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ABSTRACT

In this paper, a novel algorithm for the real-time, unsuper-
vised segmentation of image sequences in the compressed
domain is proposed. The algorithm utilizes the motion in-
formation present in the compressed stream in the form of
P-frame forward motion vectors, as well as basic color in-
formation in the form of DC coefficients present in I-frames.
An iterative rejection scheme based on the bilinear motion
model is used for performing foreground/background seg-
mentation. Further examining the temporal consistency of
the output of iterative rejection, clustering to connected re-
gions and performing region tracking, results to foreground
spatiotemporal objects being formed. Background segmen-
tation to spatiotemporal objects is also performed. Exper-
imental results on known sequences demonstrate the effi-
ciency of the proposed approach and reveal the potential of
employing it in content-based applications such as object-
based video indexing and retrieval.

1. INTRODUCTION

Digital video is an integral part of many newly emerging
multimedia applications. New image and video standards,
such as MPEG-4 and MPEG-7, do not concentrate only on
efficient compression methods but also on providing better
ways to represent, integrate and exchange visual informa-
tion [1]. These efforts aim to provide the user with greater
flexibility for “content-based” access and manipulation of
multimedia data. Multimedia applications, such as sophis-
ticated query and retrieval of video, can benefit from this
content-based approach. Although the standards will pro-
vide the needed functionalities in order to compose, manip-
ulate and transmit the “object-based” information, the pro-
duction of these objects is out of the scope of the standards
and is left to the content developer. Thus, the success of
any object-based approach depends largely on the accurate
segmentation of the scene based on its contents.
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Several approaches have been proposed in the literature
for video segmentation. However, most of these approaches
concentrate on segmentation in the raw, pixel domain, suf-
fering of high computational complexity and requiring that
the sequence is fully decoded before processing. To tackle
these drawbacks of pixel-domain approaches, a few com-
pressed domain methods have been proposed for spatiotem-
poral segmentation [2, 3, 4, 5, 6]. Some of these approaches,
although significantly faster than most pixel-domain algo-
rithms, cannot be executed in real-time [2, 5]. In [3, 6], pure
translational motion is assumed, and motion vectors and dc
coefficients are clustered. In [4], segmentation is performed
using ac/dc DCT coefficients only; foreground/background
classification is based on thresholding the average temporal
change of each region, while the macroblock motion vec-
tors are not used. In [7], a method for tracking manually
identified moving objects in the compressed stream based
on macroblock motion vectors is developed.

This work focuses on the real-time, unsupervised spa-
tiotemporal segmentation of video sequences in the com-
pressed domain. Only I- and P-frames are examined, since
they contain all the information necessary for the proposed
algorithm; this is also the case for most other compressed
domain algorithms. The bilinear motion model is used for
modelling the motion of the camera (equivalently, the per-
ceived motion of static background) and, wherever neces-
sary, the motion of the identified moving objects, as op-
posed to previous methods using simple clustering tech-
niques which assume pure translational motion. Not only
foreground spatiotemporal objects are identified, but also
the background is segmented to background spatiotemporal
objects; this would be useful, for example, in a retrieval ap-
plication where instead of querying for a compound back-
ground, one would be allowed to query for its constituent
objects, such as sky, sea, mountain, etc. The proposed spa-
tiotemporal segmentation algorithm is applied to shots; shot
detection is performed using the method of [8], due to its
minimum computational complexity. An overview of the
proposed scheme is presented in Fig. 1.

The paper is organized as follows: in section 2, the ex-
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Fig. 1. Compressed-domain spatiotemporal segmentation algorithm overview.

traction of information (P-frame motion vectors, DC co-
efficients) used for the segmentation from the compressed
stream is discussed. In section 3, moving object segmenta-
tion and tracking is developed. Section 4 deals with the seg-
mentation of background. The application of the proposed
algorithm in indexing and retrieval is briefly discussed in
section 5. Section 6 contains an experimental evaluation of
the developed methods, and finally, conclusions are drawn
in section 7.

2. COMPRESSED-DOMAIN INFORMATION
EXTRACTION

This work is focused on the fast and efficient spatiotemporal
segmentation of MPEG-2 [9] compressed streams. The in-
formation used by the proposed algorithm is extracted from
MPEG sequences during the decoding process. Specifi-
cally, motion vectors are extracted for the P-frames and are
used for foreground/background segmentation and for sub-
sequently identifying different foreground objects. Since P-
frames are coded using motion information from I-frame to
P-frame or from P-frame to P-frame, their motion informa-
tion provides a clearer indication of the motion of an object
in comparison to motion information derived from tempo-
rally adjacent frames. In order to derive motion informa-
tion for the I-frames, averaging of the motion vectors of the
closest previous and the closest next P-frame to the given
I-frame is performed, rather than block matching employed
in previous work on compressed-domain tracking [7].

In order to further segment the background to the dif-
ferent objects that it may be composed of (e.g. sky, grass,
etc.), the use of color information is necessary; this is due
to the fact that the background has already been identified,
using the motion information, as a non-connected region of
uniform motion. The color information extracted for the

purpose of background segmentation is restricted to the DC
coefficients of the macroblocks, corresponding to the Y, Cb
and Cr components of the MPEG color space. One DC co-
efficient is used to describe luminance (Y) information for
every macroblock. Since DC coefficients are present only in
I-frames, motion information is used for temporal tracking
in P-frames of the background regions formed in I-frames
using the color information.

3. MOVING OBJECT SEGMENTATION AND
TRACKING

The extraction of spatiotemporal moving objects is the key-
challenge of any video segmentation algorithm. The pro-
posed algorithm for moving object extraction is based on
exploiting the motion information (motion vectors) of the
macroblocks and consists of three main steps:

• Step 1. Iterative macroblock rejection is performed
frame-wise to detect macroblocks with motion vec-
tors deviating from the single rigid plane assumption.
As a result, certain macroblocks of the current frame
are activated (marked as possibly belonging to the
foreground).

• Step 2. The temporal consistency of the output of iter-
ative rejection over the last few frames is examined, to
detect activated macroblocks of the current frame that
cannot be tracked back to activated macroblocks for
a few previous frames. These are excluded from fur-
ther processing (deactivated). This process is based
on temporal tracking of activated macroblocks using
their motion vectors.

• Step 3. Macroblocks still activated after step 2 are
clustered to connected regions and these are in turn



assigned to either preexisting or newly-appearing spa-
tiotemporal objects, based on the motion vectors of
their constituent macroblocks. Spatial and temporal
constraints can also be applied to prevent the creation
of spatiotemporal objects inconsistent with the human
expectation (e.g single-macroblock objects or objects
with undesirably small temporal duration).

These steps are explained in more detail in the sequel.

3.1. Iterative macroblock rejection

Iterative rejection is a method proposed in [10] for global
motion estimation using the output of a block matching al-
gorithm (BMA) and a four-parameter motion model. In
[11], the method was extended to estimate the eight parame-
ters of the bilinear motion model, for the purpose of retrieval
of video clips based on their global motion characteristics.
Iterative rejection is based on iteratively estimating the pa-
rameters of the global-motion model using least-square esti-
mation and rejecting those blocks whose motion vectors re-
sult to an estimation error larger than the average estimation
error. The iterative procedure is terminated when one itera-
tion leaves the set of rejected blocks unaltered. The under-
lying assumption regarding the method of iterative rejection
is that the area of the background is significantly larger than
that of the moving objects; thus, applying the iterative re-
jection scheme to the entire frame results in motion vectors
affected by local (object) motion being rejected, and global
motion (camera motion or, equivalently, the perceived mo-
tion of still background) being estimated.

In this work, a byproduct of iterative rejection based on
the bilinear motion model is used. Specifically, the mask
RIR

t indicating which macroblocks have been rejected at
time t (or activated, from the segmentation objective’s point
of view), is employed as the first step to foreground / back-
ground segmentation. Rejected (activated) macroblocks are
treated as potentially belonging to foreground objects. As
opposed to methods based on examining the temporal change
of color features, used for fast raw-domain foreground /
background segmentation, the employed method of itera-
tive rejection can efficiently deal with sequences captured
by a moving camera.

Although this is a fast and relatively simple method for
detecting macroblocks that may belong to the foreground,
several of the activated macroblocks may have been falsely
activated. This may be due to false motion vectors (motion
vectors extracted from the compressed stream do not neces-
sarily coincide with the true motion vectors expressing the
object motion) or to motion-model inability to accurately
capture the undergoing global motion. In order to iden-
tify and discard falsely activated macroblocks, the temporal
consistency of the output of iterative rejection over the last
few frames is examined, as discussed in the next subsection.

3.2. Macroblock-level tracking

In order to examine the temporal consistency of the output
of iterative rejection, temporal tracking of activated mac-
roblocks is performed using the motion information asso-
ciated with them in the compressed stream, namely their
motion vectors. The temporal tracking is based upon the
work presented in [7], where objects were manually marked
by selecting their constituent macroblocks and these objects
were subsequently tracked in the compressed domain using
the macroblock motion vectors. In the context of validat-
ing the output of the iterative rejection module, no human
intervention is required, as opposed to [7]. A shortcoming
of the method of [7], the need for performing block match-
ing to extract motion features for the I-frames, is handled
in this work by averaging the motion vectors of the closest
previous and the closest next P-frame to the given I-frame,
as already discussed in section 2.

Let RTR
t denote the foreground/background mask de-

rived from mask RIR
t via macroblock-level tracking and let

τ(.) be the tracking operator defined in [7], taking as in-
put a macroblock at time t and outputting the corresponding
macroblock or macroblocks at time t + 1. Then, the opera-
tor T (.) can be defined as taking a foreground/background
mask (such as RIR

t , RTR
t ) as input, applying the τ(.) op-

erator to all foreground macroblocks of that mask, and out-
putting the foreground/background mask at time t+1, as es-
timated by temporal tracking of all foreground macroblocks.

Using the operator T (.), examining the temporal con-
sistency of the output of iterative rejection over T frames
can be expressed as:

Rtemp
t−T = RIR

t−T

for i = T, . . . , 1, Rtemp
t−i+1 = T (Rtemp

t−i ) ∩ RIR
t−i+1

RTR
t = Rtemp

t

where ∩ denotes the intersection of foreground macroblocks.
It is important to observe that this process does not al-

low for infinite error propagation: if a macroblock is falsely
assigned to the background, this will affect at most the T
following frames, while it is possible that it affects no more
that the current frame, since the tracking process, as ex-
plained in [7], results to tracked regions (in this case, the
foreground part of the foreground/background mask) be-
ing inflated. The efficiency of macroblock-level tracking
in rejecting falsely activated macroblocks is demonstrated
in Fig. 2 for frame 220 of the “penguin” sequence.

3.3. Spatiotemporal object formation

As soon as falsely activated macroblocks have been rejected,
as described in the previous subsection, the remaining mac-
roblocks are clustered to connected foreground regions, us-
ing a four-connectivity component labelling algorithm [12];
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Fig. 2. Frame 220 of the “penguin” sequence: (a) original
image, (b) output of iterative rejection, (c) activated mac-
roblocks after macroblock-level tracking for T = 4, (d) fi-
nal results showing the two spatiotemporal objects present
in this frame. The usefulness of macroblock-level tracking
in rejecting falsely activated macroblocks is evident.

this results to the creation of intermediate mask RI
t . Note

that this does not imply that each of these connected spatial
regions in RI

t belongs to a single spatiotemporal object oq,
as will be discussed in the sequel. Only for the first frame of
the shot, in the absence of a previous object mask RO

t (:out-
put of the region formation and tracking step, expressing the
spatiotemporal object membership of each macroblock) and
for the sake of computational simplicity, each connected re-
gion is assumed to correspond to a single object:

for t = 0, RO
t = RI

t

To determine whether a given spatial region belongs to
one or more pre-existing spatiotemporal objects or to a newly
appearing one and eventually create the object mask RO

t ,
motion projection is performed by applying the tracking op-
erator τ(.) to the macroblocks of each spatiotemporal object
of mask RO

t−1. The resulting mask is denoted RMP
t . Thus,

every connected region sk of mask RI
t can be assigned to

one of the following three categories:

• Cat. 1. A significant number of macroblocks of sk

have been marked in mask RMP
t as belonging to spa-

tiotemporal object oq, and no macroblock of sk has
been marked in mask RMP

t as belonging to a spa-
tiotemporal object om, m �= q.

• Cat. 2. A significant number of macroblocks of sk

have been marked in mask RMP
t as belonging to spa-

tiotemporal object oq, and one or more macroblocks
of sk have been marked in mask RMP

t as belong-
ing to different spatiotemporal objects, namely om,
m = 1, . . . , M .

• Cat. 3. There is no spatiotemporal object oq in mask
RMP

t having a significant number of macroblocks of
sk marked as belonging to it.

One thing that has to be defined is the exact meaning of
the “significant number of macroblocks” cited in the defi-
nition of the above categories. This number is in fact esti-
mated for every pair of a spatial region sk of mask RI

t and
the motion projection of a spatiotemporal object oq in mask
RMP

t . Let Ms, Mo denote the size of the examined pair (sk

and motion projection of oq respectively) in macroblocks
and Ms,o the number of macroblocks of sk that have been
marked in mask RMP

t as belonging to spatiotemporal object
oq. Then, the “significant number of macroblocks” require-
ment is satisfied if

Ms,o > a · Ms + Mo

2
, (1)

The value of the parameter a was set to 0.5 on the basis of
experimentation.

For the spatial regions sk assigned to the third category,
it is clear that they can not be associated with an existing
spatiotemporal object; for that, each region of this category
forms a new spatiotemporal object.

Similarly, the spatial regions sk assigned to the first cat-
egory can only be associated with a single spatiotempo-
ral object oq; however, more than one spatial regions may
be associated with the same spatiotemporal object. In this
case, the larger of these spatial regions becomes part of oq,
while the rest are discarded (their macroblocks are assigned
to background). This procedure deals with objects break-
ing up; the fragments discarded at time t, if they actually
correspond to moving objects, will clearly be assigned to
category 3 at time t + 1, and in turn be identified as new
spatiotemporal objects.

As for the regions sk assigned to the second category,
the initial correspondence of some of their macroblocks with
spatiotemporal objects is employed to estimate the parame-
ters of the bilinear motion model for each of the competing
objects. Subsequently, each macroblock is assigned to the
object for which the motion estimation error is minimized.
This process elegantly handles moving objects that become
spatially adjacent. The possibility of merging two adjacent
objects, leaving unaltered any masks created at time t − i,
i > 0, is also examined by estimating the parameters of
their common motion model (at time t) and comparing the
corresponding mean-square error with those of the motion
models estimated for each object separately.



The process of moving object segmentation and tracking
is terminated by imposing application-oriented restrictions
regarding the size and temporal duration of valid moving
objects, if any such restrictions exist. Generally, the removal
of very small objects and objects of very small temporal
duration, which are most likely to be false objects and are
of little use in applications like indexing and retrieval, is
beneficial.

3.4. Pixel-domain boundary refinement

In specific applications, the information that can be extracted
from a segmentation mask of macroblock-level accuracy
may be insufficient (e.g. for the extraction of shape descrip-
tors of high accuracy). In this case, additional pixel-domain
processing of a partially decompressed sequence may be re-
quired, to extract object masks of pixel accuracy. This can
be performed using the color features of pixels in the area of
each moving object and a Bayes classifier for two-class sep-
aration (moving object/background) to reclassify all pixels
in that area or a portion of them, in a fashion similar to that
of [13]. Pixel accuracy masks created using this refinement
method are presented in the experimental results section.

4. BACKGROUND SEGMENTATION

Background segmentation, as soon as moving objects have
been extracted, is based on classifying the remaining mac-
roblocks (assigned to background) to one of a number of
background spatiotemporal objects. This task is performed
using two distinct steps, each dealing with one of the differ-
ent types of the examined frames. These steps are preceded,
at the beginning of the shot, by a procedure estimating the
number of background objects that should be created. The
result of the background segmentation is a final segmenta-
tion mask RF

t .
Specifically, background segmentation is initiated by ap-

plying the maximin algorithm [14] to the color DC coeffi-
cients of the first frame, which is an I-frame. The maximin
algorithm employs the Euclidean distance in the YCrCb col-
orspace to identify radically different colors; these indicate
the presence of different background objects. Its output is
the number of estimated objects and their corresponding
colors; the latter can be used to initiate the clustering pro-
cess.

In I-frames, background macroblocks are clustered to
background objects using the K-means algorithm [15, 14],
K being the number of objects estimated by the maximin
algorithm. For the first frame of the shot, the color centers
are initialized using the output of the maximin algorithm,
while for the subsequent I-frames the color centers of the
resulting objects in the previous I-frame are used for ini-
tialization. A recursive component labelling algorithm [12]

is subsequently applied, to enforce the connectivity of the
created objects and the merging of any non-connected parts
of them; the connectivity constraint is useful in accurately
estimating the position of each object, which could other-
wise be made of non-connected parts scatterer in the entire
frame.

In P-frames, the absence of color information can be
dealt with by using the macroblock motion vectors and a
previous final mask RF

t−1. Temporal tracking is then per-
formed as discussed in previous sections; macroblocks that
are associated via the tracking process with more than one
background objects are assigned to the one for which the
motion information indicates a stronger association, while
those not associated with any objects are assigned to one
based on spatial proximity.

5. OBJECT-BASED INDEXING

The proposed algorithm is suitable for introducing object-
based functionality to video indexing and retrieval appli-
cations, due to the creation of both foreground and back-
ground spatiotemporal objects, for which object-based de-
scriptors in the context of the MPEG-7 Visual standard [16]
can be extracted. Examples of such standardized descriptors
include the dominant color descriptor, the scalable color
descriptor, contour-based and region-based shape descrip-
tors, motion trajectory and parametric motion descriptors.
The use of such object-based descriptors would allow for
more expressive queries to be processed and more efficient
indexing and retrieval to be performed, compared to key-
frame based indexing.

6. EXPERIMENTAL RESULTS

The proposed method was tested on a variety of video se-
quences. Here, results are presented for the “Penguin” (Fig.
3) and “Coast-guard” (Fig. 4) sequences. Segmentation
masks both before (RO

t , second column of results figures)
and after the background segmentation (RF

t , third column
of results figures) are presented, to clearly demonstrate the
foreground and background objects identified in the com-
pressed stream by the proposed algorithm. Results after
pixel-domain boundary refinement for the moving objects
are also presented in Figs. 3 and 4. It can be seen from the
results figures that the algorithm has succeeded in extract-
ing the real foreground objects depicted in the sequences.
No over-segmentation is caused by the proposed approach,
thus facilitating the formation of semantically meaningful
spatiotemporal objects. Additionally, very few false objects
are created. Moving objects that have halted, as the right-
most penguin in Fig. 3, are assigned new labels when they
resume moving.



Additionally, the proposed approach succeeds in adding
as little computational overhead as possible to the compu-
tational complexity of a standard decoder. In particular, the
compressed-domain segmentation algorithm presented (ex-
cluding any processes of the MPEG decoder and the storage
of the segmentation masks, which is algorithm-independent
and unnecessary in many cases, e.g. for the subsequent ex-
traction of object-based indexing features) requires on aver-
age 5.02 msec per processed I/P-frame on an 800Mhz Pen-
tium III. This translates to almost 600 frames per second
considering the presence of two consecutive B-frames be-
tween every two I/P-frames, which is typical for MPEG-2
sequences and is the case for the employed test media. The
pixel-domain boundary refinement of section 3.4 requires
on average 0.48 sec. per processed I/P-frame.

7. CONCLUSIONS

An algorithm for the unsupervised segmentation of com-
pressed domain image sequences was presented in this pa-
per. The algorithm was shown to perform in real-time on a
PC, producing semantically meaningful spatiotemporal ob-
jects both for the foreground and the background. Due to its
real-time, unsupervised operation, the proposed algorithm
is appropriate for content-based multimedia applications re-
quiring the manipulation of large volumes of visual data,
such as object-based video indexing and retrieval.
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Fig. 3. Results of moving-object detection, final mask after background segmentation, and moving objects after pixel-domain
boundary refinement for the “Penguin” sequence, frames 1, 7, 175, 220, 223.



Fig. 4. Results of moving-object detection, final mask after background segmentation, and moving objects after pixel-domain
boundary refinement for the “Coast-guard” sequence, frames 10, 28, 37, 202, 250.


