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Abstract

This paper presents an experimental comparison of dif-
ferent approaches to learning from multi-labeled video data.
We compare state-of-the-art multi-label learning methods on
the Mediamill Challenge dataset. We employ MPEG-7 and
SIFT-based global image descriptors independently and in
conjunction using variations of the stacking approach for
their fusion. We evaluate the results comparing the different
classifiers using both MPEG-7 and SIFT-based descriptors
and their fusion. A variety of multi-label evaluation mea-
sures is used to explore advantages and disadvantages of
the examined classifiers. Results give rise to interesting
conclusions.

1. Introduction

Almost every image and video is depicting content with a
large variety of objects, concepts or situations. Therefore the
annotation process can tag it with a large number of labels.
The correlation between those labels can be exploited to-
wards more robust semantic analysis and retrieval methods.
Lately, multi-label based classifiers are becoming popular in
the field of semantic image and video analysis [1], [2], [3],
[4], [5].

This paper presents an experimental comparison of dif-
ferent approaches to learning from multi-labeled video
data. We compare state-of-the-art multi-label methods on
the Mediamill Challenge dataset [5]. MPEG-7 and SIFT-
based global image descriptors are independently employed.
Subsequently, the classifiers are fused using variations of
the stacking [6] approach. The evaluation of all possible
combinations of classifiers and descriptors, as well as their
fusion, is performed with a wide collection of multi-label
measures. This thorough investigation gave some insight on
the strong and weak points of the examined classifiers and
their fusion technique.

The rest of this paper is structured as follows. The
next section gives background information on multi-label
classification, including descriptions of the algorithms that
participate in this empirical study. Section 3 describes all the
details of the experimental setup including the approaches
followed for fusing the different descriptors. Section 4
presents the results and their discussion. Finally, Section 5
concludes and points to interesting extensions of this work
for the future.

2. Multi-label Classification

Traditional single-label classification is concerned with
learning from a set of examples that are associated with a
single labelλ from a set of disjoint labelsL, |L| > 1. In
multi-label classification, the examples are associated with
a set of labelsY ⊆ L.

Multi-label classification algorithms can be categorized
into two different groups [7]: i)problem transformation
methods, and ii)algorithm adaptationmethods. The first
group includes methods that are algorithm independent.
They transform the multi-label classification task into one
or more single-label classification, regression or ranking
tasks. The second group includes methods that extend
specific learning algorithms in order to handle multi-label
data directly. Algorithms of both groups can improve their
performance by taking label relationships into account.

We next present the four methods used in the experimental
part of this work. For the formal description of these
methods, we will useL = {λj : j = 1 . . .M} to denote
the finite set of labels in a multi-label learning task and
D = {(~xi, Yi), i = 1 . . . N} to denote a set of multi-label
training examples, where~xi is the feature vector andYi ⊆ L
the set of labels of thei-th example.

Binary relevance (BR) is a popular problem transforma-
tion method that learnsM binary classifiers, one for each
different label inL. It transforms the original data set into
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M datasetsDλj , j = 1 . . .M that contain all examples of
the original data set, labeled positively if the label set of
the original example containedλj andnegatively otherwise.
For the classification of a new instance, BR outputs the
union of the labelsλj that are positively predicted by the
M classifiers.

Label powerset (LP) is a simple but effective problem
transformation method that works as follows: It considers
each unique set of labels that exists in a multi-label training
set as one of the classes of a new single-label classification
task. Given a new instance, the single-label classifier of
LP outputs the most probable class, which is actually a
set of labels. The number of different classes is upper
bounded bymin(N, 2M ) and despite that it typically is
much smaller, it still poses an important complexity problem
for LP, especially for large values ofN andM . The large
number of classes, many of which are associated with very
few examples, makes the learning process difficult as well.

The randomk-labelsets (RAkEL) method [8] constructs
an ensemble of LP classifiers. Each LP classifier is trained
using a different small random subset of the set of labels.
This way RAkEL avoids LP’s scalability and learning prob-
lems. A ranking of the labels is produced by averaging the
zero-one predictions of each model per considered label.
Thresholding is then used to produce a classification as well.

BP-MLL [9] is an adaptation of the popular back-
propagation algorithm for multi-label learning. The main
modification to the algorithm is the introduction of a new
error function that takes multiple labels into account.

ML-kNN [2] extends the populark Nearest Neighbors
(kNN) lazy learning algorithm using a Bayesian approach.
It uses the maximum a posteriori principle in order to
determine the label set of the test instance, based on prior
and posterior probabilities for the frequency of each label
within the k nearest neighbors.

BR was included in the experimental study as it is
a popular, baseline approach for dealing with multi-label
data. RAkEL, MLkNN and BP-MLL were included in the
experimental study as representative samples of the recent
state-of-the-art in multi-label classification.

3. Experimental Setup

3.1. Dataset

The set of experiments conducted was based on the
Mediamill Challenge dataset [5]. This contains the video
data found in the training set of the 2005 NIST TRECVID
competition. It has become a benchmark set due to its
diverse real-life content and the extensive multi-label annota-
tion that is available for it. The video sources include Arabic,
Chinese, and US news broadcasts that have been recorded
during November 2004 by the Linguistic Data Consortium.
The dataset contains, in total, 85 hours of video data.

Although audio data is also available, it is not taken into
consideration in our experiments. Our setup is exclusively
based on still image data from the shot keyframes extracted.

A manual annotation for 39 labels was performed by the
TRECVID 2005 common annotation effort. This annotation
was extended to a lexicon of 101 semantic labels, by the
Mediamill team [5]. This extended annotation is offering a
collection of multi-labeled shots, suitable for multi-labeled
classification.

3.2. Features

The experiments are based on two different feature sets.
The features are built on the widely accepted MPEG-7 and
the state-of-the-art SIFT-based global image features respec-
tively. A set of MPEG-7 features, namely color structure,
color layout, edge histogram, homogeneous texture and scal-
able color, are extracted using the Experimentation Model
(XM) reference software. All features are concatenated in a
single MPEG-7 vector.

The SIFT-based feature vector is created for each
keyframe in a 2-stage procedure. A set of 500 keypoints, on
average, is extracted from each keyframe. Each keypoint is
assigned a SIFT descriptor vector [10] (with 128 elements).
The SIFT descriptors from all keyframes create a new
128-dimensional feature space. After clustering this feature
space, a lexicon of 100 Visual Words is created. Using
the ”Bag of Words” (BoW) [11] methodology and the
aforementioned lexicon, a frequency histogram is created for
each keyframe. This histogram is a 100-dimensional feature
vector and is used as the second SIFT-based feature in our
experiments.

3.3. Algorithms and Parameter Settings

We compare the following four multi-label learning al-
gorithms that were described in Section 2: BR, RAkEL,
BPMLL and MLkNN.

For the training of RAkEL, BPMLL and MLkNN, the
Mulan open-source library for multi-label classification was
used [8]. RAkEL is run usingm=100 k=4 and the C4.5
algorithm as underlying single-label classifier. As recom-
mended in [2], MLkNN is run with 10 nearest neighbors
and a smoothing factor equal to 1. As recommended in [9],
BPMLL is run with 0.05 learning rate, 100 epochs and the
number of hidden units equal to 20% of the input units.

For the training of BR, the LIBSVM library for Support
Vector Machine (SVM) algorithms was used [12]. The
SVM parameters were set by an automatic optimization
procedure. The procedure pursues the best possible values
for the parameters cost (C) and gamma (g). A grid search
is employed for values ofC: log2(C)= -5:15 (with a step of
2) and gamma: log2(g)=3:-15 (with a step of 2) to find the
optimum values for each label.
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3.4. Fusion Approaches

For the fusion of the two feature vectors we employ the
paradigm of stacking [6], as simpler fusion schemata - such
as those discussed in [13] - have not led to improvements of
performance in the past [14]. In specific, we initially learn
two base-level models, one from each feature vector, and
then we employ a meta-level model that learns from the
predictions of the base-level models.

For MLkNN, BPMLL and RAkEL, a 5-fold cross-
validation procedure was used on the training set, in order to
produce an equal sized meta-level training set containing the
Degrees of Confidence (DoCs) for each label and training
example.

For BR, all positive examples are gathered, sorted by their
position in the training set, and split in two parts, namely
one for the base level training and one for the meta-level
training procedure that will follow. The first set of training is
assigned the odd numbered positive examples and the fusion
training set the even numbered ones. This splitting scheme
has been chosen to ensure that keyframes from all parts
of the training set will be included in both training sets.
Each binary classifier of BR was trained using a random
sample of negative examples five times the size of the
positive examples. This was done to avoid the use of a highly
skewed training set when the number of positive examples
available for training is disproportionately low compared
to the negative ones. The output of classification for an
image, regardless of the employed input feature vector, is
a number in the continuous range [0, 1] expressing the DoC
that the image relates to the corresponding label. Using these
classifiers, DoCs are extracted for the fusion development
set. The set of formed DoC vectors (one per image and label)
serves as a training set for another set of BR classifiers,
that realize the meta-level classification. Their training (i.e.
selection of a subset of negative examples; optimization of
parameters, calculation of output DoC, etc.) is performed
using the methodology described above for the base-level
case. Having completed all the training processes, MPEG-7
and BoW feature vector extraction followed by the base and
meta SVM classification levels are performed on the test
dataset.

3.5. Evaluation Methodology and Measures

The dataset is split into a development and a testing set.
The development is used for the training of the label and
fusion classifiers. On the other hand, the testing set is used
to evaluate the classification models created.

Multi-label classification requires different evaluation
measures than traditional single-label classification. A tax-
onomy of multi-label classification evaluation measures is
given in [8], which considers two main categories:example-
basedand label-based measures. A third category of mea-

sures, which is not directly related to multi-label classifi-
cation, but is often used in the literature, is ranking-based
measures, which are nicely presented in [2] among other
publications.

We compare the different approaches using a plethora
of different multi-label evaluation measures from the afore-
mentioned categories. Based on the binary decisions of the
algorithms, we calculate a) the example-based measures:
hamming-loss, accuracy, precision, recall,F1-measureand
subset accuracy, and b) the label-based measures micro
and macro precision, recall andF1-measure.In addition,
based on the probability estimates output for each label,
by the different algorithms, we further calculate the micro
and macro area under the ROC curve (AUC) and the
ranking-based measures: one-error, coverage, ranking loss
and average precision.

4. Results and Discussion

4.1. Algorithm Comparison

Table 1 presents the results of the algorithms on the
different measures using the BoW descriptors. We notice
that the MLkNN multi-label learning algorithm achieves the
best result in almost all measures. An exception is noticed
for the macro-averaged measures, where BR dominates the
rest of the algorithms, due to its high recall. In addition,
BPMLL achieves the best value for the micro-averaged and
example-based recallmeasures.

BR RAkEL MLkNN BPMLL
Ham. Loss 0.0568 0.0362 0.0323 0.0674
Accuracy 0.2380 0.3841 0.4174 0.3097
Precision 0.3620 0.6308 0.7077 0.3591
Recall 0.3750 0.4734 0.4646 0.6918
F1 0.3684 0.5409 0.5609 0.4728
Subset Acc. 0.0158 0.0567 0.1098 0.0001
Micro Prec. 0.3614 0.6305 0.7311 0.3581
Micro Rec. 0.3732 0.4377 0.4257 0.6649
Micro F1 0.3672 0.5167 0.5381 0.4655
Micro AUC 0.8140 0.8283 0.9305 0.9207
Macro Prec. 0.1487 0.2270 0.2936 0.0733
Macro Rec. 0.2734 0.0658 0.0872 0.1134
MacroF1 0.1475 0.0778 0.1151 0.0690
Macro AUC 0.7306 0.5676 0.6450 0.6623
One-error 0.4426 0.2330 0.1972 0.2376
Coverage 40.2475 39.0799 19.3747 20.4194
Ranking Loss 0.1808 0.2687 0.0598 0.0650
Avg. Precis. 0.4337 0.6167 0.6880 0.6388

Table 1. Results using the BoW descriptors

Table 2 presents the results of the algorithms on the
different measures using the MPEG-7 descriptors. We first
notice that BR continues to dominate in the macro measures
due to its high recall compared to the rest of the algorithms.
However the results are different in the ranking-based mea-
sures, where BPMLL is dominating in this case. In the rest of
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themeasures, there is no clear winner with BPMLL, RAkEL
and MLkNN sharing the topperformances.

BR RAkEL MLkNN BPMLL
HammingLoss 0.0471 0.0324 0.0320 0.0534
Accuracy 0.3651 0.4409 0.4329 0.3919
Precision 0.4908 0.6776 0.6958 0.4492
Recall 0.5413 0.5298 0.4944 0.7407
F1 0.5148 0.5947 0.5781 0.5592
Subset Acc. 0.0524 0.0967 0.1196 0.0138
Micro Prec. 0.4714 0.6820 0.7128 0.4375
Micro Rec. 0.5411 0.4984 0.4619 0.7291
Micro F1 0.5039 0.5759 0.5605 0.5469
Micro AUC 0.8947 0.8541 0.9357 0.9451
Macro Prec. 0.2240 0.3885 0.3026 0.2517
Macro Rec. 0.3933 0.1453 0.1250 0.2151
MacroF1 0.2458 0.1799 0.1501 0.1857
Macro AUC 0.8070 0.6238 0.6610 0.7721
One-error 0.2882 0.2045 0.2047 0.2078
Coverage 27.6336 35.2847 18.312016.1296
Ranking Loss 0.1035 0.2267 0.0561 0.0459
Avg. Precis. 0.5956 0.6699 0.6975 0.7039

Table 2. Results using the MPEG descriptors

Table 3 presents the results of the algorithms on the differ-
ent measures using the fusion approach. MLkNN performs
best in most of the example-base measures. Both MLkNN
and BPMLL perform very well on the ranking-based mea-
sures compared to the other two algorithms. BR continues
to excel in the macro-average label basedmeasures.

BR RAkEL MLkNN BPMLL
HammingLoss 0.0326 0.0317 0.0305 0.0612
Accuracy 0.4227 0.4455 0.4494 0.3690
Precision 0.6781 0.6996 0.7296 0.4144
Recall 0.4982 0.5214 0.4991 0.7586
F1 0.5744 0.5975 0.5927 0.5360
Subset Acc. 0.0981 0.1080 0.1363 0.0088
Micro Prec. 0.6962 0.7047 0.7529 0.3978
Micro Rec. 0.4654 0.4877 0.4603 0.7511
Micro F1 0.5579 0.5765 0.5713 0.5202
Micro AUC 0.7642 0.8198 0.9329 0.9448
Macro Prec. 0.3783 0.2724 0.3290 0.1780
Macro Rec. 0.2414 0.1307 0.1239 0.2074
MacroF1 0.2426 0.1575 0.1536 0.1449
Macro AUC 0.6434 0.5895 0.6325 0.7743
One-error 0.2185 0.1979 0.1800 0.1885
Coverage 49.1760 40.5621 19.374716.3603
Ranking Loss 0.2019 0.3006 0.0585 0.0474
Avg. Precis. 0.5768 0.6514 0.7061 0.7033

Table 3. Results of the fusion

The results of our experimental study show that there is a
difference in the general approach followed between BR and
the rest of the multi-label classifiers. BR is oriented towards
ranking the results of a certain query label. Given a label, it
has the competence to rank the relevance of images to this
label taking a fuzzy rather than just a binary decision for this
relevance, working on a single label at each time. Thus, its
result is a ranked list of images relevant to a given label. On
the other hand, BPMLL, MLkNN and RAkEL are working

in an orthogonal way; they process simultaneously many
labels trying to take advantage of the correlations between
them. They are oriented towards outputting all labels that
are relevant to a given image/video. BPMLL in specific,
directly optimizes a loss function that takes the ranking
of the labels into account. Furthermore, MLkNN outputs
probabilistic estimates for each label that give very good
results with respect to ranking the relevance of each label
to the given object.

Given these facts, we can argue that the above methods
are suitable for different types of applications. BR is more
suitable for retrieval applications where the user interacts
with the search engine providing a label as a search query.
BR can be used for returning a list of the most relevant
results, in descending order, for the given query label. On
the other hand, BPMLL and MLkNN can be more suitable
for semantic multimedia analysis and inference techniques.
During semantic analysis, every image/shot is processed and
a ranked list of labels is produced for it. Subsequently, the
most plausible label can be chosen using the ranked list
and predefined domain knowledge of domain objects and
their temporal relationships (in analogy to [15]). The chosen
label can be different from the top ranked label based on the
aforementioned domain knowledge, allowing us to discard
isolated erroneous classification results.

4.2. BoW vs. MPEG-7 vs. Fusion

For the BR approach we first notice that the MPEG-7
features give better results than the BoW features across
all evaluation measures. We then notice that in micro and
macro AUC, micro recall, coverage and ranking loss, the
results of the fusion are worse than those when learning
from the BoW features. This a strange result, since the
fusion process should improve the quality of the model.
Given that all of the above measures apart from micro recall,
are calculated based on the degrees of confidence for each
label, we conclude that the meta-level SVM models output
imprecise probability estimates. A potential reason for this
could be the significantly reduced feature space at the meta-
level (the two confidences of the base-level SVMs).

For the MLkNN approach, we notice that the MPEG-7
features give better results than the BoW feature across all
evaluation measures apart from the example-based precision,
micro precision and one-error. So, in this approach we don’t
notice a complete dominance of the MPEG-7 features over
the BoW features. A potential reason could be the higher
number of MPEG-7 features (320) compared to the BoW
features (100). The intolerance of irrelevant features, is a
known problem ofkNN based algorithms, which becomes
more evident as the number of features grows. The fusion
process gives better results than the BoW features as well,
apart from the macro AUC measure. The fusion process im-
proves most of the measures compared to the plain MPEG-
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7 features, apart from micro and macro AUC, micro and
macro recall, coverage and ranking loss. Again the decrease
of performance is mostly in measures calculated based on
degrees of confidences. Since in this case the feature vector
is not small, as in BR, we hypothesize that a potential reason
is that the meta-level data are more noisy compared to the
raw MPEG-7 and BoW data, as they contain the probability
estimates of the base-level models.

For the BPMLL approach, the bow features are clearly
dominated by both the MPEG-7 features and the fusion
process inall measures. Interestingly, the fusion process
leads to worse results compared to the plain MPEG-7
features for most of the measures, apart from one-error,
micro recall, example-based recall and macro AUC. The
most important loses of the fusion process compared to the
MPEG-7 features is in the precision related measures.

For the RAKEL approach, we notice that similarly to
BR, the MPEG-7 features give better results than the BoW
features acrossall evaluation measures. Again similarly to
BR we notice that the fusion gives worse results compared to
the BoW features in just three confidence related measures:
micro AUC, coverage and ranking loss. The performance
of the fusion process is similar to that of the MPEG-
7 features. In specific, the MPEG-7 features give worse
results compared to the fusion process in the example-
based measures of hamming loss, accuracy, precision,F1
and subset accuracy, the one-error ranking-based measure
and the microF1 andmicro precision label-based measures.

Having discussed the performance of the different feature
vectors and their fusion for all algorithms we can argue
about the following general conclusions. Firstly, the MPEG-
7 features are much more valuable compared to the BoW
features. We must note however, that the performance of
BoW features might be affected by their low dimensionality
(100), as other studies have used this kind of representation
with success. Secondly, the fusion process leads to worse
probability estimates for each label compared to the original
features, probably due to the imprecise degrees of confidence
output by the base-level models. Finally, the fusion process
does not always improve the overall results compared to the
MPEG-7 features.

4.3. Intuitions from Label-Specific Results

The performance of the 20 most common labels in the
Mediamill Challenge dataset, using F-measure as a metric,
for both BR and MLkNN is depicted in Figure 1. Although it
is not a general rule, for labels that have a strong correlation,
MLkNN seems to have a performance advantage over BR;
”People” and ”Face” are an example of labels that are
strongly correlated and MLkNN outperforms BR in both. On
the other hand, BR tends to outperform MLkNN in labels
that seem uncorrelated with any other considered label, like
”overlayed text”.

5. Conclusions and Future Work

This paper has performed an experimental study of sev-
eral state-of-the-art methods for learning from multi-labeled
video data. It has been shown that different methods perform
well in different evaluation measures, and that the appro-
priate algorithm can be selected based on the application
requirements and constraints.

One of the main issues worth of further investigation is
how to improve the effectiveness of the fusion process, espe-
cially for BPMLL, MLkNN, RAkEL and other multi-label
learning algorithms that don’t treat each label independently
as BR does. The fusion of different feature representations
of multi-labeled objects has not been substantially studied
in the literature, to the best of our knowledge, with the
exception of [14]. For example, one problem with using
Stacking as the fusion process is that the size of the
feature space of the meta-level training data can easily grow
significantly large, as it is equal to the product of the number
of different representations and the number of labels.

Another interesting future research direction is the inves-
tigation of the ranking performance of the different methods
for each specific label. This will allow a more careful
assessment of the performance of methods for information
retrieval tasks.

One of the issues neglected in the present paper is an
account of the training and testing time of the different
approaches. The optimization of SVMs via a grid-search
process is highly time-consuming, while significant time is
also required by the ensemble method RAkEL. BPMLL and
MLkNN on the other hand are much more efficient with
respect to the computational cost. A more detailed account
of this subject is among our future plans.
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