20, 21], interest points are tracked and
either the motion information alone [20] or appearance and motion information in separate BoW models [21]
are used for action recognition in video. However, neither one of the previous works on tracking spatial interest
points uses the outcome of tracking for defining a BoSW model of the shot, as in the present work.

3 Feature Tracks

3.1 Feature Track Extraction

Let S be a shot comprising T frames, S = {It}T−1
t=0 , coming from the temporal sub-sampling of the original

video shot S0 = {Iτ}T 0−1
τ=0 by a factor of a; T = dT 0/ae.

Application of one of the available combinations of interest point detection and description techniques (e.g.
[3, 8, 9]) on any frame It of S results in the extraction of a set of interest point descriptions Φt = {φm}Mt

m=1,
where Mt is the total number of interest points detected in the frame, and interest point φm is defined as
φm = [φx

m, φy
m, φd

m]. φx
m, φy

m denote the coordinates of the corresponding local region’s centroid on the image
grid and φd

m is the local descriptor vector, e.g. an 128-element SIFT vector. In this work, the SIFT method was
used for interest point detection and description, due to its well-documented [3, 7] invariance properties.

Having detected and described interest points in all frames of S, a temporal correspondence between an
interest point φm ∈ Φt and one interest point of the previous frame can be established by local search in a
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square spatial window of dimension 2 · σ + 1 of frame It−1, i.e., by examining if one or more φn ∈ Φt−1 exist
that satisfy the following conditions:

|φx
m − φx

n| ≤ σ , (1)

|φy
m − φy

n| ≤ σ , (2)

d(φd
m, φd

n) ≤ dsim , (3)

where σ is a constant whose value is chosen such that a reasonably-sized square spatial window is considered
during local search, and d(.,.) is the Euclidean distance. The latter was also used in [3] for keypoint matching
across different images, and is chosen in this work for consistency with the K-Means clustering that is used at a
later stage for assigning the extracted tracks to words of the BoSW model (Sect. 4.3). If multiple interest points
satisfying (1)-(3) exist, the one for which quantity d(φd

m, φd
n) is minimized is retained. When such an interest

point φn exists, the interest point φm ∈ Φt is appended to the feature track where the former belongs, while
otherwise (as well as when processing the first frame of the shot) the interest point φm is considered to be the
first element of a new feature track.

Repeating the temporal correspondence evaluation for all interest points and all pairs of consecutive frames
in S results in the extraction of a set Ψ of feature tracks, Ψ = {ψk}K

k=1, where ψk = [ψx
k , ψy

k , ψd
k]. ψd

k is the average
descriptor vector of a feature track, estimated by element-wise averaging of all interest point descriptor vectors
φd

m of the feature track, as in [19], while ψx
k is the corresponding time-series of camera-motion-compensated

interest point displacement in the x-axis between successive frames of S in which the feature track is present.
ψy

k is defined similarly for the y-axis. Thus, ξk = [ψx
k , ψy

k ] is the long-term trajectory of the interest point that
generates the feature track: ψx

k = [ψx,tk1
k , ψx,tk1+1

k , ... ψx,tk2
k ] where tk2 > tk1 (and similarly for ψy

k). The values
ψx,t

k are estimated for any given t by initially using the differences φx
m − φx

n, φy
m − φy

n for all identified valid
pairs of interest points between frames It, It−1 to form a sparse, non-regular motion field for the corresponding
pair of frames; subsequently, the 8 parameters of the bilinear motion model, representing the camera motion,
are estimated from this field using least-squares estimation and an iterative rejection scheme, as in [1]. Then
ψx,t

k and ψy,t
k are eventually calculated as the differences between the initial displacement of the corresponding

interest point’s centroid between times t − 1 and t, and the estimated camera motion at the location of the
centroid.

The simple interest point matching between successive frames of S, which is used as part of the proposed
feature track extraction process, was chosen primarily for its simplicity; more elaborate techniques for tracking
across frames have been proposed (e.g. [18]) and can be used instead, for producing more accurate feature
tracks, if the added computational complexity is not a limiting factor. An example of the feature tracks that
are extracted by the proposed procedure is shown in Fig. 1.

3.2 Feature Track Selection

The feature track extraction process, described in the previous section, typically results in the extraction of a
large number of feature tracks (e.g. in the order of tens of thousands) for every shot. These exhibit significant
differences in their temporal duration, with the track length tk2 − tk1 ranging from 0 to T − 1, T being the
number of frames in the shot (Fig. 2). Besides the practical problems associated with storing and using such a
large number of descriptors for every shot, the possible presence of noisy or otherwise erroneous tracks among
those originally extracted may adversely affect concept detection. Therefore, selecting a suitable subset of these
feature tracks is proposed.

One possible criterion for selecting a subset of feature tracks is their repeatability under variations (e.g.
perspective, scale, and illumination variations). Repeatability is among the main requirements for any descriptor.
In this work, it is hypothesized that the repeatability of a track can be approximated by examining the temporal
duration of it. More specifically, let us assume that R denotes the real-world scene that is depicted in shot S.
Under constant illumination conditions and assuming no local (object) motion, the result of capturing scene R
with an ideal static camera would be an ideal image Ir. Then, every image It ∈ S can be seen as a different noisy
observation of Ir, affected by image acquisition noise and possible global and local motion, as well as perspective,
scale, and illumination variations. Similarly, every interest point in image It that is part of an extracted feature
track ψk can be perceived as the result of detecting the corresponding ideal interest point of Ir under the specific
variations affecting image It. Of course, the assumption made here is that the correspondences established with
the use of (1)-(3) are not erroneous. Consequently, the probability of a specific feature track being present in
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Fig. 1. Example of a few interest points that belong to extracted feature tracks (marked on four indicative frames of a
shot), and an overview of the corresponding feature tracks in the 2D+Time space for the whole shot.
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Fig. 2. Example of the distribution of feature tracks extracted for a shot, according to their temporal duration.

one frame of S can be used as a measure of the repeatability of the interest point that defines this feature track,
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Fig. 3. Filter bank used for capturing motion at different time-scales.

thus also as a measure of the relevant repeatability of the feature track itself, in comparison to other feature
tracks of the shot.

Following this discussion, in this work the probability of a specific feature track being present in one frame
of S is calculated as the number of frames in which the track extends, divided by the total number of frames of
the shot,

p(ψk) =
tk2 − tk1

T − 1
, (4)

and is used as a measure of the feature track’s repeatability. Consequently, the feature tracks of set Ψ generated
for shot S are ordered according to p(ψk) (equivalently, in practice, according to tk2− tk1) in descending order,
and the N first tracks are selected for generating the BoSW model of the shot.

It should be emphasized that repeatability is just one possible criterion for selecting feature tracks, and
the most repeatable features are not necessarily the most informative ones as well; thus, jointly considering
repeatability and additional criteria may be beneficial. Furthermore, note that the temporal duration of a track
being a good approximation of its repeatability is only a hypothesis that we make; this needs to be experimentally
verified. To this end, the track selection strategy described above, which is based on this hypothesis, is evaluated
against two other possible such strategies in the experimental results section.

4 Bag-of-Spatiotemporal-Words

4.1 Feature Track Representation

The selected feature tracks are variable-length feature vectors, since the number of elements comprising ψx
k

and ψy
k is proportional to the number of frames that the feature was tracked in. This fact, together with other

possible track artefacts (e.g. the extraction of partial tracks, due to failure in interest point matching between
consecutive frames, occlusions, etc.) make the matching of feature tracks non-trivial and render their current
representation unsuitable for direct use in a BoW-type approach. For this reason, each motion trajectory is
transformed to a fixed-length descriptor vector that attempts to capture the most important characteristics of
the motion.

To capture motion at different time-scales, ψx
k and ψy

k are initially subject to low-pass filtering using a filter
bank shown in Fig. 3, based on the lowpass Haar filter H(z) = 1

2 (1 + z−1). This results in the generation of a
family of trajectories, ξk,q = [ψx

k,q, ψ
y
k,q], q = 0, ..., Q− 1, as shown in Fig. 3, which due to the simplicity of the

Haar filter are conveniently calculated as follows:

ψx
k,q = [ψx,tk1+2q−1

k,q , ψx,tk1+2q

k,q , ... ψx,tk2
k,q ] , (5)

ψx,t
k,q =

1
2q

2q−1∑

i=0

ψx,t−i
k . (6)

The y-axis elements of the trajectory are calculated similarly.
For any trajectory ξk,q, the histogram of motion directions at granularity level θ is defined as a histogram

of π
θ bins: [0, θ), [θ, 2 · θ),..., [π − θ, π). When π ≤ θ < 2 · π, θ′ = θ − π is used instead of θ for assigning the

corresponding elementary motion to the appropriate bin of the histogram. The value of each bin is defined as
the number of elementary motions [ψx,t

k,q, ψy,t
k,q] of the trajectory that fall into it, normalized by division with

the overall number of such elementary motions that belong to the examined trajectory. λ(ξk,q, θ) is defined as
the vector of all bin values for a given ξk,q and a constant θ.
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Then, the initial trajectory ξk can be represented across different time-scales and at various granularity
levels as a fixed length vector µk:

µk =
[
λ(ξk,0,

π

2
), λ(ξk,1,

π

2
), ... λ(ξk,Q−1,

π

2
)

λ(ξk,0,
π

4
), λ(ξk,1,

π

4
), ... λ(ξk,Q−1,

π

4
), ...

λ(ξk,0,
π

2J
), λ(ξk,1,

π

2J
), ... λ(ξk,Q−1,

π

2J
)
]

. (7)

The corresponding Local Invariant Feature Track (LIFT) descriptor is defined as:

LIFT (ψk) = [ψd
k, µk] . (8)

The LIFT descriptor is a fixed-length vector that compactly captures both the 2D appearance of a local
image region and its long-term motion.

4.2 Invariance Concerns

The definition of the LIFT representation was guided by the need to introduce, to the extent possible, some
invariance with respect to the scale and direction of the extracted tracks. Starting with the interest point
detection and description in the 2D, the SIFT method was used, due to its well-documented [3, 7] and desirable
invariance properties; other similar methods [8, 9] could also be used instead. Concerning the feature track
extraction, camera-motion-compensated trajectories were estimated and employed to ensure that the final LIFT
representation will not be affected by camera motion. Camera motion could also be useful for representing the
shots, but should in any case be separated from the local motion of the different local features within the shot,
rather than being allowed to corrupt the latter.

In the subsequent representation of the tracks by histograms, only the direction of each elementary motion
of the track was employed, rather than the direction and magnitude of it. This was done for introducing some
degree of invariance to image scale, since the same motion (e.g. a person picking up the phone) will result in
different motion vector magnitudes depending on the focal length of the camera and its distance from the plane
of the motion; on the contrary, the direction of motion is not affected by these parameters.

Histograms at various time-scales were selected for representing the tracks, instead of e.g. comparing the
overall displacement of the interest point along the track, to allow for partial matches when considering partial
tracks (i.e., when the beginning and end of the different extracted tracks that correspond to the same class of
actions do not coincide with each other and with the actual beginning and end of the depicted action). Although
the adopted solution may be non-optimal, the reliable matching of partial tracks would otherwise require the
use of a computationally expensive optimization-based technique for evaluating the similarity of them, in place
of the Euclidean distance typically used in K-Means when creating the “words” used in the Bag-of-Words
approach.

The use of motion direction histograms at different granularity levels θ (instead of using a single histogram
with a high number of bins) aims at allowing again for partial matches between tracks using a simple metric (i.e.,
L1/L2 rather than e.g. the Earth Mover’s Distance), in the case of small variations in the direction of motion.
When considering only a very fine granularity level θ, significant such variations between similar shots could
be caused by even small differences in camera angle/viewpoint. The combined use of multiple (from coarse to
fine) granularity levels can alleviate this effect to some degree. Alternatively, the weighted assignment of every
elementary motion to more than one neighboring bins, when constructing each motion direction histogram,
could be employed.

4.3 Shot Representation

The LIFT descriptors of the feature tracks extracted and selected for a video shot, according to the processes of
Sect. 3, can be used for generating a Bag-of-Spatiotemporal-Words (BoSW) model. This will essentially describe
the shot in terms of classes of “similarly-moving, visually-similar local regions”, rather than simply “visually-
similar local regions” (detected by either spatial or spatio-temporal interest point detectors), as in the current
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Fig. 4. Illustration of the temporal pyramidal methodology.

state-of-the-art, e.g. [12, 16]. The BoSW model is expected to allow for the improved detection of dynamic
concepts in video, in contrast to the traditional keyframe-based BoW that by definition targets the detection of
static concepts. Furthermore, since the shot features used in the BoW and BoSW models are different and, to
some degree, complementary, it is expected that combining the two models can result in further improvement
of the detection rates for both dynamic and static concepts.

For the generation of the BoSW model, the typical process of generating BoW descriptions from any set of
local descriptors is followed. Thus, K-Means clustering, using a fixed number of clusters, is performed on a large
collection of LIFT descriptors for initially identifying a set of words (i.e., the centroids of the clusters). Hard- or
soft-assignment of each one of the LIFTs of a given shot to these words can then be performed for estimating
the histogram that represents a given shot on the basis of the defined spatio-temporal words. Furthermore,
techniques such as spatial pyramids [22] or temporal extensions of them (Fig. 4) can be used in combination
with the BoSW model, similarly to the way spatial pyramids are combined with the BoW one.

5 Experimental Results

In the experimental evaluation of the proposed techniques, two datasets were used. The first one is the
TRECVID1 2007 dataset, which is made of professionally-created videos (Dutch TV documentaries). The train-
ing and testing portions of it comprise 50 hours of video each, and 18120 and 18142 shots respectively; all
these shots are annotated with 20 concepts that were defined for the TRECVID 2009 contest. This dataset
was employed for evaluating different design choices of the proposed BoSW (e.g. the feature track selection
strategy) and for comparing them with alternate approaches, as well as for comparing the overall proposed
technique with the traditional SIFT-based BoW one. The second dataset is the TRECVID 2010 one, which is
made of heterogeneous internet videos. The training and test portions of it comprise approximately 200 hours of
video each, and 118536 and 144971 shots respectively; the training portion is annotated with 130 concepts that

1 http://www-nlpir.nist.gov/projects/trecvid/
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were defined for the TRECVID 2010 contest. This dataset was used for further comparing the overall proposed
technique with the traditional SIFT-based BoW one, on the basis of the 30 concepts (out of the overall 130
ones) that were evaluated for each run that was submitted to TRECVID 2010.

In the process of extracting the proposed LIFT features of the video shots, the temporal sub-sampling
parameter a was set equal to 3. This represents a good compromise between the need for accurately establishing
the SIFT point correspondences from frame to frame (which calls for a low value of a, ideally 1) and the need
for speeding up the feature extraction process. For each frame of the temporally sub-sampled sequence, the
method of [3] was used for interest point detection and description, resulting in a 128-element vector for the
local region of each interest point. Parameter σ, defining the local window where correspondences between
SIFT descriptors are evaluated, was set to 20, and parameter dsim, used for evaluating the similarity of SIFT
descriptors in different frames, was set to 40000. Using four different timescales (Q = 4) and three granularity
levels θ (i.e., J = 3 in (7)) for representing the trajectory information of the extracted feature tracks resulted in
the LIFT descriptor of each feature track being a 184-element vector, while setting J = 5 in selected experiments
(indicated below) resulted in a 376-element vector instead.

A first series of experiments was carried out on the TRECVID 2007 dataset, in order to evaluate the
appropriate number of feature tracks that should be used for representing each shot, given the above feature
track extraction and representation parameter choices. A BoSW model, using hard assignment and 500 words,
was used to this end, together with Support Vector Machine classifiers. The latter produced a fuzzy class
membership degree in the range [0,1] when used for evaluating the relevance of each shot of the TRECVID 2007
test dataset with every one of the considered high-level features, exploiting the BoSW model. Prior to this, the
SVM classifiers were trained using the TRECVID 2007 training dataset and the common annotation; for each
high-level feature, a single SVM was trained independently of all others. It should be noted that this is only a
baseline configuration; it is used for efficiently evaluating certain characteristics of the proposed BoSW, and is
neither optimal nor in par with SoA works such as [12], where 4000 words, soft assignment, multiple color SIFT
variants, and additional techniques such as pyramidal decomposition are combined, increasing the dimension
of the vector representing each shot from 500 (as in our baseline configuration) to about 100000. The results
(mean average precision, calculated for a maximum of 2000 returned samples per concept [10]) are shown in
Fig. 5(a), where it can be seen that using 2500 feature tracks per shot leads to the best results overall.

A second series of experiments was carried out to evaluate the soundness of the feature track selection
process of Sect. 3.2 and of the hypothesis that this process has been based on. Specifically, the selection of the
2500 tracks with the highest probability p(ψk), as proposed in Sect. 3.2 (denoted as selection criterion “BB”
in the sequel) was compared with a) the selection of the 2500 tracks with the highest probability p(ψk) after
removing from set Ψ those feature tracks used by selection criterion “BB” (denoted as “SB” in the sequel),
and b) the random selection of 2500 feature tracks from set Ψ (selection criterion “RR”). The LIFT descriptor
was used in all the above cases for representing the selected tracks and for forming a 500-word BoSW model.
Experimentation with the 500-word keyframe-based BoW model that uses SIFT descriptors was also carried
out, for comparing BoSW and BoW when used in isolation. For creating the BoW model of each shot, the
median frame of the shot was selected as a key-frame and SIFT descriptors were extracted from it. The results
(Fig. 5(b)) show that selection criterion “BB” significantly outperforms criteria “SB” and “RR”. The BoSW
model using selection criterion “BB” by itself performs comparably to the keyframe-based BoW model overall,
but considerably better than the latter when considering only dynamic concepts (i.e., a subset of the 20 defined
high-level features, which is discussed in more detail below).

In a third series of experiments, the merit of combining the BoSW and BoW models was evaluated. The
combination of the two was performed by concatenating the shot descriptions produced by each of them, simi-
larly to how different BoW models based on different color SIFT variants are combined in [12]. In Table 1, BoW
and the combination of BoW and BoSW (using selection criterion “BB”) are compared using a) the baseline
configuration used in the previous experiments: 500 words and hard assignment, and b) 500 words, soft assign-
ment, a spatial pyramid of 2 levels for BoW and, in a similar fashion, the temporal pyramid of Fig. 4 for BoSW.
Additionally, in the latter case 5 granularity levels θ (i.e., J = 5 in (7)), instead of 3, are used. The results of
Table 1 document the contribution of the proposed BoSW model to improved performance when combined with
the BoW model, compared to the latter alone, as well as the applicability of techniques such as soft assignment
and pyramidal decomposition (particularly temporal pyramids) to BoSW. Overall, considering the second of
the the two tested configurations (500 words, soft assignment, spatial/temporal pyramidal decomposition), the
SIFT-based BoW resulted in a mean average precision (MAP) of 0.084, whereas the combination of BoW and
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Fig. 5. Evaluation of a) the impact of the number of feature tracks used for representing each shot, and b) the impact
of different shot representation techniques, on concept detection performance.

BoSW in a MAP of 0.102, representing an increase of the former by approximately 21%. Considering only
high-level features that have a strong temporal dimension (“people-dancing”, “person-playing-soccer”, etc.), i.e.
features 5, 6, 7, 9, 11 and 13 of Fig. 6, the use of the proposed BoW and BoSW combination leads to an increase
of MAP by approximately 28% over using the SIFT-based BoW alone. The significance of taking into account
motion information, as done by BoSW, for detecting such dynamic concepts can also be seen in Fig. 6, where
the per-concept results (average precision) corresponding to the last row of Table 1 are shown.

Table 1. Comparison between BoW, combination of BoW and BoSW on the TRECVID 2007 dataset (mean average
precision for all 20 / 6 dynamic concepts).

BoW BoW+BoSW(BB)

Number of considered concepts: 20 6 20 6

500 words, hard assignment 0.054 0.041 0.068 0.056

500 words, soft assignment, spa-
tial/temporal pyramidal decomposition

0.084 0.088 0.102 0.113

Finally, the SIFT-based BoW and the combination of BoW and BoSW (using again 500 words, soft assign-
ment, spatial/temporal pyramidal decomposition, and 5 granularity levels θ) were compared on the TRECVID
2010 dataset, by participating with the two corresponding runs to the TRECVID 2010 contest [23]. The re-
sults for the 30 concepts that were evaluated in this contest are reported in Table 2 and Fig. 7 (overall and
per-concept results, respectively). Extended inferred average precision (xinfAP) and mean extended inferred
average precision (MxinfAP) [24], calculated for a maximum of 2000 returned samples per concept, were used
for quantifying the results, in order to account for the test portion of this dataset being annotated only in part.
It can be seen that the SIFT-based BoW resulted in a MinfAP of 0.030, whereas the combination of BoW and
BoSW in a MinfAP of 0.038, representing an increase of the former by approximately 26.7%. Considering only
high-level features that have a strong temporal dimension, i.e. features 1, 4, 7, 11, 23, 26, 28, and 30 of Fig. 7,
the use of the proposed BoW and BoSW combination leads to an increase of MinfAP by approximately 95%
over using the SIFT-based BoW alone.
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Fig. 6. Individual concept detection results on the TRECVID 2007 dataset for BoW alone and for the combination of
BoW and BoSW, using 500 words, soft assignment, and spatial/temporal pyramidal decomposition.

6 Conclusions

In this work the use of feature tracks was proposed for jointly capturing the spatial attributes and the long-term
motion of local regions in video. In particular, techniques for the extraction, selection, representation and use
of feature tracks for the purpose of constructing a Bag-of-Spatiotemporal-Words model for the video shots were
presented. Experimental evaluation of the proposed approach on two challenging test corpora (TRECVID 2007,
TRECVID 2010) revealed its potential for concept detection in video, particularly when considering dynamic
rather than static concepts.
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